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ABSTRACT

The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making them
more intelligent and connected. However, this advancement comes with challenges related to the effectiveness of
IoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensure
their proper functionality. The success of smart systems relies on their seamless operation and ability to handle
faults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,
sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.
To address these concerns, various techniques and algorithms can be employed to enhance the performance of
IoT devices through effective fault detection. This paper conducted a thorough review of the existing literature and
conducted a detailed analysis. This analysis effectively links sensor errors with a prominent fault detection technique
capable of addressing them. This study is innovative because it paves the way for future researchers to explore errors
that have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essential
factors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and their
corresponding recommended techniques. Additionally, the paper presents a methodical overview of fault detection
techniques employed in smart devices, including the metrics used for evaluation. Furthermore, the paper examines
the body of academic work related to sensor faults and fault detection techniques within the domain. This reflects
the growing inclination and scholarly attention of researchers and academicians toward strategies for fault detection
within the realm of the Internet of Things.
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1 Introduction

In recent times, IoT has registered a frantic shift in lifestyles, which has raised the quality of
life. IoT developments have accelerated in almost all areas, including manufacturing, production,
agriculture, home, and office automation [1–3], etc., as shown in Fig. 1. The growing demand and pace
of IoT-enabled technology have also raised a challenge to swiftly handle fault detection and recovery
[4]. Fault-tolerant and robust IoT solutions add a positive impact on the customer’s experience. Timely
detection and correction of faults play a crucial role in quality measurement and also reduce the
cost and time of maintenance. Fault detection is an essential aspect to consider because it helps
determine the system’s volatility toward failures and safeguards the hassle-free driving of IoT devices.
The timely correction of flaws improves quality, lowers costs, and increases the overall efficacy of the
system, allowing it to become a sustainable infrastructure. Techniques based on machine learning are
promising because of the mechanism of classifiers. The data collected by sensors can be supplied to
varied fault detection techniques or Machine Learning (ML) models; thus, applying fault detection
techniques can enhance the IoT utility, performance, and efficiency [5].

Many algorithms and techniques like Naive Bayes, Artificial Neural Networks, Genetic Algo-
rithms, Hardware Redundancy, Multi-Layer Perceptron, Limit Checking, and many more can be used
to identify faults [6–10], which can increase efficiency and save time. Even so, different methods can
be distinguished based on various factors like presumptions, the accuracy and strengths and flaws of
statistical models, and others. Because of the halt-free services currently available, systems that are
reliable and fault-tolerant are becoming more important. If faults are left unresolved for an extended
period, they can have fatal and expensive consequences [10].

Figure 1: IoT and its application areas [1–3,11–18]

The integrity, accuracy, and performance of IoT systems are dependent on the fidelity of sensor
data. Sensors are often installed and exposed to harsh conditions, tampering, nasty attacks, attrition,
etc., resulting in sensors malfunctioning, erroneous readings, and even failures. This erroneous or
corrupt sensor data can be termed sensor faults or oddities. Thus, it becomes critical to detect these
faults or oddities in sensors to ensure the proper functioning of IoT workplaces.

The paper has done an extensive literature survey and a very refined observatory analysis is
performed that maps the sensor errors with the prominent fault detection technique that can handle
them. The work is novel as it opens directions for future researchers to understand the errors that
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are still untouched to be addressed by various fault detection techniques, factors crucial for adopting
any fault detection technique, and Dataset characteristics with their recommended technique are the
major contribution. Besides, the paper provides a systematic overview of fault detection techniques
in smart devices along with their evaluation metrics. The paper also exhibits an analysis of academic
work done in the domain of sensor faults and fault detection techniques.

This article is structured as follows:

• The importance of fault detection in an IoT space is briefly discussed in Section 2.

• Section 3 discusses the basic causes of faults, their types, and various existing fault detection
techniques. It also presents a basic framework and pseudo-code for implementing fault detec-
tion. Major conclusions are drawn from the study.

• Metrics for the evaluation of fault detection techniques are presented in Section 4.

• Section 5 presents an academic analysis of publications on the current topic.

• Lastly, Section 6 summarizes the complete paper while highlighting limitations and some future
directions.

The next section testifies to the importance of fault detection in a smart space.

2 The Vitality of Fault Detection in IoT

Adopting the concept of smart spaces like smart cities, smart offices, and smart homes is always
hindered by many societal and technical challenges [19]. On the other hand, the construction of smart
settings is frequently hampered by technical apprehensions against robustness, fault tolerance, and
dependability on IoT. This is because of errors or faults resulting from manifold threats such as
routing hassles such as heterogeneous devices, sensors deployment, multihop communications, etc.,
transmission link volatility, environmental effect, hardware component failure, radio interference, and
battery/energy depletion. Sensor nodes can also fail for a variety of reasons, including hardware failure,
software failure, and purposeful attacks [20,21].

Fault detection is an important aspect to address because it aids in identifying the system’s
susceptibility toward failure and assures the smooth operation of all appliances in smart environments.
The timely correction of flaws improves quality, lowers costs, and increases the overall system’s efficacy.
IoT technology has increased the quality of life by providing comfort, flexibility, and security. There is
a necessity in IoT contexts to create a model that can help users solve real-world issues. The struggle is
to keep a trail of defective appliances in a smart space. Many businesses do monitor manually, which
makes it hard to explore each bend for any damaged appliances while performing strenuous tasks.
There can be numerous diverse appliances deployed in a smart setup. Individuals are prone to making
errors and may fail to notify and fix faulty appliances on time. Consider a health monitoring system
for senior care, in which smart gadgets monitor the elder’s overall health. If an oxygen sensor fails, it
will either halt reporting or indicate an incorrect oxygen level, which could be lethal. Human-based
errors can thus be reduced by limiting human intervention. A flexible, scalable, dependable, and user-
friendly atmosphere must be established. IoT solutions that are fault-tolerant and dependable boost
the user experience. Detection of faults and timely rectification is crucial for controlling quality, in
addition to reducing maintenance outlays and time. The necessity for fault-tolerant smart space has
prompted several authors to devote their energies in this direction [19–37]. The next section discusses
types of faults that surface in sensors and different techniques to handle them.



2032 CMES, 2024, vol.138, no.3

3 Causes of Faults in Sensors

Sensor fault or oddity can be seen as deviation, inconsistency from normal behavior, or regular
sensor readings [38–40].

In the Internet of Things context, the following are the main causes that can lead to the occurrence
of faults as shown in Fig. 2.

1. Inherent Faults: Conflicting or inconsistent readings gathered from faulty sensors compared
to one from a healthy device can be referred to as inherent or intrinsic errors [40–43]. It is also
taken as a noise-related error [43]. In this case, the sensor can give binary values which are
either null value readings or no reading at all, thus called binary failure. Inherent errors can
also be further categorized as [38]:
a) Constant: Unhealthy sensor reports a constantly very high or very low conflicting value.

b) Short: Faulty sensor feeds in a high-pitched reading between pairs of successive readings.

c) Noise: This fault affects several successive readings, increasing the overall variance of sensor
readings.

d) Drift: Readings that deviate from the true value over time due to sensing material degrada-
tion, also called energy Depletion. Error in sensor readings due to aging [23,24].

2. Event-Based Faults: Sudden events or situations or sporadic events that can potentially affect
the real-world state and sensor readings, forcing them to produce outliers like fire, floods,
chemicals, etc., usually long-lasting [43,44].

3. Isolated Faults: Faults caused owing to scattered events like malicious attacks, tampering with
sensors [43], theft, eavesdropping, or traffic monitoring, jamming, modification, sparse data,
etc., can be categorized as Passive Attacks or Active Attacks [44–47]. Intermittent connectivity
issues in the routing of sensors’ data can also give rise to faults like missing data, sparsity, and
uncertainty.

Sensor Oddity

Inherent Faults
(Error, Noise, Short, Drift, 

Non-responsive)

Event - Based Faults
(Sporadic Events)

Isolated Faults
(Attacks, tampering, 

theft)

Figure 2: Sensor faults [43–47]

Faults can be the result of various errors in sensor data. These errors can be broadly categorized
into different types of sensor errors as elaborated in the next section.

3.1 Types of Sensors Error
An IoT application may have numerous sensors producing huge volumes of data. This version of

the data extracted becomes unusable if it contains errors. This is because the data quality induced by
sensor errors can lead to inappropriate decision-making. There are several kinds of sensor errors or
faults. Table 1 lists the variety of faults that were discovered.

Outliers are being addressed by many researchers using various fault detection techniques. Some
of the important techniques are deliberated on in the following segment.



CMES, 2024, vol.138, no.3 2033

Table 1: Types of sensor errors [23,24,42,48–62]

Types of sensor errors

Outliers Outliers, also known as anomalies, faults and spikes, are results that surpass
thresholds or depart significantly from the model’s expected behaviour.

Missing data It is also known as incomplete data. missing data is caused by various factors
such as unstable wireless connection, weather conditions, and attacks.

Bias Can also be called as an offset, is a fault with a constant offset. It normally
necessitate calibration in order to obtain the real value by subtracting the
offset from the observed measurement.

Drift Drifts are measurements that diverge from their true value over time as a result
of sensing material deterioration.

Noise They are the minor variations in the data set.
Constant Readings with a consistent value across time, even if they are within a normal

range, are known as constant values. A defective sensor or trans-mission issues
are the most common causes.

Uncertainty In statistical terminology, uncertainty can be thought of as the quantification
of an error. Uncertainty is also increased by noise.

Stuck-at-zero Often called as dead sensor fault. The fault is also known as a dead sensor
fault. It refers to values that are always zero over a long period.

3.2 Fault Detection Techniques
Detection of faults is critically significant for a real-life smart workplace like health monitoring,

childcare, environment monitoring, etc., as its smartness is justified on smart devices or sensors.
Sensors, being electronic devices, can go out of order, leading to faulty readings. Faults can be detected
by identifying oddities or outliers from the data supplied by sensors. Outlier detection techniques track
the drift, noise, sparsity, duplicate values, anomaly, or deviation of sensor data from regular patterns.

This oddity affects the quality and performance of the smart system. Many fault detection
techniques/models can be applied in varied branches as shown in Table 2 [38,42,44,63–70].

Table 2: Fault detection techniques

Statistical technique Parametric Gaussian
Non-Gaussian

Non-parametric Kernel approach
Histogram approach
Rule-based approach
Cumulative summation
(CUSUM)

Clustering K-means

(Continued)
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Table 2 (continued)

Artificial intelligence Expert system
Fuzzy
Neural network

Classification techniques Support vector machine
Bayesian network
Random forest

Nearest-neighbor techniques Local outlier factor (LOF)
Spectral decomposition-based
approach

Principle component analysis (PCA)
Fisher linear discriminant analysis

Hardware-based Special hardware
Voting techniques
Hardware redundancy
Limit checking
Frequency analysis

3.3 Statistical Techniques
Statistical techniques are the most used and former method for detecting sensor anomalies and

faults. First, the distribution parameters are calculated. This technique then assumes that the data
points obtained from sensors being analyzed can be recognized as anomalies if the likelihood of those
data instances is very low [42,55,71–75]. Using past sensor measurements, this method approximates
and builds a model of a sensor’s accurate behavior. When a fresh measurement from the same sensor
is recorded, the data points are compared to the model to see if it is statistically discordant with the
model. If the model is not well-suited to the new sensor readings, it is labeled as an outlier or a bad
measurement. Statistical models are useful for dealing with real-valued quantitative data. But if the
complexity and volume of sensor data grow, as it does in the case of IoT, this approach will elongate
to analyze and transform the complex data.

All statistical techniques operate in two stages [70–75].

• Training: It involves constructing a statistical model based on the data available.

• Testing: Data instances are tested against the model built for oddities or outliers.

Statistical techniques can be of two types: parametric-based approach and non-parametric-based
approach [43,45,55] as shown in Fig. 3.

1. Statistical 
Techniques

Parametric

Non-
Parametric

Figure 3: Statistical techniques
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3.4 Parametric Techniques
Parametric techniques are appropriate when the data’s underlying distribution type is fully

understood. For provided data, a distribution or probability model(s) is explicitly undertaken. The
parametric method’s primary premise is that a collection of pre-set parameters is used to determine
a probability model. Parametric approaches are quite application-specific. Parametric techniques can
be classified further as Gaussian and non-gaussian models [43,44,74–82], as shown in Fig. 4 below.

Parametric

Gaussian

Non-
Gaussian

Figure 4: Parametric techniques

a) Gaussian Model: The data in a Gaussian-based model are considered to be regularly distributed
[44,53,77–82]. Firstly, the mean and variance of the normal distribution are calculated based on
maximum likelihood estimations. Then, as per the parameters of the datasets and distribution
and the desired number of outliers, various anomaly tests are performed. Outliers are defined
as a small percentage of points in a population that have a low probability of occurrence.
Regression can be used to build a model if the probabilistic model is uncertain [68]. Time-series
data is subjected to extensive outlier detection utilizing regression algorithms [80]. Firstly, a
data-fitting regression model is built (linear or non-linear). Afterward, each data point is tested
against the build model. If there is a substantial difference between the basic value and the
regression model’s predicted value, the data point is labeled as an outlier [53,71,83–87].
Highlights:

• It is possible to employ a combination of probabilistic models called the Gaussian
mixture model for both labeled and unlabelled data.

• With proper probability distribution, it can efficiently detect the sensor’s oddity and
faults.

Challenges:
• It can only handle one-dimensional outlier data.

• It consumes a lot of memory for a node to store old values.

• If a large number of parameters are there, the correlation becomes complex, and a high
computational cost is involved.

• Because much data does not come from a Gaussian-distributed source, it is not useful
for many modeling applications.

• In the context of smart workplaces, the historical distribution of sensor data is not
available. In that case, the parametric statistical method becomes irrelevant.

b) Non-Gaussian Model: Data are not ordinarily distributed in a non-gaussian model. The spatial-
temporal correlation of sensor data is used in this technique to detect outliers locally [88–90].
Highlights:

• Historical correlation can be used to detect outliers. Any anomaly or conflicting reading
will affect the correlation negatively. Outliers can be traced easily.

• Local transmission lowers communication costs.
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Challenges:
• Non-parametric statistical techniques cannot handle data scalability as in the real-time

smart workplace.

• For sensor data and cluster-based models, this form of distribution is unsuitable.

• It is also vulnerable to network topology changes that happen in real-time.

3.5 Non-Parametric Techniques
Non-parametric fault detection algorithms make no assumptions about the data’s distribution

[68]. These strategies are appropriate for asset-compelled sensor networks where information dissem-
ination might change habitually. For instance, these progressions can be brought about by the energy
consumption of sensors over the lifetime, which influences the stability and would thus be able to
control inconsistency-based interruption discovery [62]. Fig. 5 shows further types of non-parametric
techniques.

Non-
Parametric

Kernel 
Approach

Rule-Based
Approach

Cumulative 
Sumation 
(CUSUM)

Histogram 
Approach

Figure 5: Non-parametric techniques

a) Kernel Approach: This includes utilizing Kernel capacities to surmise the real thickness
dissemination. Any instance that lies in the low likelihood space of this thickness is announced
to be an anomaly [62,71,91,92].
Highlights:

• The probability distribution function of the kernel approach applies to both univariate
and multivariate data.

Challenges:
• The Probability distribution function assessment for multivariate information is consid-

erably more computationally costly than for univariate information.

• The kernel thickness assessment strategies used get fairly inefficient in outlier locations
in the case of high-dimensional data.

b) Rule-Based Approach: The anomaly detector in rule-based detection develops heuristics to
recognize and classify data points as an outlier or normal using predefined rules or expert
knowledge. These rules are nominated suitably and applied to the watched data. An anomaly
is proclaimed when the rules describing an abnormal state are met [42,71,93–95].
Highlights:



CMES, 2024, vol.138, no.3 2037

• This strategy works best when the kinds of issues can happen and the techniques to
distinguish them are known and deduced.

• This methodology predominantly cleans the information and relieves the strain on
domain specialists before undertaking any data analysis.

• Parallel sensor inconsistency or binary anomaly can be detected using the rule-based
method.

Challenges:
• The detection performance strongly relies on the rules defining what constitutes a

significant deviation from being chosen correctly.

• When many sensors are put in a given environment, it becomes less feasible and error-
prone.

• Specifying all of the valid rules for number sensors is tough.

c) Cumulative Summation (CUSUM): CUSUM calculations identify changes in mean qualities
without expecting any information about the fundamental information conveyance. It consec-
utively gathers data points greater than the mean worth recorded under ordinary conditions.
When this CUSUM value is compared to a pre-set threshold, an anomaly is discovered
[62,74,75,85,86,96].
Highlights:

• Simple to implement.

• No prior information regarding the distribution is needed to implement this technique.

• Efficient in detecting network attacks like sinkholes, jamming, denial of services flood-
ing, etc.

Challenges:
• A compromise between the false positive rate and detection rate needs to be examined

additionally by playing on CUSUM calculation boundaries.

• The CUSUM approach can just screen each component or variable in seclusion and is
not appropriate for observing the relationship between elements.

d) Histogram Approach: Histogram methods essentially depend on the recurrence or counting
of information. The histogram-based anomaly identification approach is commonly applied
when the information has a solitary element. Data profiles are maintained using histograms.
These profiles can represent normal data, outliers data, or mixed. These methods normally
characterize an action between a new test occurrence and the histogram-based profile to decide
whether it is an exception or not [38,53,71,87,95–98].
Highlights:

• Histogram-based location techniques are easy to execute and, subsequently are very
famous in the area of outliers’ discovery.

• The histogram model works well for discrete sensor values and sensors with a subjective
number of modes.

Challenges:
• This approach demands a large volume of data to operate efficiently and accurately.

• The histogram is not capable of underpinning the correlation of varied attributes in the
case of multivariate data.

• Inefficient with high dimension data.
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3.6 Clustering
In this approach, clusters of similar data points are created and the readings that stand out

remotely from the regular cluster are identified as abnormal values or outliers [43,45,99–101].
Clustering also includes K-means clustering as depicted in Fig. 6.

Clustering K-means

Figure 6: Clustering techniques

a) K-means: It is used where information is not labeled. It forms clusters of objects of similar
nature. K in regards to “K-means” is the number of groups formed. K random data points are
selected as centroids. Afterward, all data points are assigned to the centroid nearest to them.
Datapoint not assigned to any centroid is considered an outlier. K-means are mostly used for
feature selection [6,102,103].
Highlights:

• The clustering model is easily adaptable to incremental form once clusters are formed
and data points are fed in and tested for outliers.

• It can be utilized to reduce space complexity for detection.

• Data lost from IoT sensors can also be recovered using clustering.

• Best suited for detecting outliers in IoT historical data.

• Supervision is not required.
Challenges:

• It proves to be costly with multivariate data.

• Not adaptable to changes in IoT data.

3.7 Artificial Intelligence
Artificial Intelligence branches knowledge systems, neural networks, and fuzzy logic are the latest

area of research for anomaly or outlier detection in the field of IoT presented in Fig. 7.

Artificial 
Intelligence

Expert System

Fuzzy

Neural Network

Figure 7: Artificial techniques

a) Expert System: These are the systems that integrate facts/knowledge of a particular instance
with the expert information available in the knowledge base. The knowledge base is dynam-
ically built with each data point. And inferences from the knowledge base are used to detect
outliers [104–106].
Highlights:

• Expert systems are very easy to build and implement.

• Explanation and reasoning are transparent and easy to understand.
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Challenges:
• They are domain and system dependent.

• A knowledge base takes gradual time to build efficiently.

• Data points beyond the knowledge base cannot be correctly diagnosed.

b) Neural Network and Fuzzy: It is a concept rendering a logical model that analyses the entire
sensor data for making a decision [43,53,107,108]. On the contrary, fuzzy logic defines cor-
rect/standard sensor readings based on transition values like yes/no, right/wrong, or high/low.
The Fuzzy logic technique can be utilized to recuperate decision-making, and quality of service
and, ultimately, discover sensor faults and oddities.
Highlights:

• The inherent model generalizes the sensor data points and thus can work even if the
sensor feeds in noisy, poor, or fragmented data.

• Re-training of the model is often not required when a new smart device or sensor is
added to the system.

Challenges:
• The model must be trained on a simulated dataset before being implemented in a real-life

smart setup.

• An increase in the count of variables will also increase the number of rules that are
employed to infer the decision.

3.8 Classification Techniques
Classification techniques are an integral part of data mining and machine learning. No prior

knowledge of the dataset is required. Using a set of predefined sensor data points or training points,
classification approaches try to find a classification model termed a classifier and then organize
obscure data items into either of two learned groups viz normal or outliers [43]. Whenever a new
sensor is added, these techniques require updates to accommodate new sensor data in the normal
class. These techniques are well-suited for the detection of faults and outliers [109]. These techniques
operate in two-phase training: the model where labeled data is utilized for classifier learning and the
testing or experimenting where instances are tested for normal data or faults [62,110–113]. Further
classification can be viewed in Fig. 8.

Classification 
Techniques

Support Vector Machine

Bayesian Network

Random Forest

Figure 8: Classification techniques

a) Support Vector Machine (SVM): The SVM approach assigns new variables to one of two cate-
gories based on non-probabilistic bilinear classification. Vectors of data points are transformed
from their input space into a space with greater dimensions based on the observed features.
SVM models separate data as points in space, ensuring a wide distance between their respective
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classes. The normal data is located in the feature space, while the anomalous feature deviates
from the normal model in the feature space [6,62,114–117].
Highlights:

• No dependency on any statistical model.

• Quite accurate.

• The algorithm is optimized for smaller datasets that are cleaner.

• By maximizing the decision boundary margin, an optimal classification solution may
be found.

• Dimensionality issues can be avoided.

Challenges:
• For training purposes, obtaining error-free or labeled data is essential.

• It is more complex as compared to statistical or clustering techniques.

• It is not appropriate for large data sets because much time is needed to train the data
model.

• For loud datasets with covering classes, this strategy is less effective.

b) Bayesian Network (BN): A Bayesian organization, otherwise called a belief network/casual
network, is a probabilistic graphical model. It utilizes a non-cyclic directed graph to show a
bunch of factors and their contingent conditions dependent on Bayesian deduction. BN is
a simplified representation of the interdependencies inside a collection of measured values
described by variables of interest, such as cause occurrence, symptoms, or faults, with nodes and
directed edges representing the causal links between them. The fitted Bayesian network model
is utilized to get an estimate for fault detection. This is accomplished by creating a specific
sensor as a theory and the other associated sensors as evidence. The posterior probability
distribution of the specific variable, which is the output, is used to evaluate the likelihood of
measuring the recorded sensor data value. It is distinguished as odd or as anomalous if the
likelihood is less than a user-defined threshold [6,107,118–121].
Highlights:

• It can deal with uncertainty and make causal deductions.

• Understanding and updating the model is made easier by graphical representations of
causes, flaws, and their interconnections.

• This method proves to be efficient for small datasets.

• It can handle high dimensionality in data.

• A significant issue that can be addressed by utilizing the Bayesian network is taking care
of noise in IoT gadgets.

Challenges:
• The disadvantage of Bayesian networks is that constructing a probabilistic model of the

relationships between the variables necessitates expert knowledge.

c) Random Forest: A random forest is a collaborative approach by constructing decision trees
of varied samples. It then records widely held votes in case of classification and considers the
average for regression to make suggestions. Models are built by employing random forests to
track the abnormality in data points [6,122–125].
Highlights:

• Multi-dimensionality can be managed easily.
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• The method is quite stable.

• It is effective in handling missed data.

• The problem of overfitting can be solved.

• Large datasets can be tackled efficiently.

Challenges:
• It is quite slower as compared to other techniques.

• It required a quality resource number to train the model.

3.9 Nearest Neighbor Technique
The nearest neighbor technique is based on proximity. It is a frequently used method for analyzing

sensor data points concerning its closest neighbors. To distinguish between anomalous and accurate
readings, the nearest-neighbor technique relies on the distances between sensor data measures. It can
be implemented as LOF, as shown in Fig. 9.

Nearest Neighbor 
Technique

Local Outlier 
Factor (LOF) 

Figure 9: Nearest neighbor techniques

a) The Local Outlier Factor (LOF): LOF is an excellent illustration of the nearest-neighbor
method that assigns a defect or outlier score to each sensor reading based on the number of
measurements surrounding its k-nearest-neighbors and the number of measurements around
the sensor reading. The density surrounding a local data point is compared to the density
around its k closest neighbors in this method. A minimal radius surrounding each data point’s
values is calculated, ensuring that at least k closest neighbors are included. The outlier factor of
a data point is determined by the ratio between the local radius and the average neighborhood
radius [43,126–129], or readings with high scores are considered outliers.
Highlights:

• LOF can be easily applied to a variety of data supplied by heterogeneous types of
sensors.

• It is a density-based technique that can help detect local outliers easily.

• It can be left unattended once a sufficient distance metric has been defined for the data.

Challenges:
• The cost of computation increases with multivariate complex data generated by IoT.

• There are scalability issues with this method.

• When it comes to sensor problems and outlier detection, it frequently provides a high
false-negative rate.

3.10 Spectral Decomposition-Based Approach
These approaches are used to deal with the challenges associated with high data dimensionality.

This category of techniques performs feature selection and can be thought of as outlier identification
pre-processing. If a point is located in a local region of exceptionally low density in a lower-dimensional
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projection, it is considered an outlier. As a result, outliers in these lower-dimensional projections can
be found simply by looking for projections with lower density [43,71,130]. It is further classified as
shown in Fig. 10.

Spectral 
Decomposition 

Based Approach

Principle Component 
Analysis

Fisher Linear Discriminant 
Analysis Based

Figure 10: Spectral decomposition techniques

a) Principle Component Analysis (PCA): PCA is a versatile technique that can be used for various
tasks, including defect identification. This method aims to use principal components to uncover
normal modes of behavior in the data. It is a mathematical approach that uses an orthogonal
transformation to reduce many correlated variables to a smaller number of uncorrelated
variables known as principal components. The first principal component accounts for as much
variability as feasible in the data, and each subsequent component accounts for as much
variability as possible in the remaining data. The data is projected in the highest variance
direction. Outliers are data points that deviate from these rules [44,53,63,131–135].
Highlights:

• In a lower-dimensional space, it finds the most precise data representation.

• It is a useful tool for analyzing data points in high-dimensional data.

• It can operate in an unsupervised mode also.

Challenges:
• PCA necessitates fault-free training data, which is uncommon and difficult to come by.

• There is also an issue of determining the ideal number of primary components, which
varies depending on the application.

b) Fisher Linear Discriminant Analysis Based: This technique is a classification algorithm that
projects high-dimensional data onto a line and performs classification in that space. Fisher’s
basic notion is to maximize the separability of two known groups by constructing a new linear
axis and projecting data points along with it, to make the best classification decision possible.
Thus, the projection maximizes the distance between the means while minimizing the variance
within each class. The data is shielded in the direction of maximum variance, just as in PCA.
Outliers are data points that deviate from the norm [41,133–136].
Highlights:

• We can identify an ideal threshold for binary classification and classify the data based
on it.

Challenges:
• Distance between the projected means is not an optimal measure as a standard deviation

within the classes is not considered.

• Fisher requires supervised data to determine the best direction to project the input data.
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3.11 Hardware-Based Techniques
Hardware-based techniques are not model-based, which means they do not base their fault

detection on any model. Rather, they deploy various hardware-based techniques as mentioned in
Fig. 11, to diagnose abnormalities in data [104,137–145].

Hardware-
Based

Special Hardware

Voting Technique

Hardware Redundancy

Limit checking

Frequencey Analysis

Figure 11: Hardware-based techniques

a) Special Hardware: A special sensor is integrated with devices to record measurements as data
values. These data values can be further checked again for normal/expected values or an outlier.

b) Vote Checking: This technique is regularly utilized in frameworks consolidating a high level of
equal equipment overt repetitiveness. An odd value coming from a sensor, along with other
parallel sensor values deployed to measure any particular variable, is considered faulty.

c) Hardware Redundancy: Multiple sensors are incorporated to measure a single variable. The
data point from any sensor falling apart from other data points is considered an outlier.

d) Limit Checking: Data points or device readings are checked against a valid threshold.

e) Frequency Analysis: Some kind of data point pattern may sometime take as abnormal behavior,
even if the data point individually shows normal behavior. If the frequency of such a pattern
can be analyzed and isolated to detect the fault.

Combinations of various hardware techniques can also be used. For example, special hardware can
be integrated with limit checking. Or, Redundant data points can be filtered as faulty or non-faulty
based on voting technique, etc.

Highlights:

• Hardware-based techniques are easy to implement and understand.

• No mathematical model or model training is required.

• They have comparatively fast runtime.

Challenges:

• In the case of hardware redundancy, extra cost and space for implementing and managing the
redundant device are involved.

• In the case of special hardware, additional costs must be incurred.

• If thresholds are not calculated properly, the false alarm rate increases.
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All the fault detection methods can be employed to address different types of sensor faults
according to the literature surveyed described above as shown in Table 3 [51–53,87,126,127,146–150].

Table 3: Sensor errors and fault detection techniques used for addressing

Error

Method Outliers Bias Drift Constant
values

Noise Uncertainty Missing
data

Stuck-at-
zero

Principal component
analysis

√ √ √ – – – – √

Artificial neural network √ √ √ √ √ √ – √
Support vector machine √ – – – – – – –
Clustering √ – – – – – – –
Knowledge-based
systems

– – – – – √ √ –

Statistical models √ – – – – – – –
Rule-based √ – – – – – – –
Bayesian network √ – – – √ – – –
Fuzzy logic √ – – – – – – –
Hardware redundancy √ √ √ – – – √ √

The basic framework and pseudo-code for applying any fault detection technique are shown in
Figs. 12 and 13, respectively.

Figure 12: Fault detection framework

Subsequent to the extensive survey carried out above, the following are the observed gaps/future
directions for aspiring researchers:

1. No paper up till now can exhibit all the existing fault detection approaches along with their
working methodology and key features, challenges, and evaluation metrics in one place.

2. It assists the researchers in comprehending the faults that are still not addressed by any fault
detection techniques.

3. Hardware-based methods are not widely researched or developed. Hardware replication/re-
dundancy is an outmoded tactic for detecting faults. It includes additional heft, expanse, space,
and upkeep of redundant devices. The detection of truthful and odd measurements is based
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on the estimate of redundant data, which might be impacted briefly and is unreliable. Fault
detection is solely based on varied limits calculated using various techniques. Drift and gadget
conditions are not considered when determining threshold limits. The indicator only evaluated
the device’s current levels.

4. Timely current variations/spikes were not given much thought.

5. Other variables influencing the device’s current consumption, such as device aging and the
frequency of repairs, were never considered.

6. Unplugged sensors were not expected or taken into account.

Figure 13: Pseudo-code for fault detection

Early problem identification may save production costs, lengthen equipment life, decrease down-
time, and boost safety. Some more conclusions can be drawn from the study conducted proceeding
two tables. When selecting a certain defect detection technique, several factors mentioned in Table 4,
must be considered.

The type of fault detection technique utilized can be based on varied dataset characteristics as
discussed in Table 5.

Table 4: Factors crucial for selecting any fault detection technique [38–145]

Factor Description

Process structure It is the logical and physical architecture of the smart space and step by step
hierarchy of the processes.

Failure type It is the types of failures anticipated in any smart space that need to be
addressed.

Complexity It refers to the complexity of the process followed.
Process dynamics It analyses how a process responds to different sorts of inputs in a

time-dependent, way. Or, it is a process behavior over time.
Signal accessibility It is the availability of signals generated by the process.
Dimensions It specifies the volume and attributes of input/output data.
Adaptability The appropriateness of the process for rule-based description.
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Table 5: Dataset characteristics and recommended technique [38–145]

Description Technique recommended

The measurable signal is input from sensors. Limit checking
Large-scale operation with multivariate statistical analysis Principal component analysis
A substantial amount of process input-output data can be
acquired but the process structure is unknown or too
complicated to be modeled.

Pattern recognition techniques (such
as neural networks and k-NN)

Process dynamics and immeasurable state variables but
well-defined processes.

Model-based fault detection (such
as Fuzzy, Nonlinear Models and
Neural Networks)

Fundamental laws relating to defects and symptoms are
known. Expert information available in the knowledge base.

Knowledge-based approaches (such
as Expert Systems and Fuzzy)

Limited sample information. Support vector machines
Data is regularly distributed. Gaussian model
Data are not ordinarily distributed. Non-Gaussian model
No assumption about data distribution. Asset-compelled
sensor networks where information dissemination might
change habitually.

Non-parametric techniques

Information is not labeled. Clustering (such as K-means)
Uncertainty, small datasets, and high dimensionality. Bayesian network
Multi-dimensionality, missed data, overfitting, large datasets. Random forest
Binary datasets. Fisher linear discriminant analysis

The next section states various metrics commonly used for the performance evaluation of a fault
detection technique.

4 Metrics for Evaluation of Fault Detection Techniques

Performance metrics for any fault detection technique verify how good the technique is. A
confusion matrix [119,151–154] can be taken as the basis for evaluating the outcomes of a fault-
detecting technique as given away in Fig. 14.

Figure 14: Confusion matrix
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Fault detection may result in any of the following results based on ground truth readings:

True Positive (TP): If a fault appears and the technique reports a fault.

False Negative (FN): If a fault appears, but the technique reports no fault.

False Positive (FP): A false alert is a term used to describe a false alarm the minute no fault appears,
but the technique reports faults.

True Negative (TN): If no fault appears and the technique reports no faults.

No Detection (ND): The technique reports no fault.

Following are basic metrics [119,151–154] that utilize the confusion matrix for validating any fault
detection technique as shown in Table 6.

Table 6: Evaluation metrics for fault detection [119,151–154]

Precision Accuracy Recall Negative
predictive
value

Specificity F1

TP
(TP + FP)

(TP + TN)

(TP + TN + FP + FN)

TP
(TP + FN)

TN
(TN + TP)

TP
(TN + FP)

2 × Recall × Precision
Recall + Precision

Positive
results ratio

Correct prediction ratio Positives
correctly
identified
ratio

Negative
results ratio

Negatives
correctly
identified
ratio

Harmonic mean

Precision: It produces a percentage of positive outcomes.

Accuracy: It calculates the percentage of accurate detection.

Recall: It computes the data’s completeness.

Negative Predictive Value: It produces the percentage of negative outcomes.

Specificity: It produces the percentage of faults that are correctly identified.

F1-measure: It determines the efficacy of the suggested technique.

The range for these metrics is between 0 and 1. These ratios assess the performance of a fault
detection algorithm where 1 is considered the best value, and 0 is the worst.

5 Analysis and Discussions

A bibliographic dataset is analyzed for over a decade since 2011 after referring to literature datasets
like IEEE Xplore, Elsevier, ScienceDirect, Hindawi, Google Scholar, Taylor and Francis, Directory
of Open Access Journals (DOAJ), Mendeley, Wiley, Association for Computing Machinery Digital
Library (ACM DL), SPIE, Journal of Eye Movement Research, MDPI and CiteSeerX. Tables 7 and 8
show how the datasets were pre-processed to get the most relevant publications for analysis of Sensor
fault types and Fault detection techniques.
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Table 7: Paper count during data pre-processing on sensor faults types

S. No Pre-processing steps Paper count

1 Online literature search 1140
2 On desired keywords filtration 765
3 On duplicate and non-relevant

article elimination
150

Table 8: Paper count during data pre-processing on fault detection techniques

S. No Pre-processing steps Paper count

1 Online literature search 4380
2 On desired keywords filtration 2810
3 On duplicate and non-relevant

article elimination
1560

The following results can be concluded after analyzing the dataset processed in the above step.
Fig. 15 shows that maximum work of about 30% and 37% have been done on outliers/anomalies and
noise sensor faults. Also, faults like Stuck-at-Zero and Constant Value are somewhat unattended and
need to be worked on.

Figure 15: Academic work done on varied types of sensor faults since 2011

Whereas, as far as fault detection techniques are concerned, fuzzy logic, artificial intelligence, and
statistical parametric techniques were the most preferred techniques of academicians in the last decade
as seen in Fig. 16. It can be clinched that knowledge-based, bayesian networks, and hardware-based
can be better explored to get a robust fault-handling technique.

Figs. 17 and 18 depict that the most relevant sources of publications on fault detection techniques
and sensor faults are Lecture Notes in Computer Science, IEEE Internet of Things journal, and
Proceedings of SPIE-The International Society For Optical Engineering, Sensors (Switzerland),
respectively.

Lastly, Fig. 19 shows publication distribution on sensor fault handling techniques over the last
ten years. It manifests the increasing trend and interest of researchers and academicians towards fault
handling techniques in the arena of the Internet of Things.
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Figure 16: Academic work done on varied types of Fault Detection Techniques since 2011
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Figure 17: Top 10 journals publishing on fault detection techniques
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Figure 19: Year-wise distribution of publications on fault detection in sensors during 2011–2022

6 Conclusion

The Internet of Things has recharged the working of pretty much every working environment
all over the planet. Not just how tasks were being performed but also the state of affairs. However,
the reliance on the presentation of brilliant space on IoT gadgets has likewise raised worry about the
framework’s shortcomings of open-minded methodology and power. Brilliant gadgets or sensors are
mainstays of shrewd arrangement. Their glitch can have deadly results and debasing impacts on the
general exhibition. To guarantee trouble-free and effortless working recognition of deficiencies and
disappointments in the brilliant framework timely is essential. This paper portrays a systematic review
of basic types of causes of Faults that can occur in IoT Devices and various Sensor Errors that get
induced into IoT devices/sensor data, resulting in anomalies/outliers. An in-depth analysis of existing
fault detection techniques and their respective algorithms along with their key points and challenges.
A summary of the various types of error and the existing techniques used to address them is also
presented. The paper also presents basic metrics to weigh each technique’s performance. This study
aims to provide insight into the sensor’s faults and fault detection mechanisms that are in place to



CMES, 2024, vol.138, no.3 2051

deal with them. The limitation of the survey conducted is that all the faults and detection techniques
discussed in the article concern the outliers/oddity in sensors’ reading. The failures owing to other
factors like software failure, computational faults, communication faults, and unplugged devices are
not considered. ondly, fault detection techniques can also be categorized as heuristic/meta-heuristic
and hybrid, which is not presented in the paper and can be seen as future coverage. The analysis of
processed academic datasets pose the future possibilities of research on unattended sensor faults like
Stuck-at-Zero and Constant Value and underworked fault detection techniques like Knowledge-Based
and Hardware-Based. Later, new advancements like BCI, XR technologies, and a blend of BCI and
VR/AR/MR [155] technologies for applications like smart space control along with fault detection
algorithms could be explored to enhance the exhibition and unwavering quality of IoT machines.
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