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ABSTRACT

The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model with
noise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian white
noise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. As
follows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPT
is obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrence
of the tumor from the extinction state to the tumor-present state is more concerned in this paper. A more
efficient algorithm of Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of the
theoretical SPD and MFPT. With the existence of a weak signal, the functional relationship between Signal-to-Noise
Ratio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicative
Gaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and the
multiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasing
intensity of the additive Gaussian white noise results in the minimum of MFPT. In addition, the correlation times
are negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise and
the Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonously
increased in the case of Gaussian white noise with the change of the correlation time. At last, the optimal parameters
in BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural network
layers and the number of nodes in each layer.
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Stochastic tumor-immune model; mean first-passage time; stochastic resonance; signal-to-noise ratio;
back-propagation neural network

1 Introduction

In recent years, a varieties of tumor diseases have been observed and brought a revolution in the
field of cancer treatment. In order to explore the law of tumor growth and extinction, a good many
of researchers dedicate to study the tumor models, the issues including the growth of anti-tumor, the
competition between the tumor cells and the immune system [1–5].
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Some deterministic tumor models such as Logistic model [6], Gompertz model [7] have been
proved to be the powerful models to describe the dynamical evolution of the tumor, these models are
not only helpful for understanding the competition between the tumor cells and the immune system,
but also beneficial for assisting the tumor’s elimination or extinction. However, in recent decades,
scholars began to realize that these deterministic models are not consistent with the reality enough
because they ignore the effects of environmental perturbations. In fact, the growth of the malignant
tumors relies heavily on the synthesis of the proteins which are very sensitive to the environmental
perturbations [8–10]. However, uncertain factors such as body temperature, blood pressure, oxygen
level, and others in cells’ microenvironment can bring the random fluctuation to the population of
the tumor cells and the immune cells. Therefore, stochastic dynamical models regarding to the tumor
and the immune system are gradually proposed instead of the deterministic ones [11–13], in which the
mentioned uncertain microenvironment is usually modeled by random noises with a certain probability
distribution.

Some valuable works have been achieved for the stochastic tumor or tumor-immune models. In
2012, Li et al. [14] considered a tumor growth model perturbed by a Gaussian white noise together
with a dichotomous noise, he used the Mean First Extinction Time (MFET) as an index to analyze
the transitions from the steady state to the extinction state of the tumor cells. In 2018, Ochab-
Marcinek et al. [15] studied how dichotomous noise and Gaussian white-noise affected the MFET of
the cell population in a tumor-immune model. They observed the important dynamical phenomena of
Resonance Activation (RA) and Noise Enhanced Stability (NES). In 2020, Han et al. [16] discussed the
tumor growth model under the immune surveillance with stochastic fluctuations modelled as Gaussian
white noises, he defined the extinction time as the time when the tumor firstly escaped to the extinction
state from the steady state, and simulated the effect of different noise parameters on the most probable
extinction time. In 2022, the first author of this paper [17] discussed MFET from the steady-state
state to the extinction state in a stochastic tumor-immune model with Gaussian white-noises, they
discovered the phenomena of the NES as well as Stochastic Resonant (SR).

Based on the current references above, we summarize that the stochastic tumor models especially
stochastic tumor-immune models regarding tumor state transition are concentrated on the Gaussian
white-noise or dichotomous noise perturbation. However, the significant noise perturbations such as
color noise or non-Gaussian noises are seldom mentioned in the existing literature. According to the
authors’ knowledge, only [18] considered a tumor growth model perturbed by Gaussian colored noise
in 2022, and this paper studied the noise-induced phenomenon of the transition from a steady state to
an extinction state by MFET.

In addition, we have to mention that the previous works mainly focus on the issue of the MFPT
from the steady state to the extinction state. The reason for this is that people care much about the
time for a human body from a tumor-present state to a healthy state. That is, the time probably for
a person to be cured well from the tumor state is an important purpose of the tumor treatment.
Nevertheless, it is true that tumor recurrence is a typical feature of tumors compared with others
disease especially the malignant tumors; how long will it take to be recurrent for a tumor patient after
a previous recovery? It is also extremely important issue concerned in the tumor treatment. Therefore,
the discussion for MFPT from the extinction state to the steady state in a tumor-immune model is also
definitely necessary and significant, this is exactly one of the key innovation of this paper.

Since the MFPT is a significant index used to describe the noise-induced escape process in
stochastic tumor-immune models, how to obtain this index and how to solve the governing equations
become the following task. Generally, MFPT is governed by a back-forward partial differential
equation with nonlinear functional coefficients, the developing methods such as finite difference
method [19,20], path integral method [21] and Galerkin method [22,23] are common used to solve
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a partial differential equation. However, these methods usually have strict requirements for the
dimension or domain mesh, the accuracy and computer running time can not be balanced at the
same time. Back-Propagation Neural Network (BPNN) has been proved to be a viable, multipurpose
and robust computational methodology with solid theoretic support and strong potential applications
[24,25]. Many existing studies have shown the approximation ability of BPNN to nonlinear functions
as well as the efficiency in solving solution of the nonlinear models [26]. It is interesting to see that
BPNN is not much applied to study MFPT problem in the field of the stochastic dynamical system,
which inspires us to extend this algorithm to the case of the tumor-immune model.

On the other hand, Stochastic Resonance (SR) is a dynamical phenomenon usually happened in a
stochastic dynamical system, refer to the response to an input signal enhanced by the optimal amount
of noise. Owing to the role of the SR, it has been mentioned in certain tumor-immune research as one
of the indexes to measure the tumor dynamics. The representative works with regard to the SR include
that Li et al. [27] derived a theory for the SR by using the two-state approach in 2011, and obtained
the corresponding signal-to-noise ratio (SNR). It is found that in subthreshold periodic treatment,
weak environmental fluctuations can induce the extinction of the tumor cells. In 2018, Shi et al. [28]
considered the SR of asymmetric bistable systems with multiplicative white noise and additive color
noise, and studied the influence of parameters on the SR from the perspective of the SNR. In 2021,
Guo et al. [29] established the tumor growth model excited by a Levy noise and a Gaussian white noise,
he studied the relationship between the SNR and the noise intensity by a kind of numerical simulation,
and obtained a conclusion that all parameters in the model can induce the SR. It can be seen that the
SNR is the most commonly used index in SR research. Therefore, this paper also uses SNR to describe
and analyze the phenomenon of the SR.

To sum up, this paper aims to improve the current research about the stochastic tumor-immune
model from four points: (1) Considering color noise to be the random perturbation in the cell
microenvironment; (2) Focusing on the transition from the tumor extinction to the tumor recurrence;
(3) Using two methods of the analytical process and numerical algorithm to obtain the indexes of the
MFPT and the SR; (4) Applying the BPNN to solve the governing the MFPT and the SR equations
to testify the correction and effectiveness of the proposed methods.

2 Stochastic Tumor-Immune Model with Correlated Noises

The interaction between the tumor cells and the immune system can be illustrated by Fig. 1 based
on Michaelis-Menten enzymatic reaction. Correspondingly, the mathematical model governing the
tumor growth under the immune surveillance can be expressed by a differential equation after a series
of mathematical procedure [17] as
dx
dt

= x(1 − θx) − β
x

1 + x
, (1)

where x(t) is a function of the time t, represents the normalized population of the tumor cells, the
parameter θ is the environmental capacity, and the coefficient β expresses the relative rate of the tumor
extinction. Correspondingly, the potential function of Eq. (1) is

U(x) = −x2

2
+ θx3

3
+ βx − β ln(x + 1), (2)

where U(x) has two steady-state solutions, which are the extinction state x1 and the tumor-present
state x2, respectively:

x1 = 0, (3)
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x2 = 1 − θ + √
(1 + θ)2 − 4βθ

2θ
, (4)

and one unstable state solution

xu = 1 − θ − √
(1 + θ)2 − 4βθ

2θ
. (5)

Figure 1: The interaction between tumor cells and immune system

Considering that most biochemical systems in reality are open systems, they often exchange the
information and the energy through the interaction with the outside world. So it is necessary to
consider the impact of the environmental fluctuations on the systems, which are often modeled as
noise in the mathematical models. In this section, we will model the environmental fluctuations in
the tumor-immune model Eq. (1) as multiplicative Gaussian colored noise ξ(t) and additive Gaussian
white noise η(t) to construct a stochastic tumor-immune model

dx
dt

= x(1 − θx) − β
x

x + 1
− x

x + 1
ξ(t) + η(t), (6)

where the noises ξ(t) and η(t) have the following statistical properties:

〈ξ (t)〉 = 0, 〈ξ (t) ξ (s)〉 = D1

τ
exp

[
−1

τ
δ(t − s)

]
,

〈η (t)〉 = 0, 〈η (t) η (s)〉 = 2D2δ(t − s),

(7)

in which D1 and D2 are the intensities of multiplicative noise ξ(t) and additive noise η(t), respectively,
τ is the auto-correlation time, and 〈〉 is the operator of the mathematical expectation. Especially, the
multiplicative Gaussian colored noise ξ(t) can be derived from a linear filter on the basis of another
Gaussian white noise ε(t), which is correlated with noise η(t), that is

dξ

dt
= −1

τ
ξ + 1

τ
ε(t), (8)

and

〈ε (t)〉 = 0, 〈ε (t) ε (s)〉 = 2D1δ(t − s),

〈ε (t) η (s)〉 = 〈η (t) ε (s)〉 = 2λ
√

D1D2δ(t − s),
(9)

where λ is the cross-correlation intensity between ε(t) and η(t).
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3 Stochastic Dynamics for SPD, MFPT, and SR
3.1 Theoretic Solution for SPD

Due to the existence of the colored noises, we know that Eq. (6) is a one-dimensional non-
Markovian process, which means that the Fokker-Planck equation describing the probability density
of the tumor cells cannot be obtained directly. Therefore, we will deal with this problem through
the theory of Unified Colored Noise Approximation (UCNA) to obtain an approximate Markovian
process and AFPE [30]. For convenience, we rewrite Eq. (6) as

dx
dt

= h(x) + g1(x)ξ(t) + g2(x)η(t). (10)

Correspondingly,

h(x) = x(1 − θx) − β
x

x + 1
,

g1(x) = − x
x + 1

,

g2(x) = 1. (11)

Firstly, through some transformations associated with the UCNA method, we can obtain the
following one-dimensional approximate Markovian process from Eqs. (6)–(9), that is

dx
dt

= h(x)

C(x, τ)
+ 1

C(x, τ)
[g1(x)ε(t) + g2(x)η(t)]

= h∗(x) + g∗(x)ζ(t), (12)

where ζ(t) is also a Gaussian white noise with zero mean and

〈ζ (t) ζ (s)〉 = 2δ(t − s). (13)

Instead, the expressions of h∗(x) and g∗(x) can be denoted by way of an auxiliary function C(x, τ),
i.e.,

C(x, τ) = 1 − τ

[
h′(x) − g′

1(x)

g1(x)
h(x)

]
,

h∗(x) = h(x)

C(x, τ)
,

g(x) =
[
D1g2

1(x) + 2λ
√

D1D2g1(x)g2(x) + D2g2
2(x)

] 1
2

,

g∗(x) = g(x)

C(x, τ)
. (14)

Finally, the AFPE corresponding to Eq. (6) can be described as

∂P1(x, t)
∂t

= − ∂

∂x
[A1(x)P1(x, t)] + ∂2

∂x2
[B1(x)P1(x, t)], (15)
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where P1(x, t) is the transient probability density of the tumor cells at the time t, A1(x) and B1(x) are
called the drift function and the diffusion function, respectively, and

A1(x) = h∗(x) + g∗(x)g∗′(x),
B1(x) = g∗2(x), (16)

so the expressions corresponding to A1(x) and B1(x) can be written as

A1(x) =
x(1 − θx) − β

x
x + 1

1 − τ

(
1 − 2θx − 1 − θx

x + 1

) +
D1

x
(x + 1)3

− λ
√

D1D2

1
(x + 1)2[

1 − τ

(
1 − 2θx − 1 − θx

x + 1

)]2

+
τ

[
− 2θ + 1 + θ

(x + 1)2

]
[

1 − τ

(
1 − 2θx − 1 − θx

x + 1

)]3

[
D1

x2

(x + 1)2
− 2λ

√
D1D2

x
x + 1

+ D2

]
, (17)

B1(x) = 1[
1 − τ

(
1 − 2θx − 1 − θx

x + 1

)]2

[
D1

x2

(x + 1)2
− 2λ

√
D1D2

x
x + 1

+ D2

]
. (18)

Basically, the evolution of the tumor cells under the immune surveillance is a long-term process,
so we generally concerns the stationary probability density of the tumor cells, which means the case
of t → ∞ in Eq. (15). Therefore, The AFPE describing the SPD Ps1(x) can be rewritten as

− ∂

∂x
A1(x)Ps1(x) + ∂2

∂x2
B1(x)Ps1(x) = 0, (19)

its boundary condition and normalization condition are, respectively

Ps1(x) = 0 if x ∈ ∂�0, (20)

and∫ +∞

0

Ps1(x)dx = 1, (21)

where ∂�0 is the boundary of the definition domain �0 of the tumor cells. Then the SPD can be
obtained by solving the following integral:

Ps1(x) = N1

1
B1(x)

exp
[ ∫ x A1(u)

B1(u)
du

]
= N1

1√
B1(x)

exp
[

− V1(x)

D1

]
, (22)

where N1 is the normalization coefficient; V1(x) is the generalized potential function, which is governed
by

V1(x) = −
∫ x [

x(1 − θx) − β
x

x + 1

] 1 − τ

(
1 − 2θx − 1 − θx

x + 1

)

x2

(x + 1)2
− 2λ

√
D2

D1

x
x + 1

+ D2

D1

dx
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= 1
g0

[
g1x4 + g2x3 + g3x2 + g4x + c1

2
ln|x2 + b1x + b2|

+ 2c2 − c1b1√−b2
1 + 4b2

arctan
2x + b1√−b2

1 + 4b2

]
, (23)

in which

g1 = 1
4

a1, g2 = 1
3
(a2 − a1b1),

g3 = 1
2
(a3 − a1b2 − a2b1 + a1b2

1),

g4 = a4 − a2b2 + 2a1b1b2 − a3b1 + a2b2
1 − a1b3

1,

c1 = a5 − a3b2 + a1b2
2 + a2b1b2 − a1b2

1b2 − b1(a4 − a2b2 + a1b1b2 − a3b1 + a1b1b2 + a2b2
1 − a1b3

1),

c2 = b2(a4 − a2b2 + 2a1b1b2 − a3b1 + a2b2
1 − a1b3

1),

b1 = 2(−λ
√

D1D2 + D2)

g0

, b2 = D2

g0

,

a1 = 2θ 2τD1, a2 = −2(1 − θ)τθD1 + (θτ − τ + 1)θD1,

a3 = −(θτ − τ + 1)(1 − θ)D1 − 2(1 − β)θτD1 + θD1,

a4 = −(1 − θ)D1 − (θτ − τ + 1)(1 − β)D1, a5 = −(1 − β)D1, g0 = D1 − 2λ
√

D1D2 + D2. (24)

Substitute V1(x) into the expression of the SPD, then we can get the final theoretical result of the
long-run evolution of the tumor cells.

3.2 Theoretical Result for MFPT
Generally, MFPT is defined as the average transition time of the system response from one state

to another state. The average time from the steady state to an extinction state or from a tumor-free
state to a tumor-present state are most concerned issues in the stochastic tumor-immune model. In
this section, we will pay attention to observe whether the environmental perturbation can result in the
tumor recurrence. Correspondingly, we will focus on studying the transition from the extinction state
x1 to the steady state x2.

It has been proved [31] that MFPT is controlled by a backward Kolomogorov equation with
certain boundary conditions and initial conditions. Denote the MFPT by T(x), which should satisfy

A1(x)
∂

∂x
T(x) + B1(x)

∂2

∂x2
T(x) = −1, (25)

with boundary conditions

dT(x)

dx

∣∣∣∣
x=x1

= 0, T(x)|x=x2
= 0. (26)
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Regarding the proposed stochastic tumor-immune model, left boundary x1 is the reflection
boundary and the critical value x2 is the absorption boundary. Therefore, the solution of Eq. (25)
can be described as

T(x1 → x2) =
∫ x2

x1

dx
B1(x)Ps1(x)

∫ x

0

Ps1(y)dy. (27)

If the noise intensity D1 and D2 are much less than the difference V1(xu)−V1(x1) of the generalized
potential functions, the potential functions can be used to express the MFPT by the steepest-descent
approximation [32], in this case

T(x1 → x2) = 2π√|U ′′(xu)U ′′(x1)|exp
[

V1(xu) − V1(x1)

D1

]
. (28)

Substitute the potential function U(x) and the generalized potential function V1(x) into Eq. (28),
then we can get the final theoretical result for MPFT.

3.3 Theoretical Results of SR and SNR
In the actual environment of the tumor growth, noises have an important impact on the

evolutionary characteristics for the tumor and the immune systems. Therefore, except for SPD and
MFPT, the influence of noises on SR has also been widely concerned by scholars. The background
of SR phenomenon has been involved in many subjects such as physics [33], chemistry [34], biology
[35], communication [36] and electronics [37], and SR has been proven to be a kind of common
physical phenomenon in nature. Among the various measures describing SR, SNR is one of the most
representative index. Therefore, this section will discuss the SNR of the stochastic tumor-immune
model Eq. (6).

Considering the periodic effects caused by the environmental fluctuations, we take an additive
periodic signal Acos(ωt) into account in the tumor-immune model Eq. (6), so the evolution of the
tumor cells can be described by the following Langevin equation:

dx
dt

= x(1 − θx) − β
x

x + 1
− x

x + 1
ξ(t) + η(t) + Acos(ωt). (29)

In this way, the nonlinear function h(x) in Eq. (11) will be rewritten as

h(x) = x(1 − θx) − β
x

x + 1
+ Acos(ωt), (30)

where A and ω represent the amplitude and the frequency of the periodic signal, respectively. Then the
approximate Fokker-Planck equation corresponding to Eq. (29) can be written in the following form:

∂P2(x, t)
∂t

= − ∂

∂x
A2(x)P2(x, t) + ∂2

∂x2
B2(x)P2(x, t), (31)

in which the expressions of the drift function A2(x) and the diffusion function B2(x) are as follows:

A2(x) =
x(1 − θx) − β

x
x + 1

+ Acos(ωt)

1 − τ

(
1 − 2θx − 1 − θx

x + 1
− Acos(ωt)

x(x + 1)

) +
D1

x
(x + 1)3

− λ
√

D1D2

1
(x + 1)2[

1 − τ

(
1 − 2θx − 1 − θx

x + 1
− Acos(ωt)

x(x + 1)

)]2
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+
τ

[
− 2θ + 1 + θ

(x + 1)2
+ 2x + 1

x2(x + 1)2
Acos(ωt)

]
[

1 − τ

(
1 − 2θx − 1 − θx

x + 1
− Acos(ωt)

x(x + 1)

)]3

[
D1

x2

(x + 1)2
− 2λ

√
D1D2

x
x + 1

+ D2

]
, (32)

B2(x) = 1[
1 − τ

(
1 − 2θx − 1 − θx

x + 1
− Acos(ωt)

x(x + 1)

)]2

[
D1

x2

(x + 1)2
− 2λ

√
D1D2

x
x + 1

+ D2

]
.

(33)

When t tends to infinity, we can get the expression of SPD function and describe it by the
generalized potential function V2(x) and the normalization coefficient N2

Ps2(x) = N2

1
B2(x)

exp
[ ∫ x A2(x)

B2(x)
dx

]
= N2

1√
B2(x)

exp
[

− V2(x)

D1

]
, (34)

where the expression of the generalized potential function V2(x) is

V2(x) = −
∫ x [

x(1 − θx) − β
x

x + 1
+ Acos(ωt)

]1 − τ

(
1 − 2θx − 1 − θx

x + 1
− Acos(ωt)

x(x + 1)

)

x2

(x + 1)2
− 2λ

√
D2

D1

x
x + 1

+ D2

D1

dx

= 1
e0

[
e1x4 + e2x3 + e3x2 + e4x + (e5 + f1)ln|x| + 1

2
f2ln|x2 + n1x + n2|

+ 2(f3 + e6) − n1f2√−n2
1 + 4n2

arctan
2x + n1√−n2

1 + 4n2

]
, (35)

in which

e0 = D1 − λ
√

D1D2 + D2, e1 = 1
4

m1, e2 = 1
3
(m2 − m1n1), e3 = 1

2
(m3 − m1n2 − m2n1 + m1n2

1),

e4 = m4 − m2n2 + 2m1n1n2 − m3n1 + m2n2
1 − m1n3

1, e5 = m5 − e4n1 − e3n2,

e6 = m6 − e4n2 − m5n1 + e4n2
1 + e3n1n2, f1 = m7

n2

− m5 + e4n1 + e3n2, f2 = −f1, f3 = f2b1,

n1 = 2(−λ
√

D1D2 + D2)

e0

, n2 = D2

e0

,

m1 = 2θ 2τD1, m2 = [−2(1 − θ)τ + (1 − τ + θτ)]θD1,

m3 = −(1 − τ + θτ)(1 − θ)D1 − θD1 − 2θτ(1 − β + Acos(ωt))D1,

m4 = −(1 − θ + Aτcos(ωt))D1 − (θτ − τ + 1)(1 − β + Acos(ωt))D1,

m5 = −(1 − β + 2Acos(ωt))D1, m6 = −[(1 − β + Acos(ωt))Aτcos(ωt) + Acos(ωt)]D1,

m7 = −D1A2τcos2(ωt). (36)
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Review the method proposed in Section 3.2, we can obtain the MFPT of the tumor cells from the
extinction state x1 to the tumor-present state x2 in model (29), and the MFPT from the tumor-present
state to the extinction state was obtained by a similar process.

T ∗
1 (x1 → x2) = 2π√|U ′′(xu)U ′′(x1)|exp

[
V2(xu) − V2(x1)

D1

]
, (37)

T ∗
2 (x2 → x1) = 2π√|U ′′(xu)U ′′(x2)|exp

[
V2(xu) − V2(x2)

D1

]
. (38)

According to the the inverse relationship between the escape rate and the MFPT, the escape rates
of the tumor cells between the extinction state and the tumor-present state are obtained as follows:

W+(t) = 1
T ∗

1 (x1 → x2)
=

√|U ′′(xu)U ′′(x1)|
2π

exp
[

V2(x1) − V2(xu)

D1

]
, (39)

W−(t) = 1
T ∗

2 (x2 → x1)
=

√|U ′′(xu)U ′′(x2)|
2π

exp
[

V2(x2) − V2(xu)

D1

]
. (40)

In order to understand the characteristics of the SR, it is necessary to calculate the SRN for Eq. (6)
with multiplicative Gaussian colored noise and additive Gaussian white noise in the output signal
power spectrum.

Using signal output S1(υ) and noise output S2(υ), we have the expression of the SNR [38]

SNR =
∫ ∞

0
S1(υ)dυ

S2(υ = ω)
, (41)

where the expressions of S1(υ) and S2(υ) are

S1(υ) = πx2
2W

2
1 A2

2(W 2
0 + ω2)

δ(υ − ω), (42)

S2(υ) =
[

1 − W 2
1 A2

2(W 2
0 + ω2)

]
2x2

2W0

2(W 2
0 + υ2)

, (43)

in which W0 and W1 can be obtained by using the escape rate of the tumor cells between the extinction
and the tumor existence, and the expressions for them are as follows [39–42]:

W0 = (W+ + W−)|Acos(ωt)=0, W1 = −d(W+ + W−)

d[Acos(ωt)]

∣∣∣∣
Acos(ωt)=0

. (44)

Finally, we get the expression of the SNR for the model (29)

SNR = A2π(μ1α2 + μ2α1)
2

4μ1μ2(μ1 + μ2)

[
1 − (μ1α2 + μ2α1)

2A2

2μ1μ2[(μ1 + μ2)2 + ω2]

]−1

, (45)

where

μ1 = W+|Acos(ωt)=0, μ2 = W−|Acos(ωt)=0,

α1 = dW+
d[Acos(ωt)]

∣∣∣∣
Acos(ωt)=0

, α2 = dW−
d[Acos(ωt)]

∣∣∣∣
Acos(ωt)=0

.
(46)
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4 Back-Propagation Neural Network Algorithm

The unique nonlinear simulation and adaptive processing abilities of the BPNN make it widely
used in the fields of pattern recognition, intelligent control, combinatorial optimization and so on. In
recent years, BPNN has been continuously combined with other traditional methods, it has played an
important role in a good many fields with its superior speed and robustness [43,44].

In this section, we are going to use the combination of the BPNN algorithm together with the
backward Kolomogorov equation to numerically simulate the SPD and the MFPT, in order to obtain
the transition from the extinction state to the tumor-present state of the tumor cells.

4.1 Structure of the Neural Network
Supposing there are n hidden layers with m nodes in each hidden layer in a BPNN structure, see

Fig. 2, the bias and the weight are written as B = [b1, b2, ..., bn] and W = [ω1, ω2, ..., ωn], respectively.
Denote a set of unknown parameters to be determined by � = [B, W ]. Considering the reflection
boundary and absorption boundary in Section 3, we define that the training set is a non-negative
interval �1 = [x1, x2], where x1, x2 are real numbers. The training set is marked as {xi

�1
|1 ≤ i ≤ N}

and the number of data in this set is recorded as N. Due to the nonlinearity of data transmission in
the neural network, we choose tanh and sigmoid as the activation functions for the hidden layers and
the output layer. In addition, since the Adam optimization algorithm requires less memory and can
calculate the corresponding adaptive learning rate for different parameters by itself, it has gradually
become the most commonly used optimizer. Therefore, in this experiment, we choose the Adam
optimizer to continuously optimize the BPNN. In summary, the output y of the BPNN established
in this section are as follows:
H1 = tanh(ω1x + b1),
Hl = tanh(ωlHl−1 + bl), (2 ≤ l ≤ n − 1)

y = M ∗ sigmoid(ωnHn−1 + bn),
(47)

where Hl is the output of the lth hidden layer, and M is a constant.

Figure 2: The structure of BPNN
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4.2 Construct the Loss Function
Loss function is the most basic element in the neural network. The definition and optimization

of the loss function will directly affect the output of the neural network. Therefore, we will realize the
simulation of SPD and MFPT by defining different loss functions, and write the simulation results as
p̂ and T̂ , respectively. When using the neural network to simulate SPD, we regard the Fokker-Planck
equation, the normalization condition and the boundary condition as the governing conditions in
the loss function, and the penalty factors aj(1 ≤ j ≤ 3) are introduced to adjust the weight of each
governing equation in the loss function. Correspondingly, the loss function can be described as follows:

LSPD = a1 ∗ part1 + a2 ∗ part2 + a3 ∗ part3, (48)

where

part1 = 1
N

·
N∑

i=1

∣∣κ1(p̂(xi
�
, �))

∣∣2
, (49)

part2 =
∣∣∣∣∣

N∑
i=1

�x · p̂(xi
�
, �) − 1

∣∣∣∣∣
2

, (50)

part3 = ∣∣p̂(x2, �)
∣∣2

. (51)

For the case of using neural network to simulate MFPT, the backward Kolomogorov Eq. (25)
and the corresponding boundary conditions Eq. (26) are considered as the governing conditions with
penalty factors aj(4 ≤ j ≤ 6), so the corresponding loss function is

LMFPT = a4 ∗ part4 + a5 ∗ part5 + a6 ∗ part6, (52)

where

part4 = 1
N

·
N∑

i=1

∣∣∣κ2(T̂(xi
�
, �))

∣∣∣2

, (53)

part5 =
∣∣∣∣dT̂(x, �)

dx

∣∣∣∣
x=x1

∣∣∣∣
2

, (54)

part6 =
∣∣∣∣T̂(x2, �)

∣∣∣∣
2

, (55)

in which the output T̂ of this BPNN is the MFPT for the transition from different tumor densities x to
the tumor-present state. Since the main concern of this paper is on the transition from the extinction
state to the tumor-present state of the tumor cells, it is sufficient to consider the case x = 0 only.

5 Theoretical and BPNN Results
5.1 Effect of the Noises on SPD

The effect of environmental fluctuations on the growth of the tumor cells is an important issue in
the study of tumor-immune models. Therefore, in this section, we will analyze the influence of different
noise parameters on the tumor by way of the SPDs, and use BPNN to simulate SPDs with the same
parametric values as well.
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The curves in Fig. 3 describe the changes of SPDs with the different noise parameters. Fig. 3a
displays the effect of multiplicative noise intensity D1 on the SPD. It can be found that with the increase
of noise intensity D1, the peak value of the SPD curves near x = 7.5 gradually decreases, and another
peak appears near x = 0. In other words, the SPD gradually changes from unimodal to bimodal.
Therefore, the fluctuations of external environment have a positive effect on the tumor extinction.
In addition, Fig. 3b exhibits that an increase in additive noise intensity D2 will also reduce the peak
value near x = 7.5 and increase the value near x = 0, which means that the internal environment
fluctuations promotes the tumor extinction. At last, the increase of the correlation intensity λ will
increase the peak near x = 7.5. To sum up, internal and external environmental fluctuations can
promote tumor extinction, but the interaction between them will inhibit tumor extinction.

0 2 4 6 8 10 12

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p s1
(x

)

D
1
=0.1

D
1
=0.8

D
1
=1.5

(a)

0 2 4 6 8 10 12

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p s1
(x

)

D
2
=0.1

D
2
=0.8

D
2
=1.5

(b)

0 2 4 6 8 10 12

x

0

0.2

0.4

0.6

0.8

1

1.2

p s1
(x

)

=0.1
=0.3
=0.5

(c)

Figure 3: Influence of different noise parameters on SPDs with θ = 0.1, β = 2.0. Labels: Solid lines,
plotted by expression (22); the dots, plotted by BPNN

5.2 Effect of the Noises on MFPT
In addition to the SPD, the performance of the MFPT is also of great significance to the study

of tumor immunity, which is a remarkable index to indicate the average transition time from one state
to another state. In general, the transition from a steady state to a zero state means that the patient
has been cured and the tumor cells are extinct. The transition from a zero state to a steady state,
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however, means that the tumor has been recurred and the tumor cells appears again. Correspondingly,
the knowledge about the recurrence time is especially important for a patient to take all reasonable
precaution. Therefore, in this subsection, we will mainly study the effect of environmental fluctuations
on the MFPT of the tumor cells from the extinction to the tumor-present state. Based on the theoretical
solution of Eq. (28) and neural network solution Eq. (47) for MFPT, Fig. 4 provides the influence of
different noise parameters on MFPT.
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Figure 4: MFPT is a function of D1 under different noise parameters with θ = 0.1, β = 2.0. Labels:
Solid lines, plotted by expression (28); the dots, plotted by BPNN

Firstly, Fig. 4a depicts the change of the MFPT with the intensity of the multiplicative Gaussian
colored noise D1 under the different values of the additive Gaussian white noise intensity D2. If
D1 < 0.1, then the smaller value of D2, for example, smaller than 0.1, will increase very fast to a
maximal peak, then it will change to decrease with the further increase of D1 > 0.1. Comparatively,
the smaller value of D2 < 0.1 has a shorter transition time and tends to be unchanged with the value
of D1, which means the stronger intensity of white noise is extremely unfavorable to the tumor patients
because of the rapid recurrence. Instead, the weak white noise together with weak colored noise is
beneficial for prolonging the recurrence time of the tumor. Secondly, Fig. 4b shows the effect of the
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cross-correlation noise intensity λ of multiplicative Gaussian colored noise and additive Gaussian
white noise on the change on the MFPT-D1 plane. It is observed that the increase of the noise
correlation intensity λ can significantly reduce the value of resonance-like peak, and the peak position
shifts to the left. In addition, with the increase of λ, when D1 is small enough, the corresponding MFPT
increases, otherwise it is the opposite. This describes the complex influence of the interaction between
internal and external environment on the tumor growth. Finally, through Fig. 4c, we understand
the relationship between auto-correlation time τ and MFPT with D1. Observe that the correlation
time τ is small enough, the resonance-like peak appears in the MFPT-D1 curves, but disappears
when τ increases to 4.1. This phenomenon shows that the increase of correlation time accelerates
the recurrence of the tumor cells.

Different from Figs. 4 and 5 mainly describes the influence of the multiplicative noise intensity
D1, the across-correlation intensity λ and the correlation time τ on MFPT-D2 plane, respectively. The
common feature of all images in Fig. 5 is that when the additive noise intensity D2 is small enough,
the MFPT is infinite, and MFPT curves tend to a minimum with the increase of D2. In addition, by
observing Figs. 5a and 5b, we can find that the minimum value of the MFPT gradually increases with
the increase of the multiplicative noise intensity D1 and the correlation intensity λ. In Fig. 5a, the
increase of D1 moves the minimum of the MFPT to the left and increases the corresponding MFPT.
Differently, in Fig. 5b, the increase of λ moves the minimum MFPT to the right. In comparison, D1

has a more obviously impact on the MFPT. In other words, the fluctuations of external environment
and the interaction between internal and external will inhibit the tumor recurrence, but the individual
effect of the external environment fluctuations is more direct and significant. Except that, the effect
of the correlation time τ is considered through Fig. 5c. With the gradual increase of τ , the minimum
value of the MFPT gradually decreases and moves to the left. The results show that the related time τ

can be also accelerate the recurrence of the tumor cells.
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Figure 5: (Continued)
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Figure 5: MFPT is a function of D2 under different noise parameters with θ = 0.1, β = 2.6. Labels:
Solid lines, plotted by expression (28); the dots, plotted by BPNN

At the end of this section, we discuss the relationship between the MFPT and the correlation time τ

under the different noise parameters. Fig. 6 shows the same tendency is that all MFPTs monotonously
decrease with the increase of the correlation time τ , and the decreasing speed gradually slows down.
What the differences are, When τ is smaller together with the larger noise parameters, the smaller the
MFPT is. However, when the value of τ increases beyond a certain value τc, the influence of the noise
parameters on the MFPT have an oppositely change. That is, the bigger noise intensities can have
the bigger MFPTs instead. This phenomenon shows that in the process of increasing correlation time
τ , the effects of internal and external environmental fluctuations and their interaction on the tumor
growth is almost the same, which is firstly supported and then inhibited to make recurrence of the
tumors.
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Figure 6: (Continued)
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Figure 6: MFPT is a function of τ under different noise parameters with θ = 0.1, β = 2.6. Labels:
Solid lines, plotted by expression (28); the dots, plotted by BPNN

5.3 Effect on SNR
Fig. 7a shows the variation of the SNR with the multiplicative noise intensity D1 and the

correlation time τ . We can find that the SNR has an obvious peak with the increase of the noise
intensity D1. In the process of τ increasing, the peak value of the SNR at first decreases slightly and
then increases significantly, and the corresponding noise intensity D1 decreases gradually when the
resonance peak appears. This shows that when the additive noise intensity D2 and the correlation
strength λ are 1.0 and 0.5, respectively, the larger correlation time τ can strengthen the SR. According
to the Fig. 7b, it can be found that with the increase of the noise intensity D2, the SNR increases briefly,
and then begins to decrease rapidly. Therefore, it is obvious that the intensity of the additive noise will
also induce the occurrence of the SR. In addition, when both D1 and λ are taken as 0.5, the peak of
the SNR will increase with the increase of τ . Therefore, the correlation time τ plays a positive role in
stochastic resonance in this case. Fig. 7c introduces the influence of the noise correlation intensity λ

and the correlation time τ on the SNR. The main performance is that the resonance peak of the SNR
activated by λ gradually moves to the smaller position of λ with the increase of τ until it disappears.
If correlation time τ continues to increase, the SNR curve will have a minimal value. This result
shows that when the noise intensity D1 and D2 are taken 2 and 3, respectively, the correlation time
can significantly inhibit the SR.

6 Discussion on Optimal BPNN Structure

In this section, our main work is to analyze the feasibility and effectiveness of using BPNN to
simulate MFPT. There are three main factors affecting the simulation effect of the neural network,
which are the number of hidden layers, the number of nodes in each hidden layer and the value of
penalty factors in the loss function. In addition, in order to better show the simulation effect of BPNN
on MFPT, we determine that the parameter values in model Eq. (6) are D1 = 0.1, D2 = 0.1, θ = 0.1,
β = 2.0 and τ = 0.1, respectively. Next, we will discuss the influence of these three factors on the
performance of BPNN one by one.
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Figure 7: SNR performance under the influence of different noise parameters with θ = 0.1, β = 2.0

Firstly, the penalty factors can adjust the proportion of different control conditions in the loss
function. So it is necessary to discuss the values of the best penalty factors in the loss function LMFPT

for model Eq. (6). In order to quantify the accuracy of simulation results, we consider defining an
accuracy index acc, which describes the similarity between simulation results T̂(x) and accurate results
T(x). The acc is written as follows:

acc = 1 −
∥∥∥T̂(x) − T(x)

∥∥∥
2

‖T(x)‖2

, (56)

where ‖‖2 denotes the L2 norm.

Table 1 indicates that when a2 is taken as 1.0, the accuracy index acc of BPNN generally performs
well. At the same time, as a1 increases from 0.1 to 100, the value of acc also increases, but when a1

increases to 500, the value of acc begins to decrease. Finally, combined with the effects of a1 and a2 on
acc, we define the value of loss factors in the BPNN as a1 = 100, a2 = 1.0.
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Table 1: The comparison of accuracy index with different values of the penalty factors

a2 acc a1 0.1 1.0 10 100 500

0.1 0.5468 0.6603 0.9814 0.9679 0.9677
1.0 0.3792 0.9276 0.9863 0.9886 0.9728
10 0.3567 0.8202 0.9833 0.9757 0.9816

Secondly, the number of hidden layers and the number of nodes in the hidden layers determine
the structure of the neural network, and their influence on the operation efficiency and accuracy of
the neural network is also very important. In order to select the optimal number of hidden layers
and nodes, we consider their impact on the performance of the loss function. From Fig. 8, we can
find that in the process of gradually increasing the number of hidden layers of BPNN from 1 to 4,
the loss function generally decreases first and then increases. And more hidden layers will make the
performance of the loss function no longer stable. When the number of hidden layers reaches 3, the
loss function will vibrate obviously. Considering the size and stability of the loss function, we judge
that the two hidden layers are the best choice.
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Figure 8: The comparison of loss functions with different number of hidden layers

Finally, Fig. 9 describes the influence of the number of nodes in the BPNN hidden layer on the
neural network simulation results. We find that, compared with the number of hidden layers, the
number of nodes has less effect on the performance of the loss function. However, as the number of
nodes in each layer increases from 5 to 20, the loss function decreases first and then increases. When
the number of nodes is 10, the loss function is reduced to the minimum value, and the performance is
more stable with the increase of the number of iterations. In addition, when the number of nodes in
the hidden layer is 10, the simulation efficiency of the BPNN is also high. Therefore, for this model,
we select the number of nodes in the hidden layer to be 10.

To sum up, through the discussion of the experimental results, we have obtained the optimal loss
function and neural network structure for the tumor-immune model as n = 2, m = 10, a1 = 100
and a2 = 1. Now, we consider simulating a group of MFPT curves as shown in Fig. 10 to prove the
feasibility and effectiveness of BPNN under these parameters. We found that the error of simulation
results of BPNN for MFPT fluctuated continuously when the value of D2 increased from 0.1 to 0.3.
Although the simulation results of BPNN are always larger and smaller than the exact solutions, but
generally, the error value would not exceed 0.1. The result is satisfactory.
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Figure 10: Accuracy diagram of BPNN simulation results

7 Conclusions

In conclusion, this paper focuses on the dynamic properties of the stochastic tumor-immune model
perturbed by multiplicative Gaussian colored noise and additive Gaussian white noise, including the
effects of noise parameters on SPD, MFPT and SR. Firstly, the expressions of SPD and MFPT were
obtained by using the generalized potential function. Then, using the escape rates of tumor cells
between the extinction and the tumor-present state, we obtained the exact solution of SNR which was
the most representative index of SR. These results showed that in this model, the influence of noise
intensity and correlation time on MFPT was complex and diverse. The possibility of tumor recurrence
could not be simply controlled by a certain noise parameter. For example, in a smaller correlation time
τ , the increase of noise intensity would accelerate tumor recurrence, and in a larger correlation time
τ , the opposite was true. About SNR, we found that both noise intensities and correlation intensity
could induce the occurrence of SR phenomenon in the model. In contrast, the resonance peak excited
by additive Gaussian white noise was the largest. In addition, in order to optimize the simulation
effect of BPNN on MFPT introduced in this paper, we also discussed the number of hidden layers, the
number of nodes in the hidden layer and the penalty factor in the loss function of BPNN in order to
get satisfactory results.
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