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ABSTRACT

Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to their
exceptional damping performance and durability. However, the existing constitutive models present challenges to
the widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)
software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing a
new constitutive model that is both easily understandable and user-friendly for FEA software. By utilizing numerical
results obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture the
nonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated through mechanical
property tests and numerical seismic analysis. Furthermore, a detailed description of the application process of
the power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design of
ECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonic motion
is performed. The results demonstrate that the power law constitutive model serves as a viable alternative for
conducting dynamic analysis using FEA and optimizing parameters for ECDs.
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1 Introduction

Passive energy dissipation devices have garnered significant attention over the past few decades
[1,2]. The use of dampers for passive control has been proven to be an effective strategy for improving
the dynamic response of various civil structures, such as buildings [3], bridges [4], wind turbines [5]
and solar towers [6]. Numerous energy dissipation devices, including viscous dampers [7,8], magneto-
rheological dampers [9,10], pounding dampers [11], friction dampers [12,13], and viscous inerter
dampers [14] have been developed.
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In recent years, eddy current dampers (ECDs) have emerged as a promising passive control
device in the field of civil engineering. ECD offers high fatigue resistance and low starting friction,
thanks to their non-contact damping force generation mechanism [15,16]. Notable advancements and
refinements in the ECD structure, such as the introduction of ball screw and novel magnet matrix
arrangement, have expanded their applicability across various engineering domains. For instance,
Wang et al. [17] proposed an ECD system to mitigate the multi-mode high-order vibration of ultra-long
stay cables, and field test results demonstrated the system’s effective suppression of cable vibrations.
Lu et al. [18] conducted laboratory and field tests on a giant eddy current tune mass damper installed on
a high-rise landmark building in China, confirming its satisfactory control performance. Additionally,
Zhang et al. [19] designed a rotary ECD to alleviate the longitudinal seismic response of a suspension
bridge, with mechanical property tests revealing a maximum damping force of 500 kN.

Developing a constitutive model that accurately characterizes the damping force-velocity rela-
tionship is essential for dynamic analysis of structures equipped with ECDs. ECDs exhibit distinct
damping behavior compared to traditional viscous dampers. They demonstrate nearly linear damping
characteristics at low velocities but exhibit nonlinearity at high velocities [20]. Currently, the widely
used constitutive model for ECDs is the one proposed by Wouterse, which is based on test results of
eddy current disc brakes with iron pole shoes [21]. The parameters in the Wouterse constitutive model
possess clear physical interpretations, enabling easy comprehension by researchers. The accuracy of
the Wouterse constitutive model has been validated by researchers. For example, Li et al. [22,23]
employed the Wouterse constitutive model to characterize the damping behavior of rack and gear
ECD mechanisms, and the theoretical and mechanical property test results exhibited good agreement
with the Wouterse constitutive model.

However, the Wouterse constitutive model poses a significant drawback when performing finite
element analysis (FEA) for dynamic response. Unlike the power law constitutive model used for
common viscous dampers, which can be directly simulated using existing elements in FEA software,
the Wouterse constitutive model for ECD constitutive behavior cannot be directly implemented. As a
result, the utilization of the Wouterse constitutive model hinders the wider adoption of ECDs.

To address this limitation, this study aims to propose a new constitutive model that is not only easy
to comprehend but also compatible with FEA software. Firstly, a novel power law constitutive model
is derived based on numerical results obtained from electromagnetic FEA. Secondly, a comprehensive
assessment is conducted through mechanical property testing and numerical seismic analysis to
validate the power law constitutive model’s capability to characterize the nonlinear behavior of
ECDs. Thirdly, a detailed description is provided regarding the application process of the power law
constitutive model in the widely used FEA software, ANSYS. Finally, an analytical derivation of
ECD’s energy dissipation and subsequent parameter optimization are performed to facilitate dynamic
analysis of ECDs, thereby enhancing their overall effectiveness.

2 Power Law Constitutive Model of ECD

In this section, a novel power law constitutive model to characterize the constitutive behavior of
ECDs is proposed. The power law constitutive model is derived from the numerical results obtained
through electromagnetic finite element simulation. Unlike the Wouterse constitutive model, the power
law constitutive model incorporates four power law functions, enabling a more convenient and efficient
simulation of ECDs’ constitutive behavior in finite element software.
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2.1 Damping Behavior of ECD
Fig. 1 illustrates a typical rotary axial ECD, comprising two primary components: the ball screw

assembly and the eddy current damping generator. The ball screw assembly comprises a ball screw
drive pair, a stator and a rotor in which the stator and the rotor are made from ferromagnet materials.
On the other hand, the eddy current damping generator is composed of permanent magnets and a
conductive cylinder, arranged on the rotor and the stator, respectively.

Figure 1: Schematic and prototype of the rotary axial ECD

ECD is a kind of velocity-dependent nonlinear damper. At this stage, its constitutive behavior,
namely the damping force-velocity relationship, is often characterized by the Wouterse constitutive
model as follows:

FECD = Fmax

2
v
vcr

+ vcr

v

(1)

where FECD is the damping force of the ECD; v is the relative velocity between the two ends of the
ECD; Fmax is the maximum damping force, and the vcr is the critical relative velocity when the damping
force reaches its maximum value. The relationship curve of Eq. (1) is presented in Fig. 2. The two
mechanical model parameters Fmax and vcr in the Wouterse constitutive model expression possess clear
physical interpretations, facilitating researchers’ comprehension of the model.

Figure 2: Damping force-velocity relationship of ECDs
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Nevertheless, the Wouterse constitutive model expression differs from the power law constitutive
model commonly used to simulate the mechanical properties of viscous dampers. The constitutive
model of a nonlinear viscous damper can be expressed as

FVD = cvα (2)

where FVD is the damping force of the viscous damper, c is the damping coefficient, and α is the
velocity exponent. The constitutive model of viscous damper, namely a typical power law constitutive
model, is widely supported by FEA software directly. On the contrary, only a few FEA software
currently support the direct simulation of the Wouterse constitutive model for ECDs. Therefore, the
development of a novel power law constitutive model specifically tailored for ECDs is crucial to
achieving highly efficient performance in finite element analysis.

2.2 Derivation of the Power Law Constitutive Model
In order to improve the efficiency of FEM analysis with ECDs, we constructed a power law

constitutive model as same as the one of viscous dampers. The parameters Fmax and vcr of the Wouterse
constitutive model are retained for keeping its easily understandable characteristics.

A normalization process is conducted to retain the parameters Fmax and vcr. The dimensionless
velocity x = v/vcr and dimensionless damping force y = FECD/Fmax was defined as the independent
variable and dependent variable, respectively. Assuming the nonlinear damping behavior can be
expressed by a series of power law functions. Therefore, the power law constitutive behavior model
can be written as follows:

yn(x) = a1x1 + a2x2 + · · · + aixi(i = 1, 2, · · · , n; x ∈ [0, +∞]) (3)

where x is the dimensionless velocity; yn(x) is the dimensionless damping force; a = [a1, a2, · · · , ai] are
constant parameters, and i is the number of the terms of the power law function.

A curve fitting method is employed to determine the values of the constants a in Eq. (3), aiming
to accurately match the nonlinear constitutive behavior of ECDs. The numerical results obtained
from electromagnetic finite element simulation are utilized as the target for the curve fitting process.
In this study, the target curve is defined as y0(x). The electromagnetic finite element simulation
was conducted utilizing the electromagnetic finite element analysis software COMSOL. In order to
improve computational efficiency, the 3D model has been simplified into a 2D model. The schematic
of finite element meshing is presented in Fig. 3.

The electromagnetic finite element analysis results are shown in Table 1.

Additionally, to ensure the mechanical properties of parameters Fmax and vcr, a constraint condition
is applied, where the maximum dimensionless damping force is positioned at (1, 1). The above
optimization problem can be formulated as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

find: a = [a1, a2, · · · , ai]

minimize :
m∑

l=1

(y0(xl) − yn(xl))
2

s.t. : yn (1) = 1; ẏn (1) = 0

(4)

where
∑m

l=1(y0(xl) − yn(xl))
2 is the objective function chosen as the sum of squares of the difference

between the target curve and Eq. (3) at each dimensionless velocity. It is noteworthy that the number
of the terms of the power law function in Eq. (3) is set to 4. To achieve better accuracy, we conducted
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the optimization process within the dimensionless velocity range from 0 to 1.5, which covers the most
common operating velocity range of ECDs

Figure 3: Schematic of 2D finite element meshing

Table 1: The electromagnetic finite element analysis results

Case Velocity (m/s) Damping force (N)

1 0 0.00
2 0.005 25357.24
3 0.01 50174.25
4 0.015 73950.29
5 0.02 96251.72
6 0.025 116745.20
7 0.03 135202.82
8 0.035 151497.33
9 0.04 165600.02
10 0.045 177563.54
11 0.05 187498.39
12 0.055 195555.14
13 0.06 201912.89
14 0.065 206760.05
15 0.07 210286.02
16 0.075 212672.04
17 0.08 214086.40
18 0.085 214684.74
19 0.09 214596.10
20 0.095 213946.16
21 0.1 212839.12
22 0.105 211363.60
23 0.11 209597.71

(Continued)
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Table 1 (continued)

Case Velocity (m/s) Damping force (N)

24 0.115 207603.99
25 0.12 205436.89
26 0.125 203143.52
27 0.13 200760.30
28 0.135 198319.26
29 0.14 195845.44
30 0.145 193360.02
31 0.15 190884.63

Genetic algorithm is employed to solve the optimization problem. The expression of the power
law constitutive model for the constitutive behavior of ECD was obtained as follows:

y4 (x) = 0.184x4 − 0.122x3 − 1.309x2 + 2.247x(x ∈ [0, 1.5]) (5)

The power law constitutive model damping force-velocity relationship curve is plotted in Fig. 4,
and the Wouterse constitutive model relationship curve also is fitted and presented in Fig. 4 for
comparison. It can be observed that the power law constitutive behavior model matches considerably
well with the target curve. The coefficient of determination (denoted R2, normally ranges from 0 to 1)
is employed to assess the degree of agreement for two curves. The more closely the two curves match,
the closer the value of R2 is to one. The R-square value of the Wouterse constitutive model for FEM
data in Fig. 4 is 0.9995, which indicates a hiah-level coincidence of the power law constitutive model
for the constitutive behavior of ECD.

Figure 4: Fitted curve of the power law constitutive model of ECD

Substitute x = v/vcr and y = FECD/Fmax into Eq. (5) and consider the negative velocity, it can be
written as

FECD = sgn (v) Fmax

[
0.184

v4
cr

|v|4 − 0.122
v3

cr

|v|3 − 1.309
v2

cr

|v|2 + 2.247
vcr

|v|
]

(v/vcr ∈ [−1.5, 1.5]) (6)

It can be observed from Eq. (6) that the power law constitutive model is still determined by the
parameters Fmax and vcr as same as the Wouterse constitutive model. The nonlinear damping behavior
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of ECDs is expressed by the sum of four power law functions which are commonly used to characterize
the mechanical behavior of viscous dampers in FEA software.

In conclusion, the power law constitutive model was demonstrated to be able to express the
nonlinear damping behavior of ECDs. The parameters Fmax and vcr are retained for keeping its
easily understandable characteristics. However, further validation is essential in order to confirm the
accuracy of the power law constitutive model.

3 Validation of Power Law Constitutive Behavior Model of ECD

This section encompasses the validation of the power law constitutive behavior model through
two approaches. Firstly, a mechanical property test of a rotary axial ECD was performed to validate
the model’s accuracy. Secondly, a numerical analysis of a single-degree-of-freedom (SDOF) system
supplemented with an ECD, subjected to seismic excitations, was conducted using the Runge-Kutta
method. This numerical analysis serves as an additional validation of the power law constitutive
model’s effectiveness.

3.1 Test Validation
A mechanical property test was performed on the rotary axial ECD, as depicted in Fig. 5. The

ECD was integrated into a dynamic test system, with one end fixed and the other end connected
to an actuator. The test involved subjecting the ECD to sinusoidal displacement excitations at
various amplitudes and frequencies. This study encompassed a total of nine cases, each with different
displacement amplitudes and frequencies.

Figure 5: Mechanical property test of the rotary axial ECD

As shown in Fig. 6a, the damping force amplitude and the corresponding velocity amplitude of
each case were recorded as circle marker. The fitted curve of the power law constitutive model was
obtained and presented in Fig. 6a, and the curve of Wouterse constitutive model was also plotted as a
comparison. The R-square value of the power law constitutive model for test data is 0.9932, while the
R-square value of the Wouterse constitutive model for test data is 0.9901. This suggests that the power
law constitutive model characterizes the nonlinear damping behavior of ECD properly. Furthermore,
the hysteresis loops of the case with the velocity amplitude 60 mm/s are presented in Fig. 6b. It can be
seen that the hysteresis loops directly obtained from the Eq. (6) match very well with the one recorded
in the mechanical property test.
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The mechanical property test results indicate that the power law constitutive behavior model can
reflect the nonlinear damping performance of ECD accurately.

Figure 6: Mechanical property test of the rotary axial ECD. (a) Damping force-velocity relationship
curve; (b) Hysteresis loops of the velocity amplitude 60 mm/s

3.2 Numerical Validation
A linear elastic SDOF system supplemented with a nonlinear ECD subjected to ground motion

is proposed to validate the accuracy of the power law constitutive model in numerical analysis. The
schematic is plotted in Fig. 7. The motion governing equation of the SDOF-ECD system can be
written as

mü + cu̇ + ku + fECD(u̇) = −müg (7)

where m, k, and c are the mass, elastic stiffness, and linear viscous damping coefficient, respectively.
ü, u̇, u is the acceleration, velocity, and displacement, respectively. fECD(u̇) is the nonlinear damping
force of the ECD. The system parameters are as follows: the mass m = 1000 kg; the natural frequency
fn = 0.1 Hz; the damping ratio ξ = 0.02.

Figure 7: Schematic of the SDOF-ECD system

The Elcentro wave presented in Fig. 8 was adopted as seismic excitation in this section. The peak
ground acceleration was taken to 2 m/s2. The dynamic analysis was conducted utilizing the Runge-
Kutta algorithm in the numerical analysis software Matlab. The dynamic response of the power law
constitutive model was obtained and compared with the response of the Wouterse constitutive model.
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It is noteworthy that the curve fitting process of the power law constitutive model was conducted
with the dimensionless velocity x = v/vcr ranging from 0 to 1.5. The critical velocity vcr should be
greater than 0.667vmax to meet this prerequisite. Therefore, As long as the critical velocity vcr is greater
than 0.667 times the velocity response amplitude u̇max, the accuracy of the power law constitutive model
can be guaranteed. Actually, for the purpose of achieving a better energy dissipation performance,
researchers usually adopt a strategy that takes the value of the parameter vcr closing to the velocity
response amplitude in engineering applications.

Figure 8: Time history of elcentro wave

In this example, the parameter vcr is equal to the velocity response amplitude u̇max, and the velocity
response amplitude is 0.224 m/s which is obtained without dampers installed in the SDOF system.
The maximum damping force Fmax was taken to 200 N. The displacement response of the SDOF-ECD
system and the corresponding hysteresis loops are plotted in Fig. 9. The coefficient of determination,
namely the R-square value, of the two curves in Fig. 9a is 0.9975. It indicates that the displacement
response curve of the power law constitutive model matches well with the one of the Wouterse
constitutive model. Meanwhile, it can be observed that the ECD hysteresis loops of the power law
constitutive model are consistent with the one of Wouterse constitutive model in nonlinear damping
characteristics simulation.

Figure 9: Response comparison of the power law constitutive model and Wouterse constitutive model
(a) Displacement responses history curve; (b) Hysteresis loops
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In conclusion, the power law constitutive model is proved to be capable to characterize the
nonlinear damping behavior of ECD accurately based on the test and numerical validation.

4 Application of Power Law Constitutive Model in FEA Software

In this section, a detailed description of the application process of the power law constitutive model
in FEA software is proposed. the process is conducted based on the common software ANSYS. The
SDOF-ECD system example in Section 3.2 is still taken as the study case.

4.1 Simulation Process
The simulation of power law constitutive model of ECD can be directly conducted using one of the

existing elements, making it a straightforward process. However, utilizing the Wouterse constitutive
model in ANSYS proves to be considerably more complex. Customization becomes necessary for
implementing the Wouterse constitutive model, as depicted in Fig. 10. This customization involves
configuring the FORTRAN environment and modifying the User Programmable Features (UPFs),
which demands significant time and effort. Additionally, since many FEA software do not provide
open access for customization, the Wouterse constitutive model cannot be effectively utilized in ECD
finite element analysis.

Figure 10: Technology roadmaps of simulation process of power law constitutive model and Wouterse
constitutive model

The Combin37 element in ANSYS was adopted to simulate the power law constitutive model of
ECD. This element is commonly used to simulate the damping behavior of viscous dampers. When the
key option 9 of the Combin37 was taken to 0, the RVMOD formula of the element can be expressed as

RVMOD = RVAL + C1 |CPAR|C2 + C3 |CPAR|C4 (8)

where CPAR is the control parameter which was set to velocity, RVAL is the linear damping coefficient
which is taken to 0 when simulating the nonlinear ECD, and C1∼C4 are real constants for controlling
nonlinear behavior. Take the simulation of the nonlinear damping behavior of viscous dampers for
example. When the real constants C1∼C4 are set to cd, α − 1, 0, 0, respectively, the simulation of
the viscous damper is achieved. The parameter cd and α are the damping coefficient and the velocity
exponent of the viscous damper, respectively.

Apparently, the power law constitutive model can characterize the nonlinear damping behavior of
ECD successfully for sharing the same form of expression with the constitutive model of the viscous



CMES, 2024, vol.138, no.3 2413

damper. Two Combin37 elements are adopted to simulate the mechanical property of ECD. According
to Eq. (6), the real constants Ca

1 , Ca
2 , Ca

3 , Ca
4 and Cb

1 , Cb
2 , Cb

3 , Cb
4 of the RVMOD can be expressed as{

Ca
1 = 0.184Fmax/v4

cr, Ca
2 = 3

Ca
3 = −0.122Fmax/v3

cr, Ca
4 = 2

(9)

{
Cb

1 = −1.309Fmax/v2
cr, Cb

2 = 1

Cb
3 = 2.247Fmax/v1

cr, Cb
4 = 0

(10)

By connecting two Combin37 elements in parallel, we can realize the simulation of the power law
constitutive model of ECD. Thus, The damping behavior of ECD can be characterized conveniently
and efficiently in FEA software.

4.2 Dynamic Response Analysis in FEA Software
In this section, we present an example of an SDOF system model. The seismic response of the

SDOF system was obtained using ANSYS and compared with the numerical results obtained using
the Runge-Kutta method. Through this comparison, the accuracy of the power law constitutive model
for ECDs is confirmed, validating its effectiveness in predicting the seismic response of the system.

The same SDOF system in Fig. 7 was established in ANSYS. The seismic response analysis was
conducted considering the SDOF system subjected to the Elcentro wave of Fig. 8. The displacement
history curve is plotted in Fig. 11. The green dash-dot line represents the displacement response
obtained by FEM, and the red dashed line represents the displacement response of power law
constitutive model obtained by Runge-Kutta method in the numerical analysis software Matlab. It can
be seen from Fig. 11 that the displacement history curves match very well. The power law constitutive
model is simulated precisely in ANSYS with the original Combin37 element.

Figure 11: Displacement response comparison between FEM and Runge-Kutta method

To examine the computational efficiency of the two models, we performed the seismic response
analysis example from Section 4.2 on the same computer. The power law constitutive model case
took 308 s, while the Wouterse constitutive model case took 320 s. This suggests that the power
law constitutive model demonstrates slightly better computational efficiency than the Wouterse
constitutive model.

As a result, the nonlinear damping behavior of ECD is characterized easily by the power law
constitutive model in FEA software. The power law constitutive model of ECD is a good choice for
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achieving an accurate and efficient analysis when considering vibration control FEA problems with
ECD in this stage.

5 Energy Dissipation Analysis Based on Power Law Constitutive Model

The performance of dampers in reducing vibrations is closely related to their energy dissipation
capacity. In this section, we analyze the energy dissipation capacity of ECDs using the power law
constitutive model. We derive an analytical expression for the energy dissipated by the ECD during a
cycle of harmonic motion. Furthermore, based on the analytical conclusions obtained from the power
law constitutive model, we optimize the critical velocity parameter of the ECD to enhance its energy
dissipation capabilities.

5.1 Energy Dissipation Capacity under Harmonic Motion
The energy dissipation capacity under harmonic motion is usually considered the key indicator of

the vibration control performance of dampers. The energy consumption formula of the ECD during
a cycle of harmonic motion was derived based on the power law constitutive model.

The ECD is assumed to be subjected to harmonic motion u = u0 sin(ωt). For ECD governed by
the power law constitutive model, the energy dissipated by the ECD during a cycle of harmonic motion
can be expressed as

EECD = 0.393Fmaxu0
5ω4

v4
cr

− 0.287Fmaxu0
4ω3

v3
cr

− 3.491Fmaxu0
3ω2

v2
cr

+ 7.059Fmaxu0
2ω

vcr

(11)

The detailed formula derivation is shown in Appendix A. It can be seen that EECD is a function of
Fmax and vcr, when u0 and ω are specified.

5.2 Energy Consumption Formula Validation
The accuracy validation of Eq. (11) is conducted by comparing it with the energy consumption

formula based on Wouterse constitutive model. For ECD governed by Wouterse constitutive model,
the energy dissipated by the ECD during a cycle of harmonic motion can be expressed as [24]

EW
ECD = 4

∫ u0

0

2Fmax

v
vcr

+ vcr

v

du = 4vcrFmaxπ

ω

(
1 − vcr√

vcr
2 + u2

0ω
2

)
(12)

It should be noted that the maximum velocity of the harmonic motion u = u0 sin(wt) is u0ω. Here
we take the dimensionless velocity X = u0ω/vcr, and substitute it into Eqs. (11) and (12). The EECD and
EW

ECD can be written as

EECD/Fmaxu0 = (0.393X 4 − 0.287X 3 − 3.491X 2 + 7.059X) (13)

and

EW
ECD/Fmaxu0 = 4π

X

(
1 − 1√

1 + X 2

)
(14)

Through observing the mathematical structure of Eqs. (13) and (14), the accuracy validation can
be conducted by comparing the term (0.393X 4 − 0.287X 3 − 3.491X 2 + 7.059X) in Eq. (13) with the
term 4π/X(1 − 1/

√
1 + X 2) in Eq. (14). The dimensionless energy curves EECD/Fmaxu0 and EW

ECD/Fmaxu0

are plotted in Fig. 12. Apparently, the power law curve fits well with the Wouterse constitutive model
curve which indicates that the energy consumption formula Eq. (10) can be used to assess the energy
dissipation capacity of ECD.
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Figure 12: Dimensionless energy curves of power law constitutive model and Wouterse constitutive
model

5.3 ECD Parameter Optimization Based on Power Law Constitutive Model
The equivalent linearization method is a very common damper parameters optimization method.

In this section, the ECD parameter optimization is conducted based on the equivalent linearization
method. The energy dissipated by the linear viscous damper is employed as a reference.

The energy dissipated by the linear viscous damper during a cycle of harmonic motion can be
expressed as

EL = CLπu0
2ω (15)

where CL is the linear viscous damping coefficient.

Considering the ECD is subjected to the same cycle of harmonic motion, there is no harm in
defining a proportional factor μ, and the parameters Fmax in Eq. (11) can be taken as μCLu0ω. Divide
EECD by EL, and it becomes

EECD

EL

= Fmax

CLπu0
2ω

(
0.393u0

5ω4

v4
cr

− 0.287u0
4ω3

v3
cr

− 3.491u0
3ω2

v2
cr

+ 7.059u0
2ω

vcr

)

= μ

π

(
0.393X 4 − 0.287X 3 − 3.491X 2 + 7.059X

)
(16)

where X is the dimensionless velocity which equals to u0ω/vcr.

Apparently, the term 0.393X 4 − 0.287X 3 − 3.491X 2 + 7.059X is determined by the dimensionless
velocity X . When the proportional factor μ, namely the parameter Fmax, is specified, we can use the
dimensionless velocity X as the dependent variable to find an optimal design of ECD such that the
energy dissipation of ECD is maximized as compared to that of the linear viscous damper.

Denote Y = 0.393X 4 − 0.287X 3 − 3.491X 2 + 7.059X and take its derivatives. It can be seen
that when the parameter Fmax is specified, the energy dissipation ratio EECD/EL will reach its maximum
when the dimensionless velocity equals 1.286 (See Appendix B). As a result, when the ratio of the
maximum velocity of the harmonic motion to the parameter vcr is 1.286, the energy dissipation capacity
of ECD reaches its maximum. It is noteworthy that the energy dissipation is also dependent on the
parameter Fmax.
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In this way, the optimization of the parameter critical velocity vcr of ECD is achieved based on
the conclusion obtained analytically based on the power law constitutive model. The ECD parameter
design will be conducted more efficiently.

6 Conclusions

A novel power law constitutive model for ECD was proposed based on the numerical result
obtained from electromagnetic finite element simulation. This model was specifically designed to
enable convenient and efficient simulation of the constitutive behavior of ECDs in finite element
software. The power law constitutive model consists of four power law functions, allowing for
straightforward implementation in FEA software.

The effectiveness of the power law constitutive model in characterizing the nonlinear damping
behavior of ECDs and expressing the damping force-velocity relationship was confirmed. The
parameters Fmax and vcr, which hold clear physical interpretations, were retained to maintain the model’s
ease of understanding. The accuracy of the power law constitutive model is validated through a
mechanical property test of a rotary axial ECD and numerical analysis of an SDOF-ECD system
subjected to seismic excitations. The result demonstrated that the power law constitutive model
performs comparably to the Wouterse constitutive model in characterizing the damping behavior
of ECDs.

A detailed application process of the power law constitutive model in FEA software was presented,
specifically focusing on the use of the Combin37 element in ANSYS. By connecting two Combin37
elements in parallel, the simulation of the power law constitutive model for ECDs can be realized. The
results indicate that the power law constitutive model enables easy characterization of the nonlinear
damping behavior of ECDs in FEA analysis.

The energy dissipated by the ECD under a cycle of harmonic motion is derived analytically and
subsequently validated. Moreover, the optimization of the critical velocity parameter of the ECD
was achieved based on analytical conclusions derived from the power law constitutive model. It was
determined that when the ratio of maximum velocity of the harmonic motion to the parameter vcr is
1.286, the energy dissipation capacity of ECD reaches its maximum.

Overall, the power law constitutive model proves to be a suitable alternative for conducting
FEA dynamic analysis and optimizing the parameters of ECDs, offering improved convenience and
accuracy in these applications.
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Appendix A

The mathematic proofs of Eq. (11) are shown in this appendix section. The energy dissipation of
ECD under a cycle of harmonic excitation can be written as

EECD = 4
∫ u0

0

FECDdu = 4
∫ u0

0

Fmax

[
0.184

v4
cr

v4 − 0.122
v3

cr

v3 − 1.309
v2

cr

v2 + 2.247
vcr

v
]

du

= 0.736Fmax

v4
cr

∫ u0

0

v4du − 0.488Fmax

v3
cr

∫ u0

0

v3du − 5.236Fmax

v2
cr

∫ u0

0

v2du + 8.988Fmax

vcr

∫ u0

0

vdu (A1)

Substitute v = u0ω cos(ωt) into Eq. (A1), and the integrals in Eq. (A1) can be written as∫ u0

0

v4du =
∫ u0

0

(u0ω cos (ωt))4 du
dt

dt =
∫ π

2ω

0

(u0ω cos (ωt))5 dt = u0
5ω5

∫ π
2ω

0

cos5 (ωt) dt

= u0
5ω5

sin (ωt) − 2
3

sin3
(ωt) + 1

5
sin5

(ωt)

ω

∣∣∣∣
π

2ω

0

= 8
15

u0
5ω4 (A2)

∫ u0

0

v3du =
∫ u0

0

(u0ω cos (ωt))3 du
dt

dt =
∫ π

2ω

0

(u0ω cos (ωt))4 dt = u0
4ω4
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cos4 (ωt) dt
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sin (2ωt) + 1

32
sin (4ωt)

ω

∣∣∣∣
π

2ω

0

= 3π

16
u0

4ω3 (A3)

∫ u0

0

v2du =
∫ u0
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(u0ω cos (ωt))2 du
dt

dt =
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∫ u0

0

vdu =
∫ u0

0

u0ω cos (ωt)
du
dt

dt =
∫ π

2ω

0

(u0ω cos (ωt))2 dt = u0
2ω2
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Substitute Eqs. (A2) to (A5) into Eq. (A1), it becomes

EECD = 0.736Fmax

v4
cr

8
15

u0
5ω4 − 0.488Fmax

v3
cr

3π

16
u0

4ω3 − 5.236Fmax

v2
cr

2
3
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3ω2 + 8.988Fmax

vcr

π

4
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2ω

≈ 0.393Fmaxu0
5ω4

v4
cr

− 0.287Fmaxu0
4ω3

v3
cr

− 3.491Fmaxu0
3ω2

v2
cr

+ 7.059Fmaxu0
2ω

vcr

(A6)

Appendix B

The mathematic proofs of the optimal design of ECD based on the power law constitutive model
are shown in this appendix. The derivative and second derivative of 0.393X 4 − 0.287X 3 − 3.491X 2 +
7.059X are obtained as follows:

Y ′ = 7.059 − 6.982X − 0.861X 2 + 1.572X 3 (B1)

Y ′′ = −6.982 − 1.722X + 4.716X 2 (B2)

Let Y ′ = 0 and it gets X ≈ 1.286(X ∈ [−1.5, 1.5]). Substitute the value of X into Eq. (B2), and
it gets

Y ′′ = 7.059 − 6.982X − 0.861X 2 + 1.572X 3 ≈ −1.397 < 0 (B3)

Therefore, when X = 1.286, Y reaches its maximum, and then the energy dissipation ratio EECD/EL

reaches the maximum.


	Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
	1 Introduction
	2 Power Law Constitutive Model of ECD
	3 Validation of Power Law Constitutive Behavior Model of ECD
	4 Application of Power Law Constitutive Model in FEA Software
	5 Energy Dissipation Analysis Based on Power Law Constitutive Model
	6 Conclusions
	References
	  Appendix A
	  Appendix B


