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ABSTRACT

Implementing machine learning algorithms in the non-conducive environment of the vehicular network requires
some adaptations due to the high computational complexity of these algorithms. K-clustering algorithms are
simplistic, with fast performance and relative accuracy. However, their implementation depends on the initial
selection of clusters number (K), the initial clusters’ centers, and the clustering metric. This paper investigated using
Scott’s histogram formula to estimate the K number and the Link Expiration Time (LET) as a clustering metric.
Realistic traffic flows were considered for three maps, namely Highway, Traffic Light junction, and Roundabout
junction, to study the effect of road layout on estimating the K number. A fast version of the PAM algorithm
was used for clustering with a modification to reduce time complexity. The Affinity propagation algorithm sets
the baseline for the estimated K number, and the Medoid Silhouette method is used to quantify the clustering.
OMNET++, Veins, and SUMO were used to simulate the traffic, while the related algorithms were implemented
in Python. The Scott’s formula estimation of the K number only matched the baseline when the road layout was
simple. Moreover, the clustering algorithm required one iteration on average to converge when used with LET.
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1 Introduction

In a vehicular network (VN) environment, clustering refers to organizing vehicles into groups
based on their geographical location or other shared characteristics. Clustering can improve vehicle
communication, data exchange and facilitate coordinating activities such as traffic control and
emergency response. Moreover, clustering can improve routing scalability and reliability in VN [1].
Some common methods for clustering in a VN environment include distance-based, density-based,
and connectivity-based clustering [1]. The ad-hoc nature of VN dictates the clustering process to be
distributed among the vehicles through a self-election process to select Cluster Head (CH) and Cluster
Members (CM) [2]. However, using Machine Learning (ML) algorithms for clustering may not be
feasible without the road infrastructure to provide more features and reduce the vehicle’s workload
[3]. Therefore, adapting ML clustering algorithms to fit the VN environment is essential. The original

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.031265
https://www.techscience.com/doi/10.32604/cmes.2023.031265
mailto:fady.samann@dpu.edu.krd


2422 CMES, 2024, vol.138, no.3

Partitioning Around Medoids (PAM) algorithm involves selecting the initial K medoids in a greedy
process (BUILD stage) that minimizes the sum of dissimilarities or total deviation (TD) [4]. The
BUILD stage version presented in [5] caches the dissimilarity value to the nearest medoid to reduce the
time complexity to O(N2K). The second stage of the algorithm, the SWAP stage, optimizes the initial
selection and chooses alternative medoids that reduce the change in TD. Two improved versions of the
SWAP stage were presented in [5] that eliminate the nested K iterations and reduce the redundancy
of calculating the TD for every possible swap of medoids. The time complexity of the SWAP stage
O(K(N-K)2) was reduced to O(N(N-K)) with these improvements. Instead of the greedy process, the
K-Medoids algorithm randomly selects the initial medoids, just like Lloyd’s algorithm. Moreover, the
K-Medoids algorithm follows the naive implementation of precomputing the dissimilarity matrix and
calculating the TD for every possible swap [6].

The PAM and K-Medoids algorithms are written with dissimilarity metrics such as the Euclidean
distance in mind. However, as shown in previous work [7], similarity metrics such as the Link
Expiration Time (LET) [8] can work with the K-Medoids algorithm by maximizing the TD instead of
minimizing it. The LET equation combines distance, speed, direction, and communication range to
calculate the connection period between two vehicles, which makes it excellent for clustering vehicles.
Moreover, the LET equation was driven mathematically and validated for highway scenarios by [9].
However, selecting the correct number of clusters is essential for effective clustering. Therefore, Scott’s
formula was suggested to estimate the K number instead of the Elbow and Silhouette methods for
vehicle clustering [7]. Scott’s formula [10] is used to compute the bin numbers for constructing a
histogram. Histograms are used to visualize the underlying distribution of a set of numerical data to
identify patterns and trends. Therefore, this statistical tool could help to calculate the optimal number
of clusters cost-effectively for vehicle clustering.

This work further investigated the possibility of using Scott’s formula to calculate the K number
for vehicle clustering and the LET metric as the clustering metric. The FastPAM clustering algorithm
[5] was considered because of its quick convergence. In the simulation, vehicle information is recorded
by the Road Side Unit (RSU), which builds and updates its neighbor table based on the vehicles’
beacons every time a CH leaves its transmission range, or a new vehicle enters its transmission range.
The simulations will be based on three road maps; Highway, Traffic Light junction, and Roundabout
junction. The traffic flow for the highway map will be based on a survey by [11]. The traffic flow
for the other maps will be based on examples’ values from the Highway Capacity Manual [12,13] to
provide realistic simulations. The contributions of this paper are:

• Using the FastPAM algorithm for vehicle clustering.

• Using a negative LET similarity matrix instead of modifying the original clustering algorithm.

• Using realistic traffic flow values for the simulated Highway, Traffic Light junction, and

Roundabout junction road map scenarios.

The remnant of the paper is laid as follows. The related literature is reviewed in Section 2 with
background about the affiliated topics. Section 3 introduces the methodology, while Section 4 presents
the simulation process and the results with a discussion. Finally, Section 5 concludes the findings.

2 Background and Related Work

Unsupervised clustering algorithms such as K-Means, K-Medoids, and PAM algorithms require
the number of clusters (K) to be known in advance [14]. There are several approaches for estimating the
K number for these algorithms, such as the Elbow method, Silhouette analysis, and Gap statistic [15].
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The Elbow method involves fitting the clustering model for a range of K values and then plotting
the total deviation (TD) for each value of K. The “knee” of the elbow-shaped curve is the point
of inflection where the TD begins to level off, and this can be taken as a reasonable estimate for
the optimal value of K [16]. There are algorithms to find the “knee” point of the curve relative
to a particular sensitivity factor [17]. However, the Elbow method is still considered subjective, as
the “knee” point is not always clearly defined and may depend on the interpretation of the person
analyzing the plot. Additionally, the elbow method may not always provide a reliable estimate of the
optimal value of K, especially if the data do not have a clear underlying structure or if there is much
noise [18].

Even though the Silhouette method is used to evaluate the quality of the clustering outcome,
it can also give a reasonable estimation of the number of clusters. This method involves computing
a silhouette score for each sample, which measures how closely it is matched to its cluster vs. the
next best cluster [19]. The value range of the score is between −1 and 1, where values close to (1 or
−1) represent distinguishable clusters or wrongly assigned clusters, respectively. However, zero value
represents indistinguishable clusters or unclustered points. The optimal value of K is the one that
maximizes the mean silhouette score across a sensible range of K [20]. Another alternative to the
Silhouette method is the Medoid-Silhouette method which only calculates the score based on the
distance to the medoids of the clusters instead of the average distance to all cluster members [21].

The Gap statistic method involves fitting the model for a range of K values and comparing the
results to those obtained using a reference distribution, such as a uniform random sample [22]. The
optimal value of K is the one that maximizes the gap between the model’s log-likelihood and that of the
reference distribution. The above methods are not feasible to pick the K number for an online vehicular
clustering algorithm due to the high time complexity requirement of these methods. Moreover, a
dataset that cannot produce a reliable random reference distribution, such as the features required
for calculating the LET, cannot be used with Gap statistics.

Regarding unsupervised clustering without knowing the K number, the Affinity propagation
algorithm implements a message exchange process between the data points until consent for the
number of clusters is reached. However, the time complexity of this algorithm is O(N2T), where T
is the number of iterations required for convergence [23]. The DBSCAN needs the epsilon value to be
present, which is the maximum distance between two data points for these points to be considered in
the neighborhood of each other [24]. Moreover, hierarchical clustering requires a threshold to merge
points/clusters into another cluster [25]. Therefore, this work considered the estimated K number by
the Affinity propagation algorithm and the Medoid-Silhouette method as a baseline. The latter method
was selected as not all the pairwise vehicles in the neighbor table had an LET value because they may
not be in communication range.

To avoid computational complexity, the solutions to estimate the K number presented by VN
clustering schemes usually rely on the in-range number of vehicles and the covered geography.
For example, the road length was divided by multiplying the number of transmission ranges, and
the summation of transmission ranges to estimate the K number in [26]. However, the number of
transmission ranges was multiplied by the ratio of the road length to the summation of transmission
ranges in [27,28] to estimate the K number. The algorithm presented in [29] picks the K number from
a maximum function of the road length to transmission range ratio and the number of vehicles to
the maximum number of CM ratio. Furthermore, the work in [30] formulated a Maximum Stable
Set Problem (MSSP) using the vehicles’ similarity scores and solving it with the Continuous Hopfield
Network (CHN) to estimate the K number and select the initial medoids. For single-hop clustering,
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the authors in reference [31] stated that the covered geography and transmission range are inversely
proportional to the cluster size. Therefore, they proposed a brute force method to learn the K number
by randomly selecting a CH, assigning the in-range vehicles to it, and then repeating the process for
the remaining unassigned vehicles. Finally, the related work above lacks a lightweight and efficient K
selection method, which this paper proposes using Scott’s formula.

3 Research Methodology

This section presents the communication and road network models, the clustering metrics, and
the assessment process of estimating the K number based on the baselines.

3.1 Communication Model
The communication model is based on the DSRC standard, which expects the vehicles to be

equipped with DSRC On-Board Unit (OBU) and a Global Positioning System (GPS) module.
According to the SAE J2735 standard, the vehicles broadcast a periodic Basic Safety Message (BSM)
that includes its ID (MAC address), position, speed, and heading as an angle. As the previous work
[7] presented, two fields are added to the BSM to aid the clustering process. The first field is for the
CH ID, and the second one includes the vehicle’s average received power. The CH ID field will help
indicate the vehicle’s clustering status, which will be used in future work.

To fill the second additional field, the vehicle registers the recorded power of the received BSMs
and averages it over 5 s. Then the average received power is divided by the number of vehicles in the
range of the corresponding vehicle. The five-second reset period is chosen to ensure that the average
value is recalculated at least three times during the passing of a vehicle traveling at a speed of 120 km/h
through the transmission range of the vehicle in question. This metric could quantify the vehicle’s
connection with its neighbors. For the rest of the paper, this metric will be referred to as vehicle
average received power (VehRxdBm). The model also includes a Road Side Unit (RSU) that gathers
the information the vehicles broadcast and forms a neighbor table. Table 1 contains the considered
simulation parameters, communication figures, and standards. Both the vehicles and the RSU share
the same communication ability in terms of power and transmission range, which is around 300 m,
considering the channel propagation model and transmission parameters presented in Table 1.

Table 1: Simulation parameters

Parameter Value/Type

Transmission power 20 mW
Bit rate 6 Mbps
Min power level −85 dBm
Noise floor −98 dBm
Channel model Free space propagation
Beacon interval 0.1 s
MAC and PHY layer IEEE802.11p
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3.2 Road Network Models and Traffic Flow Values
The reviewed vehicle clustering literature simplified their simulations by only considering highway

road map scenarios. However, this paper considered three road maps, Highway, Traffic Light junction,
and Roundabout junction, to study the effect of road layout on the estimation of K number. Fig. 1
shows the three simulated road maps. Table 2 contains the simulated road maps’ geometry information
and traffic flow values. The simulated two-way highway road is 3 km in length with three lanes for
each side.

(a)

(b) (c)

Figure 1: Simulated road maps: (a) three lanes two-way highway; (b) three lanes two-way four-legged
traffic light junction; (c) two lanes two-way four-legged roundabout
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Table 2: Geometry information and traffic flow values of the simulation scenarios

Road map Highway Traffic light Roundabout

Total length 3 km 6 km 6.1 km
Lane width 3.2 m 3.2 m 3.2 m
No. of lanes 3 3 2
Speed limit 33.33 m/s 19.44 m/s 16.66 m/s
Simulation time 400 s 500 s 500 s
Traffic light signal – Two-phase –
Cycle length – 90 s (0.4 green ratio) –
Peak hour factor (PHF) – 0.9 0.95
Heavy-vehicle factor
(HVf)

– For EB & WB 0.952 For EB & WB 0.952

For NB & SB 0.926 For NB & SB 0.98

Traffic flow (Veh/h) Simulation scenarios

Approach1 Direction2/
Lane3

High flow Low flow High flow Low flow High flow Low flow

LT/LL 2900 840 114 76 279 139
EB TH/ML 2400 540 1085 724 318 159

RT/RL 2100 900 61 41 398 199

LT/LL 2900 840 53 35 221 111
WB TH/ML 2400 540 1225 817 389 195

RT/RL 2100 900 35 23 274 137

LT/LL – – 54 36 202 101
NB TH/ML – – 666 444 309 155

RT/RL – – 36 24 241 120

LT/LL – – 72 48 219 110
SB TH/ML – – 918 612 180 90

RT/RL – – 90 60 245 122
Note: 1EB, WB, NB, and SB are the traffic approach’s east, west, north, and south bounds.
2LT, TH, and RT are the left-turn, through, and right-turn traffic directions, respectively.
3LL, ML, and RL are the highway road map’s left, middle, and right lanes.

The Traffic Light junction is a four legs two-way cross junction with three lanes on each side.
Each leg of the traffic light junction is 1.5 km long with exclusive left-turn and right-turn lanes. The
traffic light cycle is split into 40 s for the green period and 5 s for the red/yellow gap period. For the
roundabout layout, a two-way two lanes roundabout intersection is considered with a 91.44 m inscribed
circle diameter according to the NCHRP guidelines [32]. The four legs connected to the roundabout
with the inscribed circle diameter make 3 km length roads in each direction. The speed limits are set
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based on the functional and design considerations for highway and urban roads in [12]. The vehicle’s
arrival speed in the simulation is set to 5 km/h lower than the road limit to ensure the required traffic
flow is reached when the vehicle enters the communication range of the RSU. The simulation time for
each map is 300 s plus how long a vehicle would take to cross from one point of the simulated map to
the farthest point traveling at the speed limit of the corresponding road map. The calculation included
the time lost waiting at the traffic light or crossing the roundabout.

The reviewed literature considered traffic density which refers to the number of vehicles present in
a length of a lane or roadway at a given time. Traffic density is typically measured in vehicles per unit
of length or area, such as vehicles per kilometer (veh/km) or vehicles per square kilometer (veh/km2).
Measuring density in the field is challenging because it requires a visual vantage point for the road
section or area in question [12]. Therefore, this work considered the traffic flow metric, measured in
terms of the number of vehicles passing a specific point of the road or lane over a given period, such
as the number of vehicles per hour (veh/h). The traffic flow measurement is usually done over 15 min
intervals for one hour. The maximum measurement of the four 15 min periods is expressed in hours
as the traffic flow for that specific road point.

This paper considered two traffic flow scenarios, high flow (HF) and low flow (LF), for the maps
mentioned above. The northbound (NB), southbound (SB), eastbound (EB), and westbound (WB)
traffic flow figures shown in (Table 2) are driven from various traffic-related sources and based on
the level of service (LOS) analysis. The operation conditions of roads and intersections are quantified
with six LOS (A through F), where “A” represents the optimal conditions, and “F” represents the worst
conditions [12].

The traffic flow survey for the M60 highway in Manchester city in the UK mentioned and
analyzed by [11] (p. 412) is used to set the LF and HF traffic for the simulated highway map. The
left-hand UK traffic was considered when using the traffic flow values for the right-hand traffic of the
simulated map (Table 2). The low traffic flow scenario for the traffic light junction map is taken from
“Problem Example 1” in [12] (p. 16–38). The reason behind this selection was that the LOS analysis
of the example was “C”. Therefore, the high-traffic flow scenario is constructed by increasing the
flow values of the low-traffic scenario by 50%. Regarding the roundabout map, the traffic flows are
driven by guidelines in Exhibit 22–6 of [13] (p. 22–7). The LOS analysis of the low traffic flow values
(Table 2) was “A”. Thus, the values of the low traffic flow scenario are doubled to create the high flow
scenario. Finally, the traffic flows in Table 2 are the adjusted values by the peak hour factor (PHF)
and heavy-vehicle factor (HVf) for the roundabout and traffic light road maps.

3.3 Clustering Metrics and Algorithm
The clustering metrics used with the FastPAM clustering algorithm will be mentioned in this

section. Histogram visually summarizes the underlying probability density function of data. This
statistical tool visualizes the frequency distribution of the data by classifying the data points into
“bins”. These bins hold how many data points of the same range belong to each of these bins. Various
formulas calculate the number of bins for histograms [33]. Scott’s formula calculates the number of
bins for the histogram by taking the Gaussian density as a reference standard to have a data-based
choice for the number of bins [10].

Bin Number = max(data) − min(data)

3.5 × stdev(data)
3
√

n

(1)

The max, min, and stdev are the data’s maximum, minimum, and standard deviation values,
respectively, while n is the number of entries in the data. This work evaluated seven inputs for Scott’s
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Eq. (1) to estimate the K number. The first and second inputs are the vehicles’X and Y coordinates. The
third input is the vehicle’s average received power (VehRxdBm), explained in Section 3.1. The fourth
input is the BSM received power recorded by the RSU for each vehicle in its range (RSURxdBm). The
fifth input is the distance between each vehicle and the RSU (Dis2RSU). The sixth input is the average
distance between each vehicle and the other vehicles in the range of the RSU (AvgDis). The seventh
input is the average LET value (AvgLET) for each vehicle computed in reference to the other vehicles
in the RSU range.

The novelty of using the LET metric to compute the vehicle similarity score for the K-Medoids
algorithm is shown in [7]. However, the past work modified the clustering algorithm because the
K-clustering algorithms are written based on the Euclidean distance, a dissimilarity metric. The LET
equation returns an infinite or very high number to indicate that the two adjacent vehicles will stay in
the communication range for a long time [8]. For two adjacent vehicles, i and j, the LET equation is:

LET = −(ab + cd) + √
(a2 + c2) r2 − (ad − bc)2

a2 + c2
(2)

where,
a = vi cos θi − vj cos θj,

b = xi − xj,

c = vi sin θi − vj sin θj,

d = yi − yj.
v is the vehicle’s speed (m/s) and (x, y) its coordinates, while θ is the moving direction in degree.

r is the communication range in meters based on the free space propagation model. The FastPAM
clustering algorithm is a K-clustering algorithm based on minimizing the TD. Therefore, negative
LET values are fed to the algorithm to accommodate the similarity metric, keep the concept of TD
minimization, and avoid modifying the clustering algorithm. The use of negative values is a valid
and proven method. The affinity propagation algorithm transforms the Euclidean distance-based
dissimilarity matrix into a negative values similarity matrix. The maximum distance between vehicles
is their communication range. Therefore, the infinity values are replaced with the maximum LET value
in the similarity matrix.

The clustering algorithm used in this work is a modified version of the Partitioning Around
Medoids (PAM) algorithm. Algorithms 1 and 2 represent the BUILD and SWAP stages for the
FastPAM algorithm [5]. The FastPAM algorithm, like the original PAM, picks the medoids that reduce
the change in TD instead of computing the TD at every iteration. The FastPAM uses the original PAM
BUILD stage (Algorithm 1), a greedy process to pick the initial medoids according to the provided K
number. However, it modifies the SWAP stage (Algorithm 2) to gain faster performance by eliminating
the nested K iterations and reducing the redundancy of calculating the TD for every possible swap of
medoids. Instead of calculating the TD at every iteration, the algorithm computes the change in TD
(�TD) for every datapoint (xo) when a selected medoid (mi) is swapped with a candidate medoid (xc).
Moreover, the caching of distance to the nearest (dn(o)) and second best (ds(o)) medoids of (o) increase
the performance compared to the naive approach of calculating TD at every swap. Furthermore, the
�TD is decomposed into a positive loss (�TD−mi ) of reassigning medoid (mi)’s members to the second-
best alternative and a negative loss (�TD+xc) of reassigning the nearest points to the candidate medoid
xc. Information on how to compute these values can be found in [5].
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Algorithm 1: BUILD stage for the FastPAM algorithm [5]
1: (TD, m1) ← (∞, null)
2: foreach xc do �First medoid
3: TDj ← 0
4: foreach xo �= xc do TDj ← TDj + d (xo, xc);
5: if TDj < TD then (TD, m1) ← (

TDj, xc

)
; �Smallest distance sum

6: foreach xo �= m1 do �Initialize distance to nearest medoid
7: dnearest(o) ← d (m1, xo);
8: for i = 1 . . . k−1 do �Other medoids
9: (�TD∗, x∗) ← (∞, null);

10: foreach xc /∈ {m1, . . . , mi} do
11: �TD ← 0;
12: foreach xo /∈ {m1, . . . , mi, xc} do
13: δ ← d (xo, xc)−dnearest(o); �Reduction in TD
14: if δ < 0 then �TD ← �TD + δ;
15: if �TD < �TD∗ then (�TD∗, x∗) ← (�TD, xc); �Best reduction
16: (TD, mi+1) ← (TD + �TD∗, x∗);
17: foreach xo /∈ {m1, . . . , mi+1} do �Update distances
18: dnearest(o) ← min {dnearest(o), d (xo, mi+1)};
19: return TD, {m1, . . . , mk};

Algorithm 2: SWAP stage of the FastPAM algorithm [5]
1: foreach xo do compute nearest(o), dnearest(o), dsecond(o);
2: repeat
3: �TD−m1 , . . . , �TD−mk ← compute removal loss;
4: (�TD*, m*, x*) ← (0, null, null); � Empty best candidate storage
5: foreach xc /∈ {m1, . . . , mk} do � Iterate over all non-medoids
6: �TD1, . . . , �TDk ← (�TD−m1 , . . . , �TD−mk); � Use removal loss
7: �TD+xc ← 0; � Shared accumulator
8: foreach xo do
9: doj ← d(xo, xc); � Distance to new medoid

10: if doj < dnearest(o) then � Case (i): nearest
11: �TD+xc ← �TD+xc + doj − dnearest(o);
12: �TDnearest(o) ← �TDnearest(o) + dnearest(o) − dsecond(o);
13: else if doj < dsecond(o) then � Case (ii): second nearest
14: �TDnearest(o) ← �TDnearest(o) + doj − dsecond(o);
15: i ← argmin�TDi; � Choose best medoid i
16: �TDi ← �TDi+�TD+xc ; � Add accumulator}
17: if �TDi < �TD* then (�TD*, m*, x*) ← (�TDi, mi, xc);
18: break loop if �TD* ≥ 0;
19: swap roles of medoid m* and non-medoid x*;
20: foreach xo do update nearest(o), dnearest (o), dsecond(o);
21: TD ← TD + �TD*;
22: return TD, M, C
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The second contribution mentioned in the previous work [7] is that the BUILD stage can be opted
out in favor of selecting the initial medoids base on a vehicle communication metric. Therefore, this
work will evaluate the use of the vehicle’s average received power (VehRxdBm) and the average LET
value of each vehicle (AvgLET) to pick the initial medoids. A high VehRxdBm could indicate that the
vehicle is connected to numerous other vehicles, while a high AvgLET could suggest that the vehicle
has a solid connection to its neighbors. The LET metric (2) incorporates the vehicle coordinates, speed,
and moving direction, making it comprehensive. The vehicle’s distance from the RSU and the other
vehicles can not indicate how well the vehicle is connected to its neighbors. Moreover, how well the
vehicle is connected to the RSU can not be used as a metric for selecting the initial medoids because
the cluster is referenced by its CH and CMs. Algorithm 3 represents the suggested alternative to the
original BUILD stage (Algorithm 1). Algorithm 3 selects the K initial medoids based on the largest
VehRxdBm or AvgLET values without sorting the data to reduce time complexity.

Algorithm 3: BUILD stage replacement based on communication metric
1: (arr, n, K) ← (data, size of arr, no. of medoids)
2: minHeap = new min heap of pairs of float and integer numbers (value, index)
3: initMedoid = empty vector of integers
4: For i from 0 to n−1:
5: if minHeap has less than K elements or arr[i] is greater than the minimum element in minHeap

then:
6: if minHeap has K elements then:
7: remove the minimum element from the minHeap
8: insert the pair (arr[i], i) into minHeap
9: While minHeap is not empty:
10: remove the top element from minHeap and its index to initMedoid
11: reverse initMedoid to get the indices in ascending order
12: Return initMedoid

The pseudo-code in Algorithm 3 uses a min-heap data structure of pairs of integers to store the
elements (VehRxdBm or AvgLET) and their indices (vehicle ID). The function iterates through the
input array arr and adds each element and its index as a pair to the min heap if the heap has less
than K elements or the element is greater than the minimum element in the heap. Once the heap has K
elements, the minimum element is removed before adding a new element. After adding all the elements
to the heap, the top K elements are extracted from the heap by removing the top element K times
and adding its index to the initMedoid vector. The initMedoid vector is reversed to get the indices in
ascending order since the heap stores the elements in ascending order by value. Finally, the function
returns the initMedoid vector containing the indices of the largest K elements in the input array.

The time complexity of Algorithm 3 is O(n log K), where n is the size of the input array, and K is
the number of largest values required. In the worst case, insertion of each element into the min heap
takes O(log K) time since it might need to bubble up the element to maintain the heap property. The
insertion is done n times for each element in the input array, so the total time for building the min
heap is O(n log K). Extracting the largest K elements from the min heap also takes O(K log K) time
in the worst case since it is required to extract the top element and possibly bubble down a new root
element to maintain the heap property after each extraction. The extraction is done K times for the
largest K elements, so the total time for extracting the largest K elements is O(K log K). Therefore,
if K is much smaller than n, the min heap approach can be significantly faster than sorting the entire
array and extracting the largest K elements. However, if K is close to n, the sorting method may be
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more rapid since the cost of sorting the array will be similar to that of extracting the largest K elements
using a min-heap.

3.4 The Evaluation Process
The evaluation process of estimating the K number and the clustering algorithms will be

mentioned in this section. In terms of estimating the K number, the output of Scott’s formula for the
inputs mentioned in Section 3.3 is evaluated against the estimated number of clusters by the Affinity
propagation algorithm when the Euclidean distance and LET are used. Because the Scott’s formula
(1) assumes the input data is normally distributed, the Shapiro-Wilk normality test is implemented
on the formula’s inputs to evaluate its validity. Moreover, Medoid-Silhouette (MS) width analysis is
implemented on the selected K to evaluate its fitness. Also, the MS score is used to construct a curve
similar to the elbow curve to quantify the clustering algorithms. The average and mid-range values
are calculated for a range of K to evaluate the MS curves. The range of K for this calculation has a
lower bound of 10% of the number of vehicles and half of the total number of vehicles as the upper
bound. If more than half of the vehicles became CHs, clusters might only contain one vehicle, which
is pointless. Moreover, having less than 10% of the vehicles selected as CHs is impractical.

The Medoid-Sillhouette method is selected because not all vehicles in the range of the RSU
are in the communication range of each other. Therefore, the MS score could indicate how close a
vehicle is to its CH compared to the other CHs. Furthermore, ditching the BUILD stage in favor of
the VehRxdBm or AvgLET base initial medoids selection will be evaluated based on the number of
iterations and swaps implemented by the SWAP stage alone vs. the original FastPAM. This modified
version of the FastPAM algorithm will be called the Lightweight FastPAM Vehicular Clustering
algorithm (LFPVC) and referred to in this work as LFPVC(VehRxdBm) and LFPVC(AvgLET) based
on the metric replacing the BUILD stage. Finally, the chosen maps will evaluate the suggested methods
against various road layouts and traffic flow. Fig. 2 shows the process followed by this work to gather
the data from the simulations and implement the clustering algorithms.

4 Results and Discussion

The vehicular network model was simulated using OMNET++ 5.6.2 and Veins 5.2, while the
vehicle mobility model and road network were created with SUMO 1.8 on a computer running Ubuntu
20.04 operating system. Table 2 shows two traffic flow scenarios for each of the three road maps.
The neighbor table of RSU is recorded at the end of the simulation time of the six scenarios. The
RSU is deployed in the middle of the junctions and the highway maps (Fig. 1) to gather the BSMs
sent by the vehicles and build the neighbor table, which is exported as a CSV file (Fig. 2). This work
implements the FastPAM algorithm on the collected neighbor tables using the “kmedoids” Python
library [34]. The kmedoids library allows the FastPAM’s SWAP stage to be implemented separately by
feeding the indexes of the initial medoids. Therefore, the default BUILD stage can be replaced with
the use of vehicle communication metrics to select the K initial medoids (Algorithm 3). The baseline
for estimating the K number is obtained by implementing the Affinity propagation algorithm using
the “sklearn” Python library on the recorded data. Both libraries allow the mentioned algorithms
to accept dissimilarity matrix. Therefore, the LET matrix is generated and prepared as a negative
similarity matrix with the infinity values replaced with the maximum non-infinity LET value. The
figures below illustrate the results for the six simulation scenarios; Highway with High Flow (HW-
HF), Highway with Low Flow (HW-LF), Traffic light with High Flow (TL-HF), Traffic light with
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Low Flow (TL-LF), Roundabout with High Flow (RA-HF), and Roundabout with Low Flow (RA-
LF). Each of the six simulation scenarios is executed ten times by feeding the SUMO random seeds to
obtain different mobility patterns.

Start

Set road map, traffic flow, and random seeds

Loop Start (run=1)

Initial simulation to record the max number of vehicles

Start the simulation and stop it at max number of vehicles

Extract the RSU’s neighbor table, dissimilarity,and similarity matrices to CSV files

Implementthe
Shapiro-Wilk
normality test

Implement
The Scott’s

formula and the
Affinity algorithm

Implement the
FastPAM andt he

LFPVC algorithms
for full range of K

p-values fort he
different data

Estimated K number
MS score,TD
value, number
ofi terations
and swaps

Increment run

ifr  un=10

End

yes

no

Figure 2: The process of the VANET simulation, clustering and data gathering

The bar chart in Fig. 3 shows the rounded average of the simulation runs for the estimated K num-
ber by the Scott’s formula for different inputs and the Affinity algorithm when LET (Affinity(LET))
and Euclidean distance (Affinity(Dis)) are used. The VehRxdBm input for the Scott’s formula is the
only metric registered from the vehicle’s viewpoint. Thus it can give a reasonable estimate of the number
of clusters. Individually, the X and Y coordinates cannot give a complete estimate of the number
of clusters because the formula will count for the frequency of vehicles sharing the same X or Y
coordinate. This invalidity is clear in the results of the TL scenarios. The RSU in the TL scenarios
covers more of the road in the Y direction than in the HW and RA scenarios. Using the RSU as
a reference for the Dis2RSU and RSURxdBm input cannot give optimal estimation because not all
vehicles in the RSU communication range are within range of each other. The same goes for the AvgDis
input because the data is gathered from the RSU.
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Figure 3: The estimated K number by Scott’s formula and the Affinity algorithm

It is still a valid comparison between the inputs above and those of the Affinity algorithm (Dis
and LET), as they are based on the RSU neighbor table. However, the Scott’s formula results in Fig. 3
did not clearly match the estimated K number by the Affinity algorithm. The estimated K numbers
by Affinity (LET) exceeded all other cases. However, the K numbers estimated for the HW-HF and
HL-LF simulation scenarios by Scott’s formula with VehRxdBm and AvgLET slightly match those
by Affinity (Dis). These results might indicate that Scott’s formula is not optimal for estimating the K
number in complex road layouts. Scott’s formula (1) assumes the data is normally distributed. Thus,
the data of the ten simulation runs were tested using the Shapiro-Wilk normality test. Table 3 shows
the percentage of normally distributed data from the ten runs for the six simulated scenarios.

Table 3: The percentage of normally distributed data out of the ten runs based on the Shapiro-Wilk
test

Senarios/Metrics X Y RSURxdBm VehRxdBm Dis2RSU AvgDis AvgLET

HW-LF 90% 20% 20% 70% 90% 30% 30%
HW-HF 70% 0% 0% 80% 20% 0% 0%
TL-LF 0% 0% 10% 0% 0% 10% 0%
TL-HF 20% 0% 90% 0% 0% 0% 0%
RA-LF 70% 10% 10% 0% 20% 10% 0%
RA-HF 20% 0% 0% 0% 0% 10% 0%

A communication-based metric such as VehRxdBm or AvgLET can be a valid input for the
formula rather than a geometry-based metric such as the coordinates or distance to RSU. For the
HW scenarios, the X coordinate and the VehRxdBm data are mainly normally distributed (Table 3).
However, the trend did not continue for the VehRxdBm in the TL and RA scenarios. Even though the
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Scott(AvgLET) result matched the Affinity(Dis) estimation of the K number for the HW scenarios
(Fig. 3), the AvgLET data is not normally distributed for all the scenarios (Table 3). Moreover, the data
were represented in quantiles (Q-Q) plots (not included in this work). The Q-Q plots of the AvgLET
data showed a trend of horizontal line of points across the plots for all scenarios. The horizontal line
trend also appeared on the Q-Q plots of the VehRxdBm data for the RA and TL scenarios. This
trend indicates that the AvgLET and VehRxdBm follow a different distribution in the mentioned
scenario. Therefore, histograms of ten bins were drawn for the AvgLET and VehRxdBm data (not
included in this work), showing the AvgLET date positively skewed with a long tell to the right side of
the plots. The VehRxdBm data were negatively skewed with long tell to the left side of the histogram
plots. Logarithmic and exponential functions were implemented to the AvgLET and VehRxdBm data,
respectively, to reduce the skewness of the data. However, it did not help to transform the AvgLET
and VehRxdBm data to normal distribution according to the Shapiro-Wilk test.

Histogram bin number formulas such as the Freedman and Diaconis formula, which rely on the
IQR of the data, do not assume the distribution of the data. However, reference [7] concluded that the
time complexity of IQR is higher than computing the standard deviation of the data because the IQR
requires sorting the data. Moreover, the IQR relies on the position of the data point rather than its
value. Therefore, the Freedman and Diaconis formula is not optimal for estimating the K number for
a VN clustering algorithm. The results of Fig. 3 and Table 3 might indicate that the Scott’s formula is
not optimal for estimating the K number in complex road layouts. However, a communication-based
metric such as VehRxdBm can still be a valid input for the formula for a specific scenario rather than
the geometry-based metrics.

The affinity algorithm uses a similarity metric to establish the correlation among the data points
and estimate the number of clusters. Moreover, the damping factor and the preference of the affinity
algorithm affect its estimation of the number of clusters. However, increasing the damping factor
to more than 0.5 did not change the estimated K number when the LET is used as the clustering
metric. The preference was set by default to the median of the similarity matrix. The average median
values were 5, 46, and 18 for the HW, TL, and RA scenarios, respectively. These preference values are
reasonable for the scenarios because they represent an estimate for the connection period in seconds
between two vehicles. Increasing the preference will increase the number of clusters, and decreasing
the preference will lead to including vehicles with non-optimal connection time in the cluster.

To further evaluate the fitness of the estimated K numbers by the methods above, a width analysis
for the Medoid-Silhouette (MS) score is done on the highway scenarios. The data from the simulation
runs with the largest number of vehicles recorded at the end of the simulation are used for this analysis.
The highway scenarios were selected because the Scott (VehRxdBm) gave the closest K number
estimate to the one by the Affinity (Dis). Moreover, the VehRxdBm matched the data distribution
requirement of Scott’s formula. For the HW-HF scenario, the estimated K numbers were 4, 13, and
5 for the Scott (VehRxdBm), Affinity (LET), and Affinity (Dis), respectively. And for the HW-LF
scenario, the estimated K numbers were 3, 6, and 3 for the Scott (VehRxdBm), Affinity (LET), and
Affinity (Dis), respectively. Fig. 4 illustrates the MS width for the clusters based on the estimated
K numbers from the data of simulation runs number seven and three for the HW-HF and HW-LF
scenarios, respectively. The assignment of the clusters is based on the FastPAM algorithm’s results
with the LET as the clustering metric. It must be noted that the MS score for the medoid is one.
Therefore, each cluster in Fig. 4 must have at least one unit value bar.
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(a) (b)

(c) (d)

Figure 4: The Medoid-Silhouette width for the Highway road map: (a) LF scenario and K = 3, (b) LF
scenario and K = 6, (c) HF scenario and K = 4, (d) HF scenario and K = 13

For the HW-LF, Fig. 4a shows uniform MS widths among the clusters, while Fig. 4b contains a
cluster with only one member besides the medoid. Moreover, without considering the MS score for
the medoids, some of the cluster plots in Fig. 4b present below the average MS score (0.769) of the
simulation scenario. In Fig. 4a, all the cluster plots pass the scenario’s average MS score (0.856). For
these reasons, Scott(VehRxdBm)’s K estimation of three is optimal for the HW-LF scenario. Regarding
the HW-HF scenario, the cluster plots in Fig. 4c have fluctuations in size and presence above their MS
average (0.738). Moreover, when K equals 13, the plots’ width is more consistent among the cluster
(Fig. 4d). However, without considering the medoids of the clusters, cluster (C13) in Fig. 4d did not
pass the scenario’s MS average (0.737). And clusters (C10 and C11) in Fig. 4d contain members with
MS scores below 0.1, which means they do not fit well in their clusters.

The MS curves from the FastPAM algorithm of the runs with the largest number of vehicles
recorded at the end of the simulation are shown in Fig. 5. The average of the MS curves for the ten
runs is shown in Fig. 6. The MS curves in Fig. 6 are clipped to the lowest number of vehicles, as not
all runs have the same number. The noticeable pattern in these curves is the flattening after a certain
number of K.
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(a) (b)

Figure 5: MS curves from FastPAM: (a) LF scenarios, (b) HF scenarios

(a) (b)

Figure 6: Average MS curves from FastPAM: (a) LF scenarios, (b) HF scenarios

The BUILD stage (Algorithm 1) iterates for the required K medoids. Still, it only adds the
candidate medoid, reducing the �TD to the final list of initial medoids. The SWAP stage takes the
initial medoids list and tries to optimize it by swapping the selected medoids with the non-selected
ones that can reduce the �TD. The LET metric allows multiple vehicles to have maximum similarity
value with other vehicles besides itself. This redundancy restricts the K number because considering
these vehicles with large LET values as medoids will not change the �TD. Thus when LET is
used, the BUILD stage clips the required K medoids to those fitting the total deviation reduction
condition (Algorithm 1 line 15). Moreover, the clipping effect occurs because not all vehicles are in
communication range of each other (zero LET value), and increasing the K number does not guarantee
enough valid medoids. Also, the MS curves in Fig. 5 showed fuzziness when K is low, but the averaged
MS curves in Fig. 6 present a logarithmic-like curve before it reaches the flattened section.

The MS curves from implementing the FastPAM algorithm with Euclidean distance for the same
simulation runs are shown in Figs. 7 and 8. The lack of the flattened section at the end of these curves
is because the Euclidean distance is computable for all vehicles, and any two vehicles can not share the
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exact location (i.e., zero dissimilarity value between them). Therefore, the lack of this pattern cements
the superiority of LET over the Euclidean distance as a clustering metric for the vehicular network. The
MS curves from implementing LFPVC(VehRxdBm) are shown in Figs. 9 and 10. Moreover, Figs. 11
and 12 illustrate the results of implementing LFPVC(AvgLET). The effect of not using the original
BUILD stage is shown in Figs. 9 and 11, as the MS curves did not show the same flat-end pattern as
in Fig. 5. However, the only pattern that can be noticed from the figures below is the steep incline after
the fuzzy beginning of the curves, just like the MS curves of the FasterPAM with Euclidean distance.

(a) (b)

Figure 7: MS curves from FastPAM using Euclidean distance: (a) LF scenarios, (b) HF scenarios

(a) (b)

Figure 8: Average MS curves from FastPAM using Euclidean distance: (a) LF scenarios, (b) HF
scenarios
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(a) (b)

Figure 9: MS curves from LFPVC(VehRxdBm): (a) LF scenarios, (b) HF scenarios

(a) (b)

Figure 10: Average MS curves from LFPVC(VehRxdBm): (a) LF scenarios, (b) HF scenarios

(a) (b)

Figure 11: MS curves from LFPVC(AvgLET): (a) LF scenarios, (b) HF scenarios
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The MS curves of the average runs in Figs. 6, 10, and 12 did not include a pattern that helps
quantify picking the initial medoids based on the VehRxdBm or the AvgLET metric. Therefore, the
mid-range and average of the MS curves based on the effective K range, explained in Section 3.4, were
computed for the simulation scenarios. Fig. 13 illustrates the mid-range values of the MS curves for
the runs with the largest number of vehicles and the average of the ten runs. The average values of
the MS curves for the runs with the largest number of vehicles and the average of the ten runs are
demonstrated in the bar charts of Fig. 14. The mid-range values from the bar charts in Fig. 13 were
not decisive on the FastPAM algorithm yielding higher mid-range values when modified with either
the VehAvgdBm or the AvgLET metrics.

(a) (b)

Figure 12: Average MS curves from LFPVC(AvgLET): (a) LF scenarios, (b) HF scenarios

(a) (b)

Figure 13: Mid-range of the MS curves: (a) Runs of the largest number of vehicles, (b) Average of the
runs

However, the average values for the MS curves of the FastPAM were, in most cases, slightly higher
than those of the modified algorithms (Fig. 14). The mid-range and average values of the MS curves
could not prove that ditching the BUILD stage in favor of the VehAvgdBm and AvgLET is profitable.
The suggested methods (LFPVC(VehRxdBm) and LFPVC(AvgLET)) could not match the greedy
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process of the original BUILD stage. However, the effective K range on which the bar charts of Fig. 13
and 14 are based falls mainly in the fuzzy sections of the MS curves.

(a) (b)

Figure 14: Average of the MS curves: (a) Runs of the largest number of vehicles, (b) Average of the
runs

The MS curves could not give an insight into to which degree the suggested replacements of the
original BUILD stage are profitable or feasible. Therefore, the TD values for the average runs of the
highway scenarios are plotted against K in Fig. 15. The FastPAM, when implemented with negative
LET, returns a negative TD. Therefore, the average TD’s absolute values are shown in Fig. 15, which
illustrates inverted Elbow curves. Unlike the traditional Elbow curve, the TD value in Fig. 15 increases
as the number of K increases. In both LF and HF scenarios, the FastPAM recorded higher averaged
TD values before the flattening pattern arose than the LFPVC(VehRxdBm) and LFPVC(AvgLET).
However, the averaged TD values of the LFPVC(VehRxdBm) are relatively closer to the optimal ones
of the FastPAM (Fig. 15).

(a) (b)

Figure 15: TD curves of the average runs: (a) HW-LF, (b) HW-HF

Finally, to evaluate the performance of the FastPAM, LFPVC(VehRxdBm), and LFPVC(AvgLET)
algorithms, the average number of iterations and swaps implemented by the SWAP stage was recorded
and illustrated in Fig. 16. Moreover, the average number of iterations and swaps of the original
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FastPAM algorithm when implemented with the Euclidean distance is shown in Fig. 16 and annotated
as FastPAM-DIS. The bar chart of Fig. 16 is based on the simulation runs with the largest number of
vehicles.

(a) (b)

Figure 16: The average number of iterations and swaps implemented by the SWAP stage: (a) Average
iteration, (b) Average swap

Using the LET metric is optimal for vehicle clustering, as the original algorithm with LET
(FastPAM) required one iteration/swap on average to converge (Fig. 16). In contrast, FastPAM-DIS
required 2.8 iterations and 2.5 swaps on average for all scenarios. The LFPVC(VehRxdBm) and
LFPVC(AvgLET) required 4 and 6 iterations/swaps on average for all scenarios, respectively. However,
LFPVC(VehRxdBm) recorded 1.4 iterations/swaps on average, and LFPVC(AvgLET) required an
average of 1.7 iterations/swaps to converge for all the LF scenarios. The high traffic flow heavily
affected the performance of the modified algorithms. The average iterations and swaps from the TL-
HF and RA-HF scenarios for the LFPVC algorithms were around twenty times higher than those
from the HW-HF scenarios (Fig. 16). This extreme increase in the average number of iterations and
swaps proves that selecting the initial medoids based on the VehRxdBm and AvgLET metrics is not
optimal when the road layout is complex.

5 Conclusions

This work examined the suggested method of using the Scott’s histogram formula to estimate
the number of clusters and using the LET metric for vehicular clustering. Moreover, it evaluated
the replacement of the greedy process, selecting the initial medoids for the FastPAM algorithm by
selecting the initial K medoids based on vehicle communication metrics. Furthermore, negative values
of the LET metric and the maximum LET value instead of infinity LET values in the similarity matrix
are considered to avoid modifying the FastPAM algorithm. The number of clusters estimated by the
Affinity Propagation algorithm was the baseline for estimating the K number. The Affinity algorithm
is an approximation method to maximize the similarity. Thus, an exact match between the results of the
Affinity algorithm and Scott’s formula was not expected. This work suggested presenting the Medoid-
Silhouette score as a curve for the range of K to benchmark the algorithms, LFPVC(VehRxdBm), and
LFPVC(AvgLET) against the FastPAM algorithm.

The Scott’s formula failed to match the K number estimation of the Affinity propagation
algorithm for most of the formula’s inputs. However, the Scott’s formula and the Affinity algorithm
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showed a correlation in highway simulations with VehRxdBm as input and Euclidean distance as
clustering metric. The matching in results is backed up with the normal distribution of the VehRxdBm
data in the highway scenarios and further clarified with the width silhouette analysis. Therefore, Scott’s
formula method works better with the VehRxdBm metric and simple road layout because the formula
assumes the data to be normally distributed. However, The VehRxdBm and AvgLET data showed
skewed distributions in the complex road layout scenarios. The high time complexity deters from using
histogram bin number formulas that do not rely on the distribution of the data. Plotting the average
MS score for the range of K did not provide a clear pattern to quantify the LFPVC(VehRxdBm) and
LFPVC(AvgLET). However, the flattening at the end of the MS curves for the original algorithm
proved the efficiency of using LET for vehicular clustering. Also, the original BUILD stage clipped
the number of K to the maximum possible number of medoids as not all vehicles have connections to
each other or can contribute to the reduction of �TD. The LFPVC(VehRxdBm) showed feasibility for
clustering under the condition of a simple road layout. This conclusion is based on the slight matching
with the TD curves of the FastPAM algorithm, and the average number of iterations/swaps was lower
than that of the LFPVC(AvgLET). Moreover, a related work validated the LET metric for highway
traffic scenarios.

Finally, setting a baseline for vehicular clustering is challenging as the data are not explicitly
labeled. Even though the Affinity Propagation algorithm simulates the exchange of messages among
the vehicles to compute the fitness of the CH, it is also considered an approximation method to
maximize the similarity. Moreover, the preference value in the LET similarity matrix beside its diagonal
can explain the high K number estimation by the Affinity algorithm. Therefore, the K estimation by
Scott’s formula is fit as the formula’s input because the input must satisfy the formula’s distribution
requirement and present adequate CH validity for the vehicles. Besides the algorithm, clustering in the
VN environment relies on exchanging control messages to form and maintain the clusters, which is
not the focus of this work. Furthermore, the computation of the average received power by the vehicle
(VehRxdBm) can be improved by including the average LET value. The future work will consider a
clustering scheme that uses an adequate input for the Scott’s formula and evaluate the output based
on cluster lifetime and communication delay.
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