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ABSTRACT

Universal lesion detection (ULD) methods for computed tomography (CT) images play a vital role in the modern
clinical medicine and intelligent automation. It is well known that single 2D CT slices lack spatial-temporal char-
acteristics and contextual information compared to 3D CT blocks. However, 3D CT blocks necessitate significantly
higher hardware resources during the learning phase. Therefore, efficiently exploiting temporal correlation and
spatial-temporal features of 2D CT slices is crucial for ULD tasks. In this paper, we propose a ULD network with the
enhanced temporal correlation for this purpose, named TCE-Net. The designed TCE module is applied to enrich
the discriminate feature representation of multiple sequential CT slices. Besides, we employ multi-scale feature
maps to facilitate the localization and detection of lesions in various sizes. Extensive experiments are conducted
on the DeepLesion benchmark demonstrate that this method achieves 66.84% and 78.18% for FS@0.5 and FS@1.0,
respectively, outperforming compared state-of-the-art methods.
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1 Introduction

Computed tomography (CT), a widely used medical aid in diagnosis, scans and creates images of
body parts from multiple directions and cross-sections. As the number of CT images in the medical
system explosively grows, the limited number of professional radiologists makes it an urgent task to
research medical diagnostic applications. With the continuous development of deep learning, which
integrating with medical treatments to improve medical efficiency and solve the problem of uneven
distribution of medical resources. At the same time, excellent lesion detection models have been
proposed, including methods for single organs, such as lung nodule detection [1–10], lymph nodes [11–
13], and liver tumors [14–39]. However, these methods cannot meet the clinical demand for detecting
multiple lesioned organs at the same time. Therefore, universal lesion detection has gradually gained
the attention of researchers, while many promising achievements have been obtained, such as [1–
3,5,15,16], etc.
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In recent years, Yan et al. [4] proposed a large dataset DeepLesion [4], which had greatly
contributed to the development of universal lesion detection models. Based on the DeepLesion, some
researchers [15–23] have proposed valid detection methods and have shown better metrics, respectively.
Among the existing ULD methods, the accuracy is generally improved by the following aspects:
anchor-free mechanism [24,25] or enhancing feature representation [1,16,20,26,27], optimizing anchor
mechanism [15,28,29], and domain knowledge augment [30]. We focus on the idea of enhancing
feature representation, which mainly include: (1) adding attention mechanism [1,26,27,31–34], the
context information inter slices and the spatial information intra slices can be concentrated in the
most prominent regions to enrich the feature representation; (2) introducing deformable convolution
in the network [20], which can increase the receptive field of feature extraction; (3) using pseudo-3D
[34] to process 3D CT input data reduces the number of network parameters to some extent. Although
these schemes are effective, there is still room for improvement in terms of detection properties and
efficiency.

We show the effectiveness of several methods for detecting single-organ lesions on a multi-
organ lesion detection task in Fig. 1. We can see that a universal lesion detection network has more
potential and values. Inspired by camouflaged object detection in video [17], enhancing the temporal
correlation of multiple sequential slices contributes to the capture of lesions between slices by the
network. Accordingly, by enhancing the temporal correlation, the feature representation of slices
can be improved for improving the detection accuracy. Through the above observation, we find
that the existing universal lesion detection methods neglect to focus on the correlation between CT
slices, which can provide richer features for complex lesion detection tasks. Therefore, we propose an
enhanced temporal correlation detection network (i.e., TCE-Net), in which the temporal correlation
enhancement (TCE) module is introduced to extract temporal correlations of multiple sequential
CT slices. In addition, multi-scale feature maps of sequential slices are extracted using a pre-trained
Feature Pyramid Network (FPN) [31] for detecting lesions of different sizes.

The contributions of this work are threefold:

(i) An end-to-end network called TCE-Net is proposed for universal lesion detection on CT
images.

(ii) A temporal correlation enhancement module was designed for lesion detection by extracting
the temporal correlation inter multiple sequential CT slices.

(iii) The experimental outcomes demonstrate that the developed framework performs favourably
against state-of-the-art approaches on the DeepLesion benchmarks.

The remainder of this article are organized as follows. Section 2 introduces related work. The
exploited TCE-Net for universal lesion detection is described in details in Section 3. Then, experimen-
tal results are provided in Section 4. Finally, we draw a conclusion of this paper in Section 5.
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Figure 1: Comparison of visualization results of several single organ detection networks with ours.
Green and red boxes correspond to ground-truths in the test set and predicted true positives. (a) The
method proposed in [37]; (b) a modified SSD model by [38]; (c) MSCR [39]; (d) ours

2 Related Work

A Universal Lesion Detection (ULD) is a task that has great potential for development in object
detection and is in a high clinical demand in clinical [40–51]. In recent years, the ULD task has
received great attention, and related research works have been proposed one after another. Since
3D convolutional neural networks are very high memory consuming and expensive to train, and it
is also a complex and difficult task to label 3D boxes for 3D CT dataset, Yan et al. [5] proposed a 3D
context enhanced region-based CNN, called 3DCE, incorporating 3D context into a 2D CNN network
to extract features and using a 2D detection network to make the final prediction. Shao et al. [1]
proposed a Multi-Scale Booster, called MSB, which is used different dilation rates to capture the
lesion responses from each pyramid feature map, respectively. In [27], with the aim of enriching feature
representations and improving feature discrimination, they introduced a cross-slice context attention
that selectively aggregated information from different slices and an intra-slice spatial attention to focus
feature learning on the most salient regions. Meanwhile, pseudo-3D has also been applied to lesion
detection, such as MP3D FPN proposed by Zhang et al. [16], which can efficiently extract 3D context
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for universal lesion detection in CT slices. As in [1], the MVP-Net introduced by Li et al. [3] also extracts
multi-scale features, with the difference that the MVP-Net used three FPNs corresponding to three
window widths simultaneously to suit different detection parts. In addition to the above methods, there
are also approaches based on domain knowledge enhancement, such as Sheoran et al. [30]. Meanwhile,
refining the anchor mechanism is also a common mindset [15,24,25,28,29].

Currently, enhancing feature representation is still the majority route. Yet existing universal lesion
detection models ignore the hidden temporal correlations between sequential slices which facilitate the
catching of lesions when enhancing feature representation. With this motivation as a beginning point,
we explore TCE-Net, where the TCE module focuses on extracting temporal feature descriptions, and
has achieved impressive outcomes. More details are illustrated in Sections 3 and 4.

3 The Proposed Method

This section introduces a framework for universal lesion detection based on CT slices, named the
TCE-Net method. Fig. 2 shows the framework of our proposed method, which will be detailed in the
following subsections. First of all, an overall description of our approach is given in Section 3.1. In
this framework, we develop the temporal correlation enhancement (TCE) module (see Section 3.2),
whose structure is shown in Fig. 3. Then, Faster R-CNN [21] is used as a detector to demonstrate the
effectiveness of our module. As for the total loss of the training phase, a detailed description is given
in Section 3.3.

Figure 2: The framework of the proposed TCE-Net. TCE module learns the temporal correlation
representation from features of sequential slices

3.1 TCE-Net
Given a set of sequential CT slices from a single subject, we learn temporal correlation and spatial-

temporal features from multiple sequential slices to improve the characterization of the input data
for accurate lesion detection. During the training stage, we match the predicted bounding box with
the ground truth using the total loss. At the inference time, the overall network generates the final
prediction directly.

Here, assume that the location of the target slice is t and the locations of the neighboring slices
are (t − 2τ , t) and (t, t + 2τ), so the slices in the range of [t − 2τ , t + 2τ ] are defined as a sequence of
input slices, which are fed to TCE-Net.

Firstly, the pre-trained FPN is cited in [31], including bottom-up, top-down and lateral connection
components and is employed to extract multi-scale feature maps from the input data to prepare for
the detection of lesions of different sizes. We define the feature maps of the output of each layer of the
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pyramid from top to bottom as Pi, where i denotes the i-th layer. The channel number of Pi is set to
128.

Figure 3: The pipeline of the TCE module, where the Enhanced Block (EB) helps to obtain correlation
relationship between neighbouring slices group. The k in the figure is the convolution kernel size. Black
arrows indicate the direction of data flow

Subsequently, the P0, P1, P2 are further processed by the TCE module to improve the ability of
detection network to track lesions by boosting the inter-slice correlation description. Mathematically,
this process can be formulated as follows:

Ti = C (Pi) , (1)

where C (·) denotes the processing of the TCE module, and Ti represents hidden temporal correlation
of feature representation at different size. Here, i takes 0, 1, 2. The enhanced modules in layers 0 to 2
share weights in the network.

Finally, the multi-scale enhanced temporal correlation features obtained by the TCE module
cascade shallow features P3 and P4 are passed to the RPN in [21] and the detector Faster R-CNN
for classification and regression in turn for lesion detection.

R = D (Ti, P3, P4) , (2)

where D (·) indicates the detector, and R represents the detected results.

3.2 TCE Module
In this section, we give detailed descriptions about the proposed TCE module for temporal

correlation enhancement.

As shown in Fig. 3, in the TCE module, to aggregate correlations between multiple neighboring
slices and reinforce the temporal correlation representation between the whole sequential slices, the
study first divides the obtained feature maps of multiple slices G into N groups (N is set to 3 in this
paper). Arithmetically, we define the features of N groups in G:

G = {ζ1, ζ2, . . . , ζN−1, ζN} . (3)
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In Eq. (3), ζj denotes the j-th group in the G. At the next step, Enhanced Block (EB) is employed
to enhance the temporal correlation between two adjacent groups.

Fj∼j+1 = EB
(
ζj, ζj+1

)
, (4)

where, j ≥ 1 ∩ j + 1 ≤ N, j ∈ N. The final obtained multiple temporal correlation characterizations
of adjacent groups F from EBs which contain the enhanced correlation are integrated, and then use
three convolution layers to achieve the aim of further fusion.

Enhanced Block For learning temporal correlation representations from adjacent slices, we adopt
an architecture, called Enhanced Block, i.e., EB.

The study begins by extracting the context information in the x × y-plane and the correlation
information in the z-axis of the input feature map x entered into the Enhanced Block, to obtain
temporal correlation and spatial-temporal feature between adjacent slices, defined as φ (x) and
φ (x), respectively, and then proceed to perform a matrix multiplication operation ⊗ to fuse the
representations. To enhance the discriminative representation of correlation information, we use
softmax to acquire the correspondent probability distribution of fused representations y1, and multiply
it with the deeper feature of original input y2. This can be expressed as follows:

y1 = softmax (φ (x) ⊗ ϕ (x)) , (5)

y2 = Conv (x) , (6)

y
0
= y1 ⊗ y2, (7)

where Conv is the convolutional operation with 3 × 3 kernel. After that, the result y0 passes through a
convolution layer and cascades with the input x and a residual operation in order, to protect against
the loss of feature information. The above steps are expressed by the formulation as

y = x + cat (Conv (y0) , x) , (8)

where the cat (·) and y is cascade operation and output separately. Finally, the output result is
obtained by two 3 × 3 convolutions. The resolutions of features remain constant throughout the whole
procedure to maintain the representations contained.

3.3 Total Loos
To train the TCE-Net, we use lesion classification loss and bounding-box regression loss in Faster

R-CNN.

L ({pi} , {ti}) = 1
Ncls

∑
Lcls

(
pi, p∗

i

) + λ
1

Nreg

∑

Nreg

p∗
i Lreg

(
ti, t∗

i

)
. (9)

where pi is the predicted classification probability of anchor [i]. The p∗
i = 1 when anchor [i] is a positive

sample and p∗
i = 0 when anchor [i] is a negative sample. ti indicates the parameterized coordinates of

the predicted bounding box. t∗
i represents ground truth. λ is the weight balance parameter that is set

to 10. Ncls means mini-batch size, Nreg is the number of anchor location. The Lreg use smooth L1 loss,
and the Lcls adopt cross entropy. They are optimized jointly.

4 Experiments
4.1 Datasets and Evaluation Metrics

DeepLesion [4], is the largest multi-category, lesion-level annotated dataset of clinical medical CT
images ever published by the NIH Clinical Center, which collects a total of 10594 CT scans before and
after 4427 individual anonymous patients, including 32735 instances of labeled lesions. DeepLesion
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divides all data into a 70% training set, a 15% validation set, and a 15% test set. The study uses
DeepLesion’s training set to train the model and tests the model in the test set to obtain the average
sensitivity under different false positives, serving as an evaluation metric to compare performance with
other models.

We train the model on an NVIDIA GeForce RTX 3090 GPU, using the FPN with ResNet-50 that
pre-trained on ImageNet [23] in our framework. We set five anchor scales (16, 32, 64, 128, 256) and
three anchor ratios (0.5, 1.0, 2.0) in RPN while the threshold value of IOU is set to 0.7, in order to
balance learning speed and learning effectiveness of model. The CT slice is resized to 800 × 800 pixels.

We adopt the stochastic gradient descent (SGD) optimizer with momentum 0.9 and weight decay
0.0001 to train the model for 14 epochs. The base learning rate is set at 0.002, reduced by a factor of
10 after the 11th and 13th epochs.

4.2 Comparison with Other Methods
We compare the proposed TCE-Net with some state-of-the-art methods including Faster R-CNN

[21], 3DCE [5], ULDOR [19], GPN [18], MVP-Net [3], LENS [22] and Deformable Dilated Faster
R-CNN [20]. To be fair comparison, we have re-implemented 3DCE using the FPN backbone. We
perform the evaluation by computing the sensitivity values at different false positives rates and mean
average precision (mAP) as illustrated in Table 1.

Table 1: On the DeepLesion test set, the proposed method is compared with the state-of-the-art
method. Lesion detection sensitivity values are now reported at different false positive (FP) rates. The
number after “,” denotes the number of slices

FP@
Methods 0.5 1 2 3 4 8 16 mAP

Faster R-CNN21 0.57 0.67 0.76 – 0.82 0.86 0.89 –
3DCE5, 3 0.522 0.6297 0.7351 0.7881 0.8263 0.8919 0.9294 0.3365
3DCE, 9 0.5482 0.6547 0.7459 0.7897 0.8166 0.8719 0.9151 0.2988
3DCE, 27 0.5967 0.704 0.7836 0.8247 0.8469 0.8921 0.9235 0.3349
GPN18 0.36 0.5 0.62 – 0.72 0.76 0.79 –
ULDOR19 0.5286 0.648 0.7484 – 0.8438 0.8717 0.918 –
MVP-Net3, 3 0.5704 0.6893 0.796 0.8394 0.8634 0.9161 0.9442 0.3529
MVP-Net, 9 0.6224 0.7492 0.8308 0.8669 0.8884 0.9261 0.9491 0.4219
LENS22 0.403 0.5 0.596 – 0.695 0.78 –
Deformable dilated
faster R-CNN20

0.427 0.531 0.65 – 0.775 0.775 – –

Ours, 3 0.6055 0.7288 0.8164 0.8534 0.8793 0.9208 0.9497 0.3921
Ours, 7 0.625 0.7522 0.8396 0.8789 0.8984 0.9296 0.9532 0.4026
Ours, 9 0.6684 0.7818 0.8585 0.8872 0.9072 0.9365 0.9536 0.4241

4.2.1 Quantitative Results

From Table 1 and Fig. 4, we can see that GPN uses lesion detection under a single-scale feature
map, and the performance is significantly poorer than that of multi-scale feature-based lesion detection
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models like MVP-Net and ours, which illustrates the essential need for multi-scale feature extraction.
Our model outperforms 3DCE 3 slices by 9.91% and MVP-Net 3 slices by 3.95% for FPs 4.0 for the
same 3 slices case. More importantly, our proposed TCE-Net 9 slices achieves a performance boost
of over 7.78% for FPs 1.0 and 4.6% for FPs 0.5 compared to 3DCE 27 slices and MVP-Net 9 slices,
respectively. Meanwhile, the indicator mAP reaches its greatest at TCE-Net 9 slices.

Figure 4: FROC curves of various methods on the test set

4.2.2 Qualitative Results

Predicted bounding boxes generated from several compared models are illustrated in Fig. 5. Our
model shows superior capability to predict both the lesion location and size when compared with
other methods. It is evident that the proposed method enhances the performance in detecting very
small-sized or larger lesions. However, the insufficient training data for certain organ lesions resulted
in inadequate generalization for the detection of these lesions as can be seen in Fig. 6.

Figure 5: (Continued)
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Figure 5: Qualitative comparison of several existing universal lesion detection models and ours on
the testing set of DeepLesion. Green and red boxes correspond to ground-truths in the test set and
predicted true positives

Figure 6: Visualization of inaccurate lesion detection results. Green and red boxes correspond to
ground-truths in the test set and predicted true positives

4.3 Ablation Experiment
We perform a number of ablations to probe into our TCE-Net. As shown in Table 2, it shows

that the use of the temporal correlation enhancement module has improved the metric by 1.52%
compared to the baseline FPN, on the basis of which the feature information is increased by adding
the number of input slices to 7 and 9 slices, respectively. And it can be seen that the accuracy of the
model was improved by 3.86% and 7.41%, respectively, and the best results are achieved when using
the combination of TCE and input 9 slices.

Table 2: Performance of our proposed method for doing ablation experiments on the DeepLesion
dataset. The number after “,” denotes the number of slices

FP@
Methods 0.5 1 2 3 4 8 16

FPN 0.5943 0.7136 0.8101 0.8498 0.8748 0.9194 0.9497
FPN+TCE, 3 0.6055 0.7288 0.8164 0.8534 0.8793 0.9208 0.9497
FPN+TCE, 7 0.625 0.7522 0.8396 0.8789 0.8984 0.9296 0.9532

(Continued)



3060 CMES, 2024, vol.138, no.3

Table 2 (continued)

FP@
Methods 0.5 1 2 3 4 8 16

FPN+TCE, 9 0.6684 0.7818 0.8585 0.8872 0.9072 0.9365 0.9536

5 Conclusions

This work investigates the effectiveness of the enhanced temporal correlation detection network
(TCE-Net) for universal lesion detection (ULD) in CT scans. The temporal correlation enhancement
module has been proposed to enhance the effective fusion of multi-slice features through temporal
correlation between multiple adjacent slices. We validate the effectiveness of our method with various
experimental and analytic results. It shows that the proposed method brings a performance boost in
the lesion detection tasks in CT scans. Universal lesion detection is a challenging task, partly because
lesions in some organs have minimal differences from adjacent tissues. Therefore, false positives are
high for detection in these organs. Meanwhile, the imbalance of data samples from various types of
organs also limits the generalization ability of TCE-Net. In the future enriched organ CT data will be
needed to train TCE-Net to improve the performance.
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