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ABSTRACT

With the increasing prevalence of high-order systems in engineering applications, these systems often exhibit
significant disturbances and can be challenging to model accurately. As a result, the active disturbance rejection
controller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmanned
aerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances and
the possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address these
issues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neural
network (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.
We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuator
fault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits load
disturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law has
Lyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platform
demonstrate that the proposed method outperforms other control strategies regarding load disturbance suppression
and fault-tolerant performance.

KEYWORDS
Radial basis function neural network; plant protection unmanned aerial vehicle; active disturbance rejection
controller; fractional gradient descent algorithm

1 Introduction

In the past decade, multi-rotor unmanned aerial vehicle (UAV) technology has developed rapidly
and is widely used in various industries, such as national defense, construction, power, rescue, and
agriculture [1–5]. Different types of components, such as onboard computers, sensors, cameras, and
controllers, are carried by multirotor UAVs to meet the requirements of various mission scenarios.
Furthermore, multi-rotor UAVs’ external disturbance rejection capability and fault tolerance also vary
according to different scenarios. Therefore, many researchers have studied flight control algorithms
for specific types of UAVs and their application scenarios [6–8].
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The control system of a multi-rotor UAV is a typical underactuated system with nonlinear charac-
teristics [9,10]. In the control algorithm of multirotor UAVs, the most common methods are the PID
control algorithm [11], sliding mode control algorithm [12–14], and robust control algorithms such as
disturbance rejection control [6,15,16]. With the increasing complexity of multirotor UAVs [17–20],
researchers have considered combining adaptive control technology with robust control technology
to better control such complex systems [14]. To address the uncertain dynamic parameters and
external disturbances in the system, Lu et al. used neural networks to identify uncertain parameters
in the system, which performed well in the control of such nonlinear systems [21]. However, the
instability of the control system due to external or self-disturbances, as well as actuator and sensor
failures, is a common phenomenon for UAVs [22,23]. Therefore, many researchers have considered
combining intelligent control algorithms with robust and adaptive control to propose fault-tolerant
control algorithms that can solve a class of faults [24–26]. Boche et al. proposed a fault-tolerant
control scheme that utilizes continuous and discrete methods to address multiple actuator failures
[27]. Alternatively, Wen et al. proposed an adaptive neural fuzzy sliding mode control method with
online parameter updating in reference [28] to solve the fault-tolerant control problem of uncertain
nonlinear systems subjected to actuator effectiveness failures and input saturation, regardless of fault
limits. However, in some fault-tolerant control methods, the fuzzy neural network structure remains
fixed and cannot independently adjust the fuzzy rule number, leading to increased computational
burden and potential negative impacts on control performance when inputs and outputs increase.
To address this issue, Yu et al. proposed an actuator fault-tolerant control method that utilizes a self-
constructed fuzzy neural network and multivariable sliding mode control [23]. By combining adaptive
algorithms with self-constructed fuzzy neural networks, the proposed method approximates actuator
fault information and model uncertainty parameters, thus reducing the computational burden of
the control system and ensuring stable fault systems within a finite time. Moreover, radial basis
functions offer significant advantages in dealing with parameter approximation of nonlinear systems.
Similarly, Xiang et al. used an observer combined with RBFNN to detect unknown faults in the
system with changing model dynamics in the attitude system of the aircraft. Because of the advantages
of neural networks in function approximation and data classification processing, they can handle
model uncertainty changes and distinguish fault data in the case of actuator failures [29]. However,
the fault-tolerant control method implemented has certain requirements for the construction of the
system model. Therefore, it is necessary to find a control algorithm that does not overly rely on
the system model. Zhou et al. proposed a fault-tolerant control method combining self-disturbance
control and a radial basis function neural network to give the system a certain fault-tolerant control
ability for actuator and sensor failures while resisting external disturbances [15]. The active disturbance
rejection control algorithm has the characteristic of not overly relying on the system model, and is
a good solution for control systems with uncertain models. However, for systems where changes in
system model parameters are detected, using machine learning algorithms is also a good solution [30].
Zhong et al. introduced the model reference adaptive control into the RBFNN for online identification
of the system model’s changing parameters [16]. Similarly, Liu et al. designed a new cascade double
loop ADRC method of neural network-based extended state observer (NNESO) to solve the attitude
control problem of hypersonic vehicles in order to solve the disturbance problem of hypersonic vehicles
[22]. The controller design ideas in this article have given us some inspiration. To better identify
the uncertain items of dynamic parameters of systems, Hua et al. used optimized parameters of a
self-disturbance control algorithm and combined them with a spatiotemporal RBFNN to achieve
fault-tolerant control for actuator failures in a class of nonlinear systems, and significant results were
obtained [31]. This article further studies on this basis.
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However, the above research needs further investigation into the disturbance and fault-tolerant
control algorithms for plant protection UAVs under heavy loads. Moreover, with the rapid devel-
opment and application of plant protection UAVs, research on safety control mechanisms for this
type of UAV has become increasingly important [32]. For this reason, the disturbance problem of
UAV attitude control caused by loads in various load situations has received attention from many
researchers [33]. Guerrero-Sanchez et al. proposed a hybrid control method combining a feedback
linearization controller and artificial neural network for a UAV’s suspended load situation, using the
artificial neural network as an estimator of load disturbance to achieve disturbance control of the UAV
under the load situation [34]. Similarly, Ameya et al. proposed a self-attenuation control strategy based
on an extended state observer for effective payload mathematical modeling of UAVs. The approach
considers the payload as an external disturbance of the system, employs the extended state observer to
estimate the disturbance term, and then designs a self-attenuation controller to achieve stable control
of the UAV [8].

In summary, plant protection UAVs are prone to actuator failures and must carry a significant
amount of pesticide, thus requiring solutions for disturbance suppression and fault-tolerant control.
To effectively control the UAV while carrying pesticides, we build upon the second-order ADRC
developed by Herbst [35] and design an extended state observer (ESO). Additionally, to achieve
fault-tolerant flight control during actuator failure, we propose a novel approach combining a radial
basis function neural network (RBFNN) with a fractional-order gradient descent algorithm-based
extended state observer to identify system generalized parameter terms [36]. This method utilizes
a convex combination of the traditional RBFNN and a fractional gradient descent method with
improved Riemann-Liouville derivatives, resulting in better nonlinear system identification capabilities
than traditional RBFNN. We compared and analyzed the proposed fault-tolerant controller with
traditional RBFNN and NNESO based ADRC controllers to evaluate the performance of fault-
tolerant flight control. Through simulations, we have observed that the proposed method exhibits
smaller overshoots for limited actuator gain and bias failures and efficiently suppresses oscillations
caused by load disturbances. Our research contributions can be summarized as follows:

1. A second-order ADRC was designed to estimate nonlinear systems’ uncertain parameters and
load disturbances, which can suppress load disturbances and the impact of uncertain system modeling
parameters with minimal parameter adjustment. The experimental results showed that this method
could better suppress load disturbances and faster response speed.

2. An optimized extension state observer was proposed based on the second-order ADRC and
a novel RBFNN with a fractional gradient descent algorithm with the optimal system identification
solution. The output of the gradient descent RBFNN was combined with the high-order parameter
estimation part of the ADRC observer to enhance the UAV’s ability in disturbance suppression and
reduce the error between the aircraft’s attitude control angle and the desired angle.

3. The actuator’s bias and gain fault items were integrated into the general parameter term, and
the number of design parameters for the adaptive control was optimized. Flight state data of a plant
protection UAV with actuator faults and loads were collected for model training of the gradient descent
RBFNN, enabling the ADRC to have anti-disturbance and fault-tolerant control capabilities for the
UAV in the presence of actuator faults and disturbances.

This article describes an independent fault-tolerant flight control design for a quadrotor aircraft’s
pitch, roll, and yaw subsystems. The proposed approach utilizes the aircraft’s attitude angles and angu-
lar velocities to train weight parameters of a fractional-order RBFNN, which can better approximate
the values of the fused parameter terms in the presence of modeling error, uncertainty, disturbance, and
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fault. Moreover, the proposed fault-tolerant flight control scheme can simultaneously handle multiple
limited faults in the actuators. The stability of the designed control law is proven using Lyapunov
stability analysis. Finally, simulation experiments are conducted on a fault injection platform for plant
protection UAVs to demonstrate the excellent performance of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 presents the aerodynamic model of the
plant protection UAV, including the load model and actuator fault model. Section 3 introduces the
design of a second-order ADRC with a generalized observer and an RBFNN based on the FGD
learning algorithm. In Section 4, a second-order ADRC fault-tolerant controller with Lyapunov
stability is designed based on the backstepping control approach. Section 5 describes the fault injection
simulation experiments conducted on the Qball-X4 UAV using the modified model parameters
that match the plant protection UAV and evaluates the performance of the designed fault-tolerant
controller. Finally, Section 6 summarizes the work presented in this paper and discusses potential
future research directions.

2 Mathematical Model of X-Type Quadrotor UAV

This section introduces the dynamic model of a quadrotor aircraft carrying a pesticide load. The
aircraft’s center of mass changes continuously during the flight due to the absence of a fixed form of
pesticides and other spraying liquids in the water tank of the plant protection UAV. To simplify the
analysis of the dynamic model of the quadrotor aircraft, we make the following assumptions:

1. The centroid of the water tank body remains unchanged.

2. Approximating a pesticide liquid in an aqueous phase as a particle.

3. Neglecting aerodynamic effects on aircraft and mounted water tanks.

4. Water tank and aircraft as a completely rigid structure.

To develop an effective control algorithm for quadrotor aircraft, it is imperative to obtain accurate
state information regarding the aircraft’s angular orientation, angular acceleration, linear velocity, and
linear acceleration. As such, this section provides a brief analysis of the interrelationship between the
airframe coordinate system and the inertial coordinate system of the quadrotor UAV, as well as an
examination of the mathematical expressions of the parameters pertinent to quadrotor dynamics.

2.1 Quadrotor Dynamics Model
The dynamics model of a quadrotor aircraft has been proposed in many papers on quadrotor

aircraft control [9,10]. To obtain the mathematical model of the plant protection UAV with a liquid
load, we present in Fig. 1 the kinematic parameters of a quadrotor aircraft with a liquid load in a
water tank.

Moreover, we established the body coordinate system OB − xbybzb (body frame) and the inertial
coordinate system OI − xiyizi (inertia frame) based on the X-shaped structure framework of the
quadrotor. In this section, the curved motion of the Earth’s rotation and center of gravity are neglected
when establishing the coordinate system. The generalized coordinates Pi and generalized velocities
Ṗi are given by the following equations, respectively, q = [

x y z θl φl φ θ ψ
]T

and q̇ =[
ẋ ẏ ż θ̇l φ̇l φ̇ θ̇ ψ̇

]T
. XB = [

x y z
]T

is defined as the position of the quadrotor aircraft

in the inertial frame.
[
φ θ ψ

]T
is defined as the aircraft’s corresponding Euler angles (roll, pitch,

and yaw). Among them, m is the mass of the quadrotor aircraft (including the mass of the empty
water tank), and l is the axis distance of the aircraft. The input matrix of the system is assumed to be
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U =

⎡
⎢⎢⎣

u1(t)
u2(t)
u3(t)
u4(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

FT

F2 + F3 − F1 − F4

F1 + F3 − F2 − F4

Tyaw,1 + Tyaw,2 − Tyaw,3 − Tyaw,4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−
4∑

i=1

cT ,i · �2
i

cT ,2�
2
2 + cT ,3�

2
3 − cT ,1�

2
1 − cT ,4�

2
4

cT ,1�
2
1 + cT ,3�

2
3 − cT ,2�

2
2 − cT ,4�

2
4

cy,1�
2
1 + cy,2�

2
2 − cy,3�

2
3 − cy,4�

2
4

⎤
⎥⎥⎥⎥⎥⎥⎦ (1)

where FT is the total tension of the four motors, the tension produced by each motor (N) is Fi =
cT ,i · �2

i , parameter �i(r/ min) is the rotor speed (subscript i = 1, 2, 3, 4 is the corresponding rotor
of the quadrotor aircraft), cT ,i is the comprehensive propeller tension coefficient, Tyaw,i is the torque
produced (N ·m) by a single motor in the yaw direction, cy,i is the propeller torque coefficient, u1(t) is the
throttle control amount of the quadrotor aircraft, which is the control amount of the altitude control
subsystem, u2(t) is the input control amount of the roll subsystem, u3(t) is the input control amount of
the pitch subsystem, and u4(t) is the input control amount of the yaw subsystem. Through reference
to the literature [9,10], we obtained the general expressions for the nonlinear attitude dynamics model
and position dynamics model of the quadrotor aircraft.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̈ = θ̇ ψ̇
(
Jzz − Jyy

)
Jxx

− θ̇�gJRP

Jxx

+ l
Jxx

u2 (t)

θ̈ = φ̇ψ̇ (Jxx − Jzz)

Jyy

+ φ̇�gJRP

Jyy

+ l
Jyy

u3 (t)

ψ̈ = φ̇θ̇
(
Jyy − Jxx

)
Jzz

+ 1
Jzz

u4 (t)

(2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẍ = u1 (t)
−sinθ cos φ cos ψ − sin φ sin ψ

m

ÿ = u1 (t)
sin φ cos ψ − sinθ cos φ sin ψ

m

z̈ = −u1 (t)
cos θ cos φ

m
+ g

(3)

where JRP is the total moment of inertia of the motor rotor and propeller around the axis, and �g =
−�1 − �2 + �3 + �4.

Figure 1: Quadrotor plant protection UAV
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2.2 Problem Statement
In theory, a rigid multi-rotor aircraft can maintain its attitude stability by ensuring that each rotor

provides equal thrust. Additionally, adjusting the thrust of the four rotors can change the position and
attitude of the aircraft. Hence, based on the system dynamics model presented in Eqs. (2) and (3), the
controller design can be carried out for the following affine nonlinear system:⎧⎪⎨
⎪⎩

ẋ1 (t) = x2 (t)
ẋ2 (t) = f (t) + g (t) · u (t)
y(t) = x1(t)

(4)

Among them, the state variables x, ẋ, y, ẏ, z, ż, φ, φ̇, θ , θ̇ , ψ , ψ̇ can be obtained through measure-
ment and calculation, while f (t) and g (t) are the known system modeling parameters of the quadrotor
vehicle system modeling process.

2.2.1 Model of Load Liquid Disturbance

Load disturbance can have a significant impact on UAV control during task execution. To mitigate
this effect, various control methods have been proposed by researchers [8,34]. Similarly, the shaking
of the aircraft water tank can cause interference with the stability of the aircraft’s attitude. As shown
in Fig. 2, the relative static model of the UAV on the x-axis plane at a certain moment during the
movement of the liquid in the water tank can be observed.

Figure 2: Static liquid model at the equilibrium moment

Fig. 2 illustrates parameters related to the systematic motion of liquid on the OXZ coordinate
plane. Here, the UAV is assumed to move with a constant acceleration at (m/s2), while the liquid system
exhibits acceleration components along the x-axes and y-axes, denoted by ax and ay, respectively. The
distances between the UAV’s axis and the liquid’s virtual centers of mass along the x-axes and y-axes
are denoted by lx and ly, respectively. Here h is the distance (height) between the liquid level in the tank
and the tank bottom at the initial time, g is gravity acceleration, θx and θy are the angles formed between
the liquid level and the horizontal plane with respect to the x- and y-axes components, respectively. The
parameters h+zx and h−zx are the heights of the contact surface between the liquid at equilibrium on
the x-axis and the left and right container walls, respectively. On the y-axis, the corresponding heights
are represented by h + zy and h − zy, respectively.
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At the initial moment, the forces of liquid formation in the x-axes and y-axes directions are
derived as:{

Px = ρaxlx

Py = ρayly

(5)

where ρ is the liquid density, which remains constant.

Then, the forces exerted by the liquid along the x-axes and y-axes can be expressed as:{
Fx = Pxlyh = ρaxlxlyh
Fy = Pylxh = ρaylxlyh

(6)

At the moment of equilibrium, the force along the x and y-axes is the sum of the force exerted on

the swaying part and the force exerted on the relatively stationary part:

{
Fx = Fx1 + Fx2

Fy = Fy1 + Fy2

At the moment of balance during the movement of the UAV, the force on the water tank along
the x-axes and y-axes is the sum of the force on the water tank caused by the liquid sloshing and the

force at the relatively static moment, denoted as

{
Fx = Fx1 + Fx2

Fy = Fy1 + Fy2

. Consequently, the force on the

relatively stationary part along the x-axes and y-axes can be mathematically represented as:{
Fx2 = ρlxly (h − lx tan θx) ẍ
Fy2 = ρlylx

(
h − ly tan θy

)
ÿ

(7)

Assuming that the acceleration of the liquid at the moment of equilibrium is equivalent to that
of the drone, the force exerted by the shaking component can be expressed as follows when the liquid
system in the tank reaches equilibrium:⎧⎪⎪⎨
⎪⎪⎩

Fx1 = ρlyẍ
∫ lx tan θx

0

lx tan θx − zx

lx tan θ
dz

Fy1 = ρlxÿ
∫ ly tan θy

0

ly tan θy − zy

ly tan θy

dz

(8)

The maximum force components of the entire water tank along the x-axes and y-axes can be
derived as follows:⎧⎪⎪⎨
⎪⎪⎩

Fx = ρlxlyẍ
(

h − 3lx tan θx

2

)

Fy = ρlylxÿ
(

h − 3ly tan θy

2

) (9)

The impact of the liquid in the tank on the rigid structure of the aircraft can be quantified by the
displacement of the liquid’s center of mass within the container. This displacement is denoted as the
movement distance L = [

Lx Ly

]T
, representing the perturbation force magnitude:⎧⎪⎪⎨

⎪⎪⎩
Lx = ẍt2

2
− lx

2
+ l2

x

12h
tan θx

Ly = ÿt2

2
− ly

2
+ l2

y

12h
tan θy

(10)
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Accordingly, the disturbance force magnitude that affects the aircraft in the pitch and roll attitude
directions due to the liquid in the tank can be calculated as follows:{

Fθ = √
2FxLxl

Fφ = √
2FyLyl

(11)

The disturbance parameters for pitch and roll attitudes can be defined as follows:

dload =
[

dθ

dφ

]
=

⎡
⎢⎢⎢⎣

l
Jxx

Fθ

l
Jyy

Fφ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

√
2

Jxx

FxLxl2

√
2

Jyy

FyLyl2

⎤
⎥⎥⎥⎥⎦ (12)

2.2.2 Actuator Fault Model

In general, in the absence of external disturbances, the lift of a multi-rotor aircraft is provided by
the lift generated by each propeller, and the lift Fi produced by a single propeller rotation is linearly
related to the square of the motor speed �2

i . However, in practical operating environments, as the
load increases or the attitude of the aircraft changes significantly, the performance of the motor may
deteriorate with increasing temperature, and there may be a nonstrictly linear relationship between
the motor control signal given by the controller and the motor speed. Considering the operation of
the crop spraying unmanned aerial vehicle in farmland or orchard environments, the motor rotor is
susceptible to contamination by dust or other debris, and the propeller blades may collide with plant
roots and tree branches. In these cases, the multi-rotor UAV motor and propeller mechanical structure
are prone to malfunctions (referred to collectively as actuator faults). Therefore, consider re-expressing
the pulling force of a single motor as:

Ff ,i = cT ,i ·
(
b∗

i (t) · κgain,i (t) · �i + ci (t) + bi (t)
)2

, (i = 1, . . . , 4) (13)

where b∗
i (t) and ci (t) are the gain fault and the additive fault acting on a single motor, respectively.

Due to the nonlinear relationship between lift Ff ,i and the speed squared �2
i , the time function κgain,i (t)

is defined as the gain between the speed of a single motor and the motor controller signal �i.

However, it is difficult to directly obtain the change data of the nonlinear term and actuator
fault expressed in the mathematical model in the actual system. Therefore, to simplify the modeling
process and facilitate the parameter estimation of the observer designed later. For the convenience of
mathematical expression, the following text will ignore the expression form of the independent variable
of time. According to Eqs. (1) and (4), the control quantity u(t) with actuator fault is redefined as:

uF = αu + τ (14)

where α (t) ∈ (0, 1] is the parameter containing the actuator gain fault and uncertain nonlinearity, and
τ is the parameter containing the actuator additive fault. According to the attitude dynamic model of
the four-rotor aircraft in Eq. (2), which includes the effect of load disturbance, the nonlinear system
model of the plant protection UAV can be simplified into a second-order control system.

Here, uF represents the fault control law, α (t) ∈ (0, 1] is the parameter that includes the actuator
gain fault and nonlinear uncertainty of the system, and T is the parameter that includes the actuator
additive fault. Based on the attitude dynamic model of the quadrotor aircraft in Eq. (2), considering
the load disturbance model added to the aircraft model, the nonlinear system model of the plant
protection UAV can be simplified into a second-order control system.
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⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = f0 + �f + (g0 + �g) uF + dplayload

y = x1

(15)

In the above equation, f0 is the deterministic term in the system that includes attitude angular
velocities and modelling parameters, while g0 is the modelling parameter term. Notably, f0 and g0 can be
obtained through sensor measurements and experimental data, while �f and �g are parameter error
terms in the model. By substituting Eq. (14) into the above equation and defining ς1 = �f +g0τ +�gτ

as the parameter term containing actuator gain faults and model uncertainties and ς2 = (g0 + �g) α−
g0 as the parameter term containing actuator bias faults and model uncertainties, an affine nonlinear
system with wind disturbance, actuator faults, and model uncertainties can be obtained.⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = f0 + �1 + g0u + �2u + dplayload

y = x1

(16)

3 Controller Design
3.1 Second-Order ADRC Design

The state space representation of a second-order system model of the UAV given in Eq. (16) can
be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣ẋ1

ẋ2

ẋ3

⎤
⎥⎦ =

⎡
⎢⎣0 1 0

0 0 1
0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
A

·
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ +

⎡
⎢⎣0

g0

0

⎤
⎥⎦

︸ ︷︷ ︸
B

· u +
⎡
⎢⎣0

0
1

⎤
⎥⎦ · ḟ

y = x1 =
[
1 0 0

]
︸ ︷︷ ︸

C

·
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

(17)

In Eq. (16), the fault and disturbance parameter terms in the system are quite complex. If an
RBFNN is used to identify each parameter part, it will complicate the observer design and increase
the computation of the controller. Therefore, for the convenience of the subsequent design of the
ADRC observer, we further optimize and introduce a generalized disturbance term f . The second-
order attitude model of the system in the state-space model can be expressed as:

ẋ2 = f + g0u (18)

Here, the generalized disturbance term f actually contains system state parameters, load distur-
bance dplayload, fault and the uncertain part of nonlinear system modelling with respect to time t, which
can be expressed as:

f = f0 + ς1 + dplayload + ς2u (19)

The basic idea in the design process of an active disturbance rejection controller (ADRC)
is to develop an extended state observer (ESO) capable of estimating both the system state and
total disturbance. The generalized disturbance term has been defined in Eq. (19). To estimate the
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generalized disturbance term f , it is considered as the extended state x3. Thus, x̂1 = ŷ, x̂2 = ˙̂y, x̂3 = f̂ ,
as shown in Fig. 3.

Figure 3: ADRC ring structure for second-order processes

The linear controller can achieve disturbance suppression and integral chain behavior by using
estimation variables, and the extended state observer of the system can be obtained as follows:⎡
⎣ ˙̂x1˙̂x2˙̂x3

⎤
⎦ = A ·

⎡
⎣x̂1

x̂2

x̂3

⎤
⎦ + B · u +

⎡
⎣d1

d2

d3

⎤
⎦ · (

y − x̂1

)
(20)

where
[
d1 d2 d3

]T
can be defined as D, so the extended observer can be further expressed in the

following form:⎡
⎣ ˙̂x1˙̂x2˙̂x3

⎤
⎦ = (A − DC) ·

⎡
⎣x̂1

x̂2

x̂3

⎤
⎦ + B · u + D · y (21)

As mentioned above, we have implemented a residual double integral behavior with disturbance
suppression and a linear controller. Then, we can obtain a controller based on extended state feedback.

u = u0 − x̂3

g0

(22)

Therefore, according to the second-order ADRC structure designed in Fig. 3, u0 (t) can be
expressed as:

u0 = KP · (
xd − ŷ

) − KD · ˙̂y, (23)

where xd is the reference input of the controlled system. Assuming that the estimated value of the ESO
is relatively accurate, that is⎧⎪⎨
⎪⎩

x̂1 = ŷ ≈ y
x̂2 = ˙̂y ≈ ẏ
x̂3 = f̂ ≈ f

(24)

Replacing the above equation in (18), the second-order system model can be expressed as ẋ2 =(
f − x̂3

)+u0 ≈ KP ·(xd − y)−KD · ẏ. Furthermore, under ideal conditions, the system can be expressed
as follows:

xd = 1
KP

· ẍ1 + KD

KP

· ẋ1 + x1 (25)
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In general, the closed loop can be adjusted to the critically damped state with KP and KD for any
second-order dynamics, and for the desired 2% adjustment time Tsettle, a negative real bipolar can be
obtained by selecting KP and KD, sCL

1/2 = sCL.

Typically, for any second-order dynamic system, a PD controller can be used to adjust the closed
loop to the critical damping state, and for the desired 2% settling time T , a negative real pole can
be obtained by selecting proportional parameter KP and derivative parameter KD, defining sCL

1/2 = sCL.
Furthermore, it can be obtained that⎧⎪⎪⎨
⎪⎪⎩

KP = (
sCL

)2

KD = −2 · sCL

sCL ≈ − 6
T

(26)

The placement of the poles of the ESO can be determined empirically and typically take the
following values:⎧⎨
⎩

sESO
1/2/3 = sESO ≈ (3 . . . 10) · sCL

sCL ≈ − 6
T

(27)

After the pole positions are thus selected, the observer gain is calculated according to the
characteristic polynomial of the matrix (A − DC). First, let us redefine the expression in terms of
det (sI − (A − DC)) = s3 + d1 · s2 + d2 · s + d3, then

det (sI − (A − DC)) = (
s − sESO

)3

= s3 − 3sESO · s2 + 3sESO2 · s − sESO3
(28)

Then, the solution for d1, d2, and d3 can be factored out as follows:⎧⎪⎨
⎪⎩

d1 = −3sESO

d2 = 3sESO2

d3 = −sESO3

(29)

In summary, the control law of the ADRC controller for a class of nonlinear second-order systems
can be designed as follows:

u = 1
g0

(
KP · (

xd − x̂1

) − KD · x̂2 − x̂3

)
(30)

3.2 Design of the ADRC Expanded State Observer Based on a Neural Network
The effectiveness of the attitude controller is crucial for the flight performance of plant protection

unmanned aerial vehicles, especially in the presence of possible actuator faults. However, the control
law proposed in this paper, which incorporates an estimate of the generalized disturbance term, can
only achieve stable attitude control when the drone has a small degree of fault, as discussed in the
experimental section. When the UAV (drone) has a large load, the proposed control law cannot achieve
stable attitude control. Therefore, further research is needed to develop more robust control laws
to handle larger disturbances and actuator faults. This article further improves on the previously
designed fault-tolerant controller [31]. Therefore, this paper proposes a novel approach to estimate
the generalized disturbance term in identifying a class of second-order nonlinear systems called the
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fractional gradient descent (FGD) learning algorithm. The proposed algorithm is illustrated in Fig. 4,
which is incorporated into an ADRC controller structure.

Figure 4: ADRC controller based on FRBF-NN

The experimental results demonstrate that the proposed method is effective in convergence and
steady-state performance compared to the classical RBF neural network. The FRBF-NN proposed
in this paper is a mathematical variant of the classical RBF-NN, and an algorithmic improvement is
proposed in the intrinsic concept of gradient descent optimization.

The structural diagram of the proposed RBFNN is presented in Fig. 5.

Figure 5: The FRBF-NN structural diagram

The RBF network structure consists of three layers: the input layer, the nonlinear hidden layer, and
the linear output layer, as shown in Fig. 5. If we consider the input vector as x ∈ R

4, x = [
x ẋ z3 u

]
,

then the overall mapping of the RBF network s : Rm0 → R
1 in the n − th round learning iteration can

be expressed as follows:

γ (n) =
m∑

i=1

wi (n) φi (||x − xi||) + b (n) (31)

In the RBFNN structure shown in Fig. 5, m represents the number of hidden layer neurons, xi ∈
R

m4 represents the center of the RBFNN, wi (n) represents the synaptic weight value of hidden layer
neurons and output neurons, b (n) represents the bias term of output neurons, and φi represents the
basis function of the i-th hidden layer neuron. For simplicity, let us consider a single output neuron.
Traditional RBF networks use multiple kernels, such as multiple quadric surfaces, inverse multiple
quadric surfaces, and Gaussian kernel functions, which are considered to be the most commonly used
kernel functions due to their versatility.

φi (||x − xi||) = exp
(− ||x − xi||2

σ 2

)
, (32)

where σ determines the diffusion value of the Gaussian kernel. In some cases, RBF uses the idea of
measuring distances between network centers. Traditionally, Euclidean distance has been widely used
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as an effective distance measurement tool. However, by using the complementary properties between
cosine distance measurement and Euclidean distance measurement, better results can be achieved [37].

φi (x.xi) = x · xi

||x|| ||xi|| + κ
(33)

where κ > 0 is a very small constant, added to the denominator, to avoid taking an indeterminate
form when ||x|| or ||xi|| is 0. The cost function measures the difference between the actual output and
the desired output for a given input and is used to evaluate the performance of the network during
training:

ε (n) = 1
2

(d (n) − γ (n))
2 = 1

2

∑
k

e2
k (n) (34)

where d (n) is the desired output at the n-th iteration, e (n) = d (n) − y (n) is the instantaneous error
between the desired output and the actual output of the neuron, and k is the number of output neurons.

The weight updating equation of the gradient descent method with a mixed parameter q and a
fractional gradient term is given as follows:

wi (n + 1) = wi (n) − qh̄∇wiε (n) − (1 − q) αh̄υ∇υ

wi
ε (n) (35)

The parameters in this equation include 0 ≤ q ≤ 1, h̄, and h̄υ , which represent the step sizes of
the conventional gradient and the fractional gradient, respectively. Thus, the weight update rule using
gradient descent can be expressed as follows:

�wi (n) = −qh̄∇wiε (n) − (1 − q) qh̄υ∇υ

wi
ε (n) (36)

We use the chain rule to compute the factors −∇wiε (n), then

− ∇wiε (n) = − ∂ε (n)

∂ek (n)
× ∂ek (n)

∂yk (n)
× ∂yk (n)

∂wi (n)
(37)

Similarly, the fractional derivative of ladder ∇υ

wi
ξ (n) can be calculated by applying the chain rule

of fractional calculus, i.e., Dυ

xυ (g (x)) = (
D1

xυ (g)
)

g=g(x)
Dυ

xυ (g).

− ∇υ

wi
ξ (n) = − ∂ε (n)

∂ek (n)
× ∂ek (n)

∂yk (n)
× ∂υ

k yk (n)

∂wυ
i (n)

(38)

By simplifying the two formulas above, we obtain⎧⎨
⎩

−∇wiε (n) = φi (x, xi) ek (n)

−∇υ

wi
ξ (n) = φi (x, xi) ek (n)

w1−υ

i (n)

� (2 − υ)

(39)

Then, formula wi (n + 1) = wi (n) − αh̄∇wiε (n) − (1 − α) αh̄υ∇υ

wi
ε (n) can be reduced to

wi (n + 1) = wi (n) + qh̄φi (x, xi) ek (n) + (1 − q) h̄υφi (x, xi) ek (n)
w1−υ

i (n)

� (2 − υ)
(40)

To simplify the computation, we consider μυ ≡ μυ� (2 − υ), which yields

wi (n + 1) = wi (n) + qh̄φi (x, xi) ek (n) + (1 − q) h̄υφi (x, xi) ek (n) w1−υ

i (n)

= wi (n) + ek (n)
(
qh̄ + (1 − q) h̄υw1−υ

i (n)
)
φi (x, xi) (41)
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The update rule for b (n) can be expressed as follows:

b (n + 1) = b (n) + ek (n)
(
qh̄ + (1 − q) h̄υb1−υ (n)

)
(42)

4 Design of Fault-Tolerant Controller and Proof of Stability

In a multi-rotor control system, the control output for the pitch and roll attitude of the aircraft
exceeds its input, making it a typical underactuated system. In the event of a failure, the stability of
the attitude system becomes paramount. Therefore, this section primarily focuses on designing the
controller for the aircraft’s attitude system.

First, based on the affine nonlinear system given in Eq. (16), we define xd as the angle reference
signal of the attitude controller, which is a continuously differentiable time series signal. Additionally,
the tracking error of the system is defined as follows:⎧⎪⎨
⎪⎩

e1 = x1 − xd

e2 = Kpe1 − KDx2

e3 = e2 − f

(43)

where e1 and e2 are the tracking errors of the system attitude angle and angular velocity, respectively.
For ease of notation, some parameter arguments will be omitted in the subsequent derivations and
replaced with parameter symbols.

To achieve stable control over x1, the Lyapunov function V1 is defined as:

V1 = 1
2

e2
1 (44)

The derivative of time with respect to that is:

V̇1 = e1ė1

= e1 (x2 − ẋd)

= e1 (μ1 − e2 − ẋd)

= −k1e2
1 + e1e2 (45)

From Eq. (43), V̇ can also be expressed as:

V̇1 = e1 (x2 − ẋd) (46)

Therefore, the error variable can be defined by introducing the virtual control quantity μ1, defined
as the error variable

e2 = μ1 − x2 (47)

Then, the Eq. (46) can be expressed as:

V̇1 = e1 (μ1 − e2 − ẋd) (48)

Therefore, when the virtual control quantity μ1 is μ1 = ẋd − k1e1, k1 > 0, we can obtain

V̇1 = e1 (e2 − k1e1)

= −k1e2
1 + e1e2 (49)
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Then, based on the expression of Eq. (45), the time derivative of e1 can be represented as:

ė1 = −k1e1 + e2 (50)

Then, according to Eq. (43), it is further derived

e2 = ė1 + k1e1

= ẋ1 (t) − ẋd (t) + k1e1 (51)

However, to satisfy the Lyapunov function’s stability condition V̇1 < 0, the unstable term e1e2 in

Eq. (45) needs to be eliminated. Therefore, we selected the new Lyapunov function V2 = V1 + 1
2

e2
2 and

obtain its derivative as follows:

V̇2 = V̇1 + e2ė2

= −k1e2
1 + e1e2 + e2ė2

= −k1e2
1 + e2 (e1 + ė2) (52)

Then, ė2 = ẋ2 (t) − ẍd (t) + k1ė1 can be obtained from Eq. (52), which can be further derived after
substituting into Eq. (53):

V̇2 = −k1e2
1 + e2 (e1 + ẋ2 (t) − ẍd (t) + k1ė1)

= −k1e2
1 + e2 (e1 + f + g0u − ẍd + k1ė1)

= −k1e2
1 + e2 (e1 + e2 − e3 + g0u − ẍd + k1ė1)

= −k1e2
1 + e2 (e1 + e2 + g0u − ẍd + k1ė1) − e2e3 (53)

Therefore, if (−e2e3) is a stable term, take e1 + e2 + g0u − ẍd + k1ė1 = −k2e2, k2 > 0, and we obtain
the control law u that makes the system asymptotically stable. Therefore, we reselect the new Lyapunov
function V3 to be

V3 = V1 + 1
2

e2
2 + 1

2
e2

3 (54)

Taking the derivative of the latter yields

V̇3 = V̇2 + e3ė3

= −k1e2
1 − k2e2

2 − e2e3 + e3ė3

= −k1e2
1 − k2e2

2 + e3 (ė3 − e2)

= −k1e2
1 − k2e2

2 + e3 (−k2ė2 − ë2 − ė1 − e2) (55)

To satisfy the Lyapunov function’s stability condition V̇3 < 0, the following equalities need to
hold:{

−k2e2 = e1 + ẋ2 (t) − ẍd (t) + k1ė1

−k3e3 = −k2ė2 − ë2 − ė1 − e2

(56)
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Among them, k3 > 0. Further, we get

−k3 (e2 (t) − f (t)) = −k2ė2 − ë2 − ė1 − e2

= −k2 (ẋ2 (t) − ẍd (t) + k1ė1) − ë2 − ė1 − e2

= −k2ẋ2 (t) + k2ẍd (t) − k2k1ė1 − ë2 − ė1 − e2

= −k2 (g0u (t) + f (t)) + k2ẍd (t) − k2k1ė1 − ë2 − ė1 − (
Kpe1 (t) − KDx2 (t)

)
= −k2g0u − k2f + k2ẍd − k2k1ė1 − ë2 − ė1 − Kpe1 + KDx2 (57)

Finally, the control that makes the system asymptotically stable can be inversely solved

u = 1
k2g0

(
k3e2 − k3f − k2f + k2ẍd − k2k1ė1 − ë2 − ė1 − Kpe1 + KDx2

)
= 1

k2g0

(k3e2 − (k3 + k2) f − k2k1ė1 + k1e1 − 2e2 + k2ẍd − ë2)

= 1
g0

((
k1

k2

− k2
1

)
e1 +

(
k3

k2

− 1
k2

− k1

)
e2 −

(
k3

k2

+ 1
)

f + ẍd − 1
k2

ë2

)
(58)

A multirotor UAV itself is a high-order system, and the introduction of higher-order variables

can increase system instability. Therefore,
(

ẍd − 1
k2

ë2

)
in the second-order variable of the system is

omitted to achieve better control. Meanwhile, to reduce the potential jitter problem that may arise
after omitting the higher-order terms, we let Ohigh = ë2 − k2ẍd, which satisfies the following condition:

Ohigh =
{

ë2 − k2ẍd ë2 − k2ẍd > 0
1 ë2 − k2ẍd ≤ 0

(59)

We can obtain the fault-tolerant control law in which the higher-order variables are omitted:

u = 1
g0

((
k1

k2

− k2
1

)
e1 +

(
k3

k2

− 1
k2

− k1

)
e2 −

(
k3

k2

+ 1
)

f
)

(60)

Furthermore, the final form of the Lyapunov function can be determined based on Eqs. (45)
and (54):

V = 1
2

e2
1 + 1

2
e2

2 + 1
2

e2
3 (61)

Next, we take the derivative of the above function:

V̇ = e1ė1 + e2ė2 + e3ė3

= −k1e2
1 − k2e2

2 − k3e2
3 (62)

It is easy to see that if k1 > 0, k2 > 0 and k3 > 0 and the fault-tolerant control law is the result
from Eq. (58), the derivative of the Lyapunov function V̇ < 0. Now, the system’s status tracking error
gradually approaches zero, and the entire system tends to stabilize.
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V̇ = −k1e2
1 − k2e2

2 + (−k2g0u − k2f + k2ẍd − k2k1ė1 − ë2 − ė1 − Kpe1 + KDx2

)
e3

= −k1e2
1 − k2e2

2 + (− (k3e2 − k3f ) + (k2ẍd − ë2)) e3

= −k1e2
1 − k2e2

2 − k3e2
3 + (k2ẍd − ë2) e3

= −k1e2
1 − k2e2

2 − k3e2
3 − Ohighe3 (63)

Similarly, the derivative of the Lyapunov function
(

ẍd − 1
k2

ë2

)
still holds true after we omit the

higher-order term in the fault-tolerant control law. In other words, the system is still stable after
reducing the computational complexity of the fault-tolerant control law.

5 Simulation Results and Analysis

This section aims to compare the effectiveness of the proposed fault-tolerant control algorithm
with traditional methods through flight experiments and simulation experiments, specifically on the
Qball-X4 unmanned aerial vehicle (UAV) model.

Real-time control and monitoring during the experiment were accomplished through the TCP/IP
communication protocol between the onboard computer and the computer-based ground station. The
numerical values of the initial model parameters for the modified crop-spraying drone are shown in
Table 1.

Table 1: Plant protection UAV parameters

Parameter value Interpretation

m = 26.8 kg Aircraft mass
g = 9.8 m/s2 Acceleration of gravity
Jxx = 2.280 kg·m2

Jyy = 2.280 kg·m2 Moment of inertia matrix J = diag
(
Jxx, Jyy, Jzz

)
Jzz = 3.857 kg·m2

d = 0.74 m Multi-rotor fuselage radius (1/2 wheelbase)
Cm = 0.00004162 N·m/(rad/s)2 Integrated moment coefficient of a single propeller, moment

(N·m) divided by rotational speed (rad/s), i.e., (Cm = MP/ω
2)

CR = 291.33 rad/s Motor curve: input throttle value σ (0 ∼ 1) to steady motor
speed ωss = CR ∗ σ + ωb

Cb = 68.74 rad/s
Jm = 0.0212 kg·m2 Moment of inertia of motor propeller
Tm = 0.02 s Motor response time constant
ky = 4 N·m
K = 120 N

As shown in Fig. 6, the fault injection system of the Qball-X4 UAV model used PIXHAWK4 as
the UAV flight control unit, and the Jetson TX2 onboard computer served as the data acquisition and
calculation unit for the neural network estimator.
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Figure 6: Qball-X4 quadrotor UAV fault injection system

To effectively analyze the control performance of the proposed ADRC (RBFNN) fault-tolerant
flight control algorithm, we collected system state data of the Qball-X4 UAV during actual flight,
including the state matrix [x, y, z, φ, θ , ψ ],

[
ẋ, ẏ, ż, φ̇, θ̇ , ψ̇

]
, and control input matrix U . As the pitch

and roll subsystems are the most common areas for controller design, this study mainly focuses
on demonstrating the control performance of the Qball-X4 UAV in these subsystems during the
experimental phase.

First, in the training process of the proposed gradient descent-based radial basis function neural
network (FRBFNN) in this paper, to improve the fitting and accuracy of FRBFNN output parameter
estimation with real data, flight state data of the aircraft were collected under normal, payload, and
fault conditions.

We used the attitude state parameter
[
φ ψ θ φ̇ θ̇ ψ̇

]
and control input [u1 u2 u3 u4] collected during

the flight of the Qball-X4 drone as the input for training the FRBFNN model. A raw state dataset
was collected during the flight experiment, consisting of a combination of standard flight data and
injected fault data. The drone’s body sensors were set to sample the experimental data at a frequency
of 1 ms, with each set of data containing 19405 continuous time series data and collected once every
90 s. The data were divided into training and testing sets in a 38:1 ratio. Two parallel neural network
models, each with ten neurons, were designed, and a learning step size of 0.01 was set for gradient
descent. The FRBFNN was iteratively trained using the weight updating rules designed in Section 3
of this paper. The trained FRBFNN network model was embedded into the Jetson TX2 onboard
computer and directly communicated with PIXHAWK4 to properly track the expected signal. Fig. 7
shows that, based on a sample dataset containing fault data, the average mean square error obtained
using the proposed FRBF-NN was superior to that of the traditional RBFNN, as validated through
comparison. The control performance of the UAV was mainly demonstrated in the pitch and roll
attitude subsystems during the experimental phase, as they are the most typical objects for controller
design.

Figs. 8 and 9 show that the FRBF-NN has a more accurate tracking and prediction effect on
the sample data than the traditional RBFNN, with slightly smaller tracking errors and error values
tending toward zero.

In summary, we have developed an offline FRBF-NN model for plant protection UAVs with
load disturbances and actuator faults, which provides a faster and more accurate estimation of
fault and disturbance parameters than traditional RBFNN models. To further verify and compare
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the effectiveness and advantages of the proposed fault-tolerant control algorithm, we designed the
following simulation scenarios to evaluate the controller’s performance:

Scenario 1: An agricultural drone with a load disturbance of 8 kg but no actuator faults runs on
the expected navigation path.

Scenario 2: An agricultural drone with actuator gain and bias faults but no load runs on the
expected navigation path.

Scenario 3: An agricultural drone with actuator gain and bias faults and a load of 8 kg runs on
the expected navigation path.

Figure 7: MSE testing curves

Figure 8: Predicted results of the FRBF-NN and traditional RBFNN

Figure 9: The prediction errors of the FRBF-NN and traditional RBFNN

First, as shown in Fig. 10, in scenario 1, the aircraft moves along the expected navigation path
coordinates [0 0 −2; 4 0 −2; 4 4 −2; 0 4 −2; 0 0 −2; 0 0 0 0], and although the aircraft has body swing
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during the actual flight process, both the ADRC controller with expansion observer and the fault-
tolerant controller proposed in this paper have good position tracking performance. From Figs. 11
and 12, it can be seen that under the payload condition, the tracking errors of the second-order ADRC
controller, NNESO ADRC controller, and FRBFNN ADRC controller are all within the allowable
control range. However, as seen from the attitude tracking and error curves of the unmanned aerial
vehicle in Figs. 11 and 12, the tracking error of the flight controller with FRBF-NN is smaller, and
the body swing amplitude is smaller.

Figure 10: Position tracking of the UAV with a load of 8 kg and no faults

Figure 11: Pitch and roll angles of the UAV with an 8 kg load and no faults
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Figure 12: Pitch and roll angle errors of the drone with an 8 kg payload and no faults

In scenario 2, when the UAV unloaded the payload, we injected a 20% gain fault into motors 2
and 3 at the 35th second of flight and injected a 10% bias fault into motors 2 and 3 again at the 60th
second. As shown in Fig. 13, both the second-order ADRC controller, NNESO ADRC controller
and the proposed fault-tolerant controller still exhibit excellent path-tracking performance during
flight. Figs. 14 and 15 reveal that the proposed fault-tolerant controller has smaller errors and better
performance during the occurrence of faults.

Figure 13: Position tracking of the UAV under actuator faults



2150 CMES, 2024, vol.138, no.3

Figure 14: Pitch and roll angles of the UAV with actuator faults

Figure 15: Pitch and roll angle errors of the UAV with actuator faults

In scenario 3, we simulated the situations of load and actuator failures in scenarios 1 and 2, as
shown in Fig. 16. At this time, we can compare that the proposed fault-tolerant control algorithm has
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better path-tracking control and less aircraft oscillation than the second-order ADRC and NNESO
ADRC. In Figs. 17 and 18, the attitude and angle tracking errors of the aircraft further demonstrate
the more stable attitude control ability of the proposed fault-tolerant control algorithm. It can be seen
that NNESO ADRC has a certain degree of fault tolerance. Surprisingly, due to the dual effects of
payload disturbance and actuator failure, the controller attitude collapsed when the NNESO ADRC
controller injected a bias fault.

Figure 16: Position tracking of UAV with actuator faults and payload

Figure 17: Pitch and roll angles of UAV with actuator faults and payload
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Figure 18: Pitch and roll angle errors of UAV with actuator faults and payload

The observer estimation curves of the pitch and roll subsystems shown in Figs. 19 and 20 are
compared with the estimated value

[
z1 z2 z3

]T
of the observer with the expanded state in the

three scenarios listed based on the FRBF-NN-based fault-tolerant controller. They indicate that the
proposed ESO based on FRBF-NN provides accurate estimation in time once the flight attitude
experiences significant swing or when actuator faults occur. As shown in Fig. 21, it can be concluded
that combining the onboard computer with higher computing power with the flight control system
yields an excellent control effect.

Figure 19: (Continued)
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Figure 19: Estimated values of the pitch axis observer in three scenarios for the UAV

Figure 20: Estimated values of roll axis observer in three scenarios for the UAV

Figure 21: (Continued)
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Figure 21: Comparison of pitch and roll control laws for the UAV

Finally, comprehensively analyze the above three scenarios. Comparing the second-order ADRC
controller based on traditional RBFNN with the NNESO ADRC controller, it is not difficult to
find that both have excellent performance in anti-interference ability. Moreover, in the event of a
malfunction, the response speed of each controller is equivalent. However, in terms of accuracy
comparison of errors, the FRBFNN ADRC proposed in this paper has smaller errors.

6 Conclusions

This article presents a novel active fault-tolerant control method based on FRBFNN and a
second-order ADRC observer to address actuator bias faults, gain faults, and load disturbance
issues in UAVs. The simulation results demonstrate that the designed ADRC controller with play-
load disturbance suppression capability is a powerful control tool, outperforming other controllers
and integrating the uncertain parameters of the actuator model and load disturbance parameters.
Furthermore, a new design framework of a self-disturbance fault-tolerant control method with
FRBFNN is proposed by combining the traditional and fractional gradient descent methods, taking
advantage of the complementary properties of the two. The algorithm’s validity is verified on a
multirotor fault-tolerant experimental platform and shows high convergence performance. Comparing
the experimental results, it can be found that the proposed fault-tolerant control method has a response
speed that is not weaker than other controllers, and has more accurate control tracking ability.

However, the proposed method has certain limitations. Its ability to fully exploit its potential
in specific applications depends on the relationship between process dynamics, observer dynamics,
sampling time, and measurement noise. On the one hand, the observer must be sufficiently fast
compared to the process and closed-loop dynamics to provide more accurate observation values.
For example, using an onboard computer for calculating the output of the FRBFNN in this article
reduces the impact of the insufficient computing capacity of PIXHAWK4 and greatly improves the
accuracy and speed of observer output data. On the other hand, the value of expanding observer
poles will be limited by the effect of system sampling frequency and noise on control, which requires
a good compromise. In addition, the controller proposed in this article has varying degrees of fault
tolerance when actuator failures occur in aircraft with different physical parameter models. Therefore,
the follow-up study will seek alternative optimized replacement methods.
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