
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.029015

ARTICLE

A Novel Predictive Model for Edge Computing Resource Scheduling Based on
Deep Neural Network

Ming Gao1,#, Weiwei Cai1,#, Yizhang Jiang1, Wenjun Hu3, Jian Yao2 and Pengjiang Qian1,*

1School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214122, China
2The Center for Intelligent Systems and Applications Research, School of Artificial Intelligence and Computer Science, Jiangnan
University, Wuxi, 214122, China
3School of Information Engineering, Huzhou University, Huzhou, 313000, China

*Corresponding Author: Pengjiang Qian. Email: qianpjiang@jiangnan.edu.cn
#Ming Gao and Weiwei Cai contributed equally to this work
Received: 25 January 2023 Accepted: 06 September 2023 Published: 30 December 2023

ABSTRACT

Currently, applications accessing remote computing resources through cloud data centers is the main mode of
operation, but this mode of operation greatly increases communication latency and reduces overall quality of
service (QoS) and quality of experience (QoE). Edge computing technology extends cloud service functionality
to the edge of the mobile network, closer to the task execution end, and can effectively mitigate the communication
latency problem. However, the massive and heterogeneous nature of servers in edge computing systems brings
new challenges to task scheduling and resource management, and the booming development of artificial neural
networks provides us with more powerful methods to alleviate this limitation. Therefore, in this paper, we proposed
a time series forecasting model incorporating Conv1D, LSTM and GRU for edge computing device resource
scheduling, trained and tested the forecasting model using a small self-built dataset, and achieved competitive
experimental results.
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1 Introduction

The evolution of the mobile Internet has enabled applications to access cloud data centers for
remote computing resources. In smart cities and smart factories, data generated by sensors and
end-devices (e.g., smartphones and wearables) are transmitted over the network to remote cloud
computing centers for processing and storage. This operational process, nevertheless, potentially
increases communication time dramatically, thereby reducing the overall quality of experience (QoE)
and quality of service (QoS) for the user. While showing numerous advantages, cloud computing brings
a new set of problems, such as data latency and high data traffic caused by the multitude of mobile
devices, affecting both latency-sensitive and time-sensitive applications [1,2]. In addition, the rapid
development of multimedia services has led to an increasing demand for network bandwidth from
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mobile devices, making mobile network capacity and backhaul links a critical challenge. To address
the aforementioned issues and reduce communication latency, Mobile Edge Computing (MEC) has
emerged to frontload cloud resources and services to the edge nodes (base stations) closest to mobile
devices and become a cost-effective solution with low latency [3].

MEC provides time-intensive and compute-intensive application services to mobile devices by
extending compute along with storage resources to the edge of the mobile network adjacent to
the mobile terminals and deploying applications on mobile edge servers. The MEC architecture
significantly reduces congestion in the central network and significantly improves quality of experience
(QoE) and quality of service (QoS) by meeting stringent requirements for response latency. Surely,
MEC inherently also has some limitations, including network bandwidth, CPU resources and, memory
resources, etc. Therefore, an efficient resource management system is extremely important for MEC to
perform real functions. At the present stage, the research focuses more on task offloading, optimizing
application deployment, reducing power consumption of terminal devices and allocating computing
resources for MEC. Although the existing research works promoted the development of MEC, the
absence of considering the different demands for resource allocation in different time periods is their
common limitation. The Edge computing system model structure is shown in Fig. 1. Edge computing
is widely recognized as a supporting technology for implementing various emerging IoT application
scenarios. Unlike cloud computing systems, edge computing systems have their own properties: (1)
Edge computing devices are limited by power constraints and relatively weak processor computing
power, thus resulting in limited computing resources. (2) There are heterogeneous situations among
different edge devices. (3) The task load of edge servers is always in the process of dynamic change, and
there is competition between applications [4]. Therefore, the scheduling of computational tasks and
services and the management of resources in edge computing systems greatly impact the efficiency of
business services and the utilization of edge system resources.

Figure 1: Schematic diagram of an edge computing system consisting of a cloud computing centre,
edge devices and user terminals or sensors

Resource allocation refers to how the server manages multiple edge services operating simultane-
ously, and it is crucial to fully utilize the edge server resources to guarantee the stable quality of service



CMES, 2024, vol.139, no.1 261

under various network conditions. Resources include radio spectrum resources, CPU, memory, storage
space, dedicated computing devices, etc. The resource allocation process aims to maximize resource
utilization and models existing tasks as optimization problems [5]. Efficient task scheduling enhances
user satisfaction by ensuring the edge server completes user tasks within specified deadlines. Predicting
the task execution time is the prerequisite to initiate task scheduling. Based on the predicted execution
time and deadline of each task, the edge server enables effective task scheduling and resource allocation
to reduce task completion time and improve system performance. The demand for resources, on the
other hand, changes dynamically during service operation, and an edge computing device is said to be
resource-constrained when the demand for resources for the service it is running exceeds the resources
available to the edge computing device. A resource-constrained edge computing device reduces the
quality of service (QoS) of the services offloaded to it because it can handle the resource demands of
the services. When tasks offloaded to the edge computing device consume more resources than the
device’s resource limit, it causes the device to be resource-constrained, directly affecting the quality of
service (QoS).

To continuously improve user QoE and QoS scientific and reasonable deployment of edge comput-
ing device resources become a key element. Numerous research methods have been applied in this field,
such as CNN methods [6–8], LSTM methods [9–12], and fuzzy neural network methods [13,14], etc.
This paper recommends a novel resource provisioning prediction model for edge computing devices
that predicts the load on edge servers. This allows the computing resources (QoS) to be optimized and
improved in advance. The model designs a novel network structure that integrates Conv1D, GRU, and
LSTM modules for predicting edge server load.

The following are the main contributions of this paper:

(1) A time series forecasting model incorporating Conv1D, LSTM and GRU is proposed in this
study. Conv1D can capture local information while capturing time series dependencies, which
improves the capability of the model to extract time series features and improves the accuracy
of the proposed model.

(2) The model can accurately predict the load on edge servers and serve as a foundation for the
scientific scheduling of edge device computing resources.

(3) In this paper, the model was trained and tested using a small dataset collected from small edge
devices, achieving competitive results.

The remainder of this article is divided into the following sections: Section 2 briefly summarizes
other significant scientific activity on the topic. Section 3 introduces the CLG model’s ideas and
implementation details. The experimental data and visual analysis are presented in Section 4. The
study’s conclusion are outlined in Section 5.

2 Related Work

Machine learning based approaches for edge computing resource scheduling have the following
advantages; strong distributed learning and storage capabilities, an associative memory function
capable of accurately approximating complex nonlinear relationships, and powerful parallel processing
capabilities [6]. The load of the edge computing system is time-series data and hence it is necessary to
use time-series data to predict the load. The main deep learning models for temporal data prediction
are Conv1D, LSTM, GRU, etc.

Aiming to construct an optimized convolutional neural network (CNN) architecture, Violos et al.
[7] proposed a novel hybrid hyperparametric optimization approach that combines particle swarm



262 CMES, 2024, vol.139, no.1

optimization and Bayesian optimization. This architecture was experimentally validated using an
edge computing infrastructure. The evaluation results demonstrate that the proposed regression model
performs better in terms of accuracy than other machine learning meta-predictors and resource usage
state models. Jia et al. [8] used model compression as an “intra-model” optimization approach and
computation sharing as a “inter-model” optimization approach. They proposed a new CNN-based
resource optimization approach (CroApp) to improve CNN intra-model performance. Additionally,
the method prioritizes resource optimization across applications. According to experiment results,
CroApp outperforms existing methods in terms of resource reduction, scalability, and application
performance. The Conv1D enables local feature extraction for time series data. The advantage of
Conv1D over LSTM and GRU is that the computation speed is faster and the memory consumption is
relatively less. In edge device resource prediction, Conv1D may be more suitable than LSTM and GRU
if the features of time series data are relatively simple. The disadvantage of Conv1D is its inadequate
ability to process long-term dependencies in time series data and its inadequate performance in
processing complex time series data.

In order to optimize the dynamic resource allocation for edge computing devices, Selvi et al. [9]
used an LSTM neural network to build a network traffic prediction model based on long-term time
series of network traffic flow. The experimental results revealed that the model’s prediction accuracy
was enhanced. Ashawa et al. [10] established an intuitive dynamic resource allocation system based
on the LSTM algorithm for near real-time software simulation to analyze an application’s resource
utilization and determine the best additional resources to provide for that application. When compared
to other models, the accuracy of this model is improved by about 10%–15%. Yan et al. [11] proposed
a Bi-LSTM load prediction algorithm based on an attention mechanism to accurately predict the
load of microservices and build a resilient scaling system with automatic scheduling of work nodes.
The experimental results show that meeting the SLA of microservices for edge computing improves
system resource utilization by about. Lai et al. [12] utilised LSTM to build a non-intrusive load
monitoring system, using edge computing to achieve parallel computing and improve the efficiency
of device identification, and the random average identification rate could reach 88%. The average
identification rate of continuous data of a single electrical device could reach 83.6%, according to the
proposed parameter model optimization adjustment strategy. LSTM captures long-term dependencies
effectively when processing time-series data. In contrast to traditional RNNs, the internal structure of
LSTM contains gate units that are able to selectively remember and forget the input data. This allows
LSTM performance in resource prediction for edge computing devices, especially when processing
multiple time series features. Nevertheless, the drawbacks of LSTM include high complexity and high
computational and memory consumption, making it unsuitable for edge devices with limited resources.

The Bi-LSTM-GRU combined prediction model, proposed by Li et al. [15], effectively combines
a Bi-LSTM network with a GRU network for high prediction accuracy and short prediction time. It is
validated against several classical time series prediction algorithms on the Google Cloud dataset. The
experimental results show that the mean square error (MSE) of the joint Bi-LSTM-GRU prediction
model is reduced by about 5%, as is the prediction time. Using a bi-directional long and short-
term memory (Bi-LSTM) model and an attention mechanism, Jeong et al. [16] predicted CPU and
memory usage. The allocation of resources was adjusted by predicting resource usage to reduce
excessive resource usage. Average CPU and memory utilization increased by 23.39% and 42.52%,
respectively, over conventional HPA. Furthermore, when compared to conventional HPA, no overload
was observed when resources were under-allocated.

Violos et al. [17] proposed a gated recurrent neural network multi-output regression model based
on time series resource usage metrics. Edge computing infrastructures are defined by their dynamic and
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heterogeneous environments. They proposed an innovative Hybrid Bayesian Evolutionary Strategy
(HBES) algorithm for automatic adaptation of resource usage models to increase the generality of our
approach. In this paper, the proposed mechanism for resource usage prediction has been experimen-
tally evaluated and compared to other state-of-the-art methods, and it shows significant improvements
in terms of RMSE and MAE. Lu et al. [18] proposed the IGRU-SD model, which uses an improved
GRU neural network integrated with a resource discrete detection module to classify tasks based on
resource intensity and predict the expected resource request level, with model prediction accuracy
superior to existing ARIMA, RNN, and LSTM prediction models. Catena et al. [19] proposed a
distributed prediction technique in which LSTM neural networks exchange only a small number of
weights in order to significantly reduce communication overhead compared to the centralized case.
They also looked at three different distributed solutions that had lower errors. Wu et al. [20] proposed
forecasting the service resource demand based on the resource consumption of cloud platforms and
mobile edge computing for the specific scenario of telematics. They also created a multidimensional
time series prediction algorithm based on deep learning to create a neural network structure matching
business characteristics. The findings show that the method’s prediction accuracy has good application
value, laying the groundwork for future research into the mechanism of resource mapping, edge node
scheduling, and resource allocation between resource demand and edge stage capability model. The
internal structure of GRU is relatively simple, with only two gate units, an update gate and a reset gate.
Therefore, GRU has relatively low computation and memory consumption and is suitable for running
on edge devices. In addition, GRU is also able to effectively capture the long-term dependencies of
time series data and thus performs better in resource prediction for edge devices. Nonetheless, GRU
may be slightly worse at processing very long time series data than LSTM.

In this paper, combining the respective advantages of Conv1D, LSTM and GRU, CLG models are
constructed to predict the resource occupancy data of edge computing devices from multiple aspects,
assisting the edge computing devices to optimize resource provisioning and improve the overall quality
of service (QoS) and quality of experience (QoE).

3 Methodology

The CLG model proposed in this paper is trained and tested on a time series dataset. This study
combines Conv1D, LSTM and GRU to construct the CLG model, aiming to combine the advantages
of different types of networks to improve the prediction accuracy and speed of the model while
minimizing the computational effort.

The CLG model predicts the predicted value yi,t of the CPU usage i of the edge computing device
at the moment of t, and in general, the predicted value at t + 1 moment can be expressed as

ŷi,t+1 = f
(
yi,t−k : t, xi,t−k : t, Si

)
(1)

where ŷi,t+1 is the predicted value from the model, xi,t−k : t = {
xi,t−k, · · · , xi,t

}
and yi,t−k : t = {

yi,t−k, · · · , yi,t

}
are observations of the target and exogenous inputs over a backward window k, si is static metadata
related to CPU usage, and f (·) is the prediction function the model learned. Element indices are
not included in the following sections unless specifically requested i for the sake of simplicity in
representation.

In this paper, the MinMaxScaler method is used to normalize the data and map the data to the
interval [0,1], and the MinMaxScaler function equation is as follows:

Xstd = X − X . min (axis = 0)

X . max (axis = 0) − X . min (axis = 0)
(2)
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Xscaled = Xstd ∗ (max − min) + min (3)

where Xscaled denotes the normalized result, Xstd denotes the normalized result, X . max (axis = 0)

denotes the row vector consisting of the maximum value of each column in the matrix, X . min(axis =
0) denotes the row vector consisting of the minimum value of each column in the matrix, max denotes
the maximum value of the interval mapped to 1, and min denotes the minimum value of the interval
mapped to 0.

3.1 Conv1D
In the field of deep learning research, CNN is an extremely prevalent network model. Whether

in the field of image recognition, computer vision, or speech analysis CNNs demonstrate outstanding
performance. In general, CNN is mainly composed of a convolutional layer, pooling layer, and fully
connected layer together, usually for processing two-dimensional data such as images. Conv1D [21]
(1D Convolutional Neural Network), which is a special structure of CNN, can also apply to the
processing of one-dimensional data. Conv1D performs text analysis or time series prediction in simple
tasks instead of RNN [22,23] with faster processing speed. The intermediate features of the Conv1D
hidden layer, each causal convolutional filter takes the following form:

hl+1
t = A ((W ∗ h) (l, t)) (4)

(W ∗ h) (l, t) =
k∑

τ=0

W (l, τ) hl
t−τ

(5)

where hl
t ∈ �Hin is the intermediate state of l layer at the t moment, ∗ is the convolution operation,

W(l, τ) ∈ �Hout×Hin the fixed filter weight of l layer, A (·) is the activation function and the relu is used
in this paper as the activation function.

The same set of filter weights is used at all times and at each time step in temporal Conv1D,
which goes along with the standard Conv1D assumption of spatial invariance. Additionally, Conv1D
is limited to producing predictions based on inputs within its predetermined receptive domain or
lookback window. To ensure that the model can use all pertinent historical data, the receptive domain
size k must be carefully adjusted.

3.2 LSTM
LSTM enhances the capability of RNN networks in processing long-term dependencies, with

resistance to gradient vanishing, which is a special kind of recurrent structure [24]. The typical LSTM
network cell mechanism is shown in Fig. 2. An LSTM cell consists of a cell, an input gate, an output
gate, and a forget gate.

The CELL state is represented by c, the output of the implied state by h, and the activation
functions are and tanh in Fig. 2. The input, forget, and output gates are denoted by i, f , and o,
respectively.

The input gate i has a value domain of (0, 1), and its main function is to determine the importance
of the current input before generating a new memory and, thus to control the size of the newly
generated part C ′

t in the CELL state Ct. The input gate structure is shown in Eqs. (6) and (7).

it = σ (wt · [ht−1, xt] + bt) (6)

C ′
t = tan h (wc · [ht−1, xt] + bc) (7)



CMES, 2024, vol.139, no.1 265

Figure 2: Schematic diagram of LSTM cell

The function of the forget gate f is to control how much information from the CELL state of
the previous moment can be passed to the CELL state of the present moment, filter the information,
control the size of the input x and the output h of the previously hidden layer to be forgotten, and
determine whether the past memory unit is useful for computing the current memory unit. The goal
is to determine whether or not the hidden CELL state of previous layer is forgotten with a certain
probability using a value range of (0,1). The equation that follows illustrates the the structure of forget
gate:

ft = σ
(
wf · [ht−1, xt] + bf

)
(8)

The output value of the forget gate f and the input gate i updates the current CELL state in each
CELL of the LSTM. As seen in Fig. 2, the new CELL state Ct is divided into two distinct components,
the first of which is governed by the previous CELL state Ct−1 and the forget gate f with size (ft × Ct−1).
The input gate i, of size

(
it × C ′

t

)
, and the most recent CELL state information C ′

t at this precise
moment control the second part. The following equation illustrates the process of updating the CELL
state:

Ct = f i
t Ct−1 + itC ′

t (9)

The role of the output gate o is to separate the final memory from the hidden state and control
which information the current neuron needs to output based on the updated CELL state, thus
determining the most hidden state final output ht. The output gate structure is shown in the following
equation:

ot = σ (wo · [ht−1, xt] + bo) (10)

ht = ot × tan h (Ct) (11)

As can be seen from the network structure and formula, each LSTM gate (input gate, forget gate,
and output gate) has its own set of parameters (w, b), which is a significant aspect of the LSTM network
structure. Similarly, the formula of each hidden neuron, which has the shape of an h, is made up of
the current input x and the output of the previously hidden neuron in turn. Because the output of the
sigmoid function is (0,1), when the output is close to 0 or 1, in line with the physical sense of off and
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on, the value of is generally chosen as the excitation function of the sigmoid, which primarily plays
the role of gate. Tanh is used as the activation function for the memory cell c, primarily because its
output is (−1,1). This is the primary reason why the tanh function was chosen as the memory unit’s
activation function, as the gradient converges faster than the sigmoid function near 0. When there is no
helpful info within input data, the value of the forget gate f is close to one, and the value of the input
gate i is close to zero, saving useful information from the past. When there is valuable information
in the input sequence, the forget gate value f is close to 0, and the input gate value is close to 1. The
LSTM model will then forget the previous memory and record the relevant information in the present.
It can be seen that the three gate structures of the LSTM network, in conjunction with the memory
unit, control the network output h, allowing the entire network to effectively control the change of the
sequence information.

3.3 GRU
GRU (Gated Recurrent Unit) [25], another improved form of the classical recurrent neural

network, is a relatively new network model that, like LSTM, has a strong ability to process time series
data while effectively avoiding the gradient vanishing problem.

GRU simplifies some of the gate of LSTM in order to simplify the model and reduce computa-
tional costs, and because GRU has more gate than RNN, it achieves the effect of not accepting input
from previous neurons. In comparison to the LSTM model, the GRU model combines to “the forget
gate” and “input gate” of LSTM into a single “update gate,” with the goal of Fig. 3 depicting the GRU
cell structure.

Figure 3: Schematic diagram of GRU cell

Similar to the LSTM model, the GRU model also controls information input and output through
“gates”, but the difference is that the GRU is simplified to control information through two gates,
called “reset gates” and “update gates”. Using the role of the “gates” as a starting point to derive the
GRU forward pass formula, the notation of the formula is as follows:

�r: the last output of the GRU “reset gate”

�n: the last output value of the GRU “update gate”

δ: the sigmoid function, which is the activation function of the “gate”

X<t>: the input to the implicit layer at time t

h<t>: the state of the cell at time t

w: the weights of the linear function

b: the bias term of the linear function
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To avoid the problem of gradient disappearance and gradient explosion when the RNN sequence
is too long, the GRU model is simplified in only two steps. First, the information from the previous
CELL is selectively forgotten via the “reset gate” to confirm whether the information passed by the
previous CELL is what needs to be remembered. The information from the previous CELL and the
information input from the current CELL are combined linearly after the CELL learns the linear
weights. The result of this linear combination is then input into the sigmoid function, where it will
appear very close to 0 or 1. When the result is close to 0, it indicates that the previous CELL’s
information is forgotten, and when it is close to 1, it indicates that the previous CELL’s information
is still being remembered. The fundamental formula for this is as follows:

�r = δ
(
W <t>

f [X<t>, h<t>] + b<t>
r

)
(12)

After the state of the “reset gate” is calculated, this paper then proceeds to the calculation of the
candidate activation function value, which is used to combine the information of the previous CELL
and this CELL to update the state of the CELL and get the candidate value of the new CELL state,
where the value obtained from the “reset gate” tells us how much the correlation between the state of
the previous CELL and the state of this CELL.

ĥ<t> = tan h
(
W <t>

c

[
X<t>, �r ∗ h<t−1>

] + b<t>
c

)
(13)

The role and form of the second “update gate” is similar to that of the “forget gate” in the LSTM
in that it determines whether the input information needs to be updated before being passed to the
following CELL. The mathematical expression is as follows:

�n = δ
(
W <t>

n [X<t>, h<t>] + b<t>
n

)
(14)

After obtaining the states of the two gates and the candidate values for the states, the next step is
to combine the information passed in by this CELL with the state passed in by the previous CELL to
finalize the state of this CELL, the principle of which is expressed by Eq. (15) as follows:

h<t> = �n ∗ ĥ<t> + (1 − �n) ∗ h<t−1> (15)

3.4 CLG
Conv1D provides local feature extraction of time series data, with the advantages of fast com-

putation speed and low memory consumption; the disadvantage is the insufficient ability to process
the long-term dependency of time series data. LSTM captures long-term dependencies effectively in
processing time-series data and enables effective prediction of edge computing device resource usage,
especially in cases requiring the processing of multiple time-series features; the drawbacks of LSTM
include high model complexity and high computational and memory consumption. Compared with
LSTM, GRU may perform slightly worse when dealing with very long time series data but has the
advantage of faster computation and relatively less memory consumption. This study combines three
models to construct a CLG model for edge computing devices. The model completes the computa-
tional resource occupancy prediction assignment with a simpler and lighter structure, supporting the
reasonable deployment of edge computing resources. The CLG model structure is shown in Fig. 4.

Both layers of Conv1D use 64 convolution kernels of size 2 × 2, with the relu as the activation
function, to perform cascade convolution on the data; one layer of LSTM uses 180 CELL units to
operate on the data, with the relu as the activation function; and one layer of GRU uses 180 CELL
units to operate on the data, with the relu as the activation function. Finally, the output of the hybrid
model includes two fully connected layers, one Flatten layer, and one more fully connected layer.
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Figure 4: Schematic diagram of the CLG model

4 Experimental
4.1 Experimental Environment

The experimental model was run on the following:

Hardware: WIN10, AMD Ryzen 7 5800X 8-Core@3.8 GHZ + 32G RAM, NIVIDA GeForce
GTX 1080 Ti.

Software: Python 3.6.5, PyCharm 2021.3.2 (Community Edition), Keras 2.1.5. Batch size = 64,
Optimizer = adam, Loss function = MAPE, Epoche = 400.

4.2 Experimental Data
This study manually intercepts CPU load records of a edge computing device to form a small

dataset, totaling 1110 h and 6249 consecutive time points. The small edge computing device is deployed
in the middle location of a large residential community, with no universities, shopping malls and
other crowded places around it. In the experiments, a training set was formed from sample 1 to
sample 5899, and a validation set was formed from sample 5900 to sample 6249. The dataset has
been uploaded to https://github.com/AlpacaGlory/A-Novel-Predictive-Model-for-Edge-Computing-
Resource-Scheduling-Based-on-Deep-Neural-Network.

4.3 Evaluation Metrics
In this paper, MAE, MSE, RMSE, R2 and training time are used as metrics.

(1) MAE

MAE (Mean Absolute Error), refers to the average of the absolute value of the difference between
the predicted value of the model f(x) and the true value of the sample y. The formula is as follows:

MAE = 1
m

m∑
i=1

|yi − f (xi)| (16)

where f (xi) is the model’s ith predicted value, yi is its ith true value, i ∈ {1, 2, · · · , m} and MAE are
in the range [0, +∞), MAE is equal to 0 in the case of an ideal model, where the predicted and true
values exactly match. The greater the error, the greater the MAE value.

https://github.com/AlpacaGlory/A-Novel-Predictive-Model-for-Edge-Computing-Resource-Scheduling-Based-on-Deep-Neural-Network
https://github.com/AlpacaGlory/A-Novel-Predictive-Model-for-Edge-Computing-Resource-Scheduling-Based-on-Deep-Neural-Network
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The MAE is more inclusive and insensitive to outliers as the squared term has no influence.
Nevertheless, since the absolute values influence, the MAE provides no indication of whether the
model’s predicted value is greater or less than the true value.

(2) MSE

MSE (Mean squared error) refers to the average of the squares of the difference between the model
predicted value f (x) and the sample true value y. Its formula is as follows:

MSE = 1
m

m∑
i=1

(yi − f (xi))
2 (17)

where f (xi) is the model’s ith predicted value, yi is the model’s ith true value, and i ∈ {1, 2, · · · , m}
MSE range [0, +∞), MSE equals 0 when the calculated value exactly matches the true value, i.e.,
perfect model; the larger the error, the higher the MSE value and the worse the model performance.

The MSE function has a smooth and continuous curve, making gradient descent algorithms easy
to derive and use. It is a commonly used loss function. Furthermore, as the error decreases, so does
the gradient, facilitating convergence to a minimum value even at a fixed learning rate. MSE, on the
other hand, is more sensitive to and affected by outliers.

(3) RMSE

RMSE (Root Mean Square Error) is the square root of MSE, which is used to represent the bias
between the predicted value of the model f (x) and the true value of the sample y. Its formula is as
follows:

RMSE =
√√√√ 1

m

m∑
i=1

(yi − f (xi))
2 (18)

where f (xi) is the ith predicted value of the model, yi is the ith true value, i ∈ {1, 2, · · · , m}. MSE range
[0, +∞), RMSE is equal to 0 when the predicted value matches the true value exactly, i.e., perfect
model; the larger the error, the larger the MSE value and the worse the model performance.

The RMSE does a square root operation on top of the MSE so that the calculated results are
consistent with the predicted and true magnitudes.

(4) R2

R2 (R-squared) One of the common measures of precision used in linear models and analysis of
variance, R-squared represents the percentage of variance in a model where the dependent variable
can be explained by the independent variable. That is, R2 indicates the level of fit (goodness of fit) of
the data to the regression model. The formula for R2 is as follows:

R2 = 1 − SSE
SST

= 1 − SSE
SSR + SSE

(19)

where SSR is the sum of squared regressions, SSE is the sum of squared residuals and SST is the sum
of squared total deviations, with the following equations:

SSR =
m∑

i=1

(f (xi) − y)
2 (20)

SSE =
m∑

i=1

(yi − f (xi))
2 (21)



270 CMES, 2024, vol.139, no.1

SST = SSR + SSE =
m∑

i=1

(yi − y)
2 (22)

then R2 = 1 −
∑m

i=1 (yi − f (xi))
2

∑m

i=1 (yi − y)
2 (23)

where f (xi) is the ith predicted value of the model, yi is the ith true value, i ∈ {1, 2, · · · , m}, and y is
the mean of the true values. R2 ranges between [0,1], and the closer to 1, the better. The indicator used
to measure the best linear regression is R2, which usually indicates a good or bad model fit.

4.4 Comparative Experiments
In this study, the CLG model was compared with Conv1D [21], RNN [26], BiLSTM [27], and

logistic regression [28] algorithms. The comparison includes evaluation metrics, training time. Table 1
shows the results of experiments comparing CLG with different algorithms.

Table 1: Experimental results comparing CLG with different algorithms

Models MAE MSE RMSE R2 Training time (s)

Conv1D [21] 0.7914 1.7330 1.3164 0.9745 90.40
RNN [26] 0.9594 1.4710 1.2128 0.9784 135.05
BiLSTM [27] 0.8270 1.7999 1.3416 0.9736 1734.29
Logistic regression [28] 1.2192 3.5234 1.8771 0.9484 66.11
CLG (ours) 0.7709 1.3375 1.0796 0.9859 760.61

As shown in Table 1, there is a significant difference in the evaluation metrics between the
CLG model and the other algorithms, showing that the CLG model has higher prediction accuracy,
reflecting its intentional performance. R2 shows that the lowest score among the models is 97.36%,
while the highest score reaches 98.59%, indicating that all four models perform well. In terms of the
MAE metric, the RNN model has the largest value, indicating that the model has a relatively large
error, while the CLG model has the smallest value, indicating that the model has the smallest error. In
terms of MSE, the smaller values for the CLG and RNN models indicate that the prediction errors
of these two models are small and concentrated, while the larger values for the Conv1D and BiLSTM
models indicate that the prediction errors are relatively scattered [29–31]. In terms of R2 metrics, the
higher values for the CLG and RNN models showed that such models’ prediction performance is
strong. The prediction results are in good agreement with the actual situation. In contrast, the slightly
lower values for the Conv1D and BiLSTM models demonstrate that the model’s prediction accuracy
is also high but slightly lower than the other two models. In terms of training time, the Conv1D and
RNN models have the shortest time, which is due to the simplicity of these two models and the small
size of the network, which makes them faster. The experimental results show that for the self-built
dataset of this study, the logistic regression algorithm has slightly lower prediction results than other
network models. The reason for this is probably that logistic regression is a linear classification model
that can effectively process linearly differentiable data. Whereas the self-built dataset in this study is
time series data with no direct logistic relationship, which means that the data itself is nonlinear, and
therefore, the performance of logistic regression is lower than that of other network models. The CLG
model synthesizes the advantages of Conv1D, LSTM and GRU, which can extract time series data
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features in multiple scales and more accurately predict the CPU occupancy of edge servers, showing
competitive performance.

Fig. 5 shows the predicted CPU load vs. the actual load curve for each model. It can be seen
that all four models make accurate judgments about the trend of load changes, and the prediction
curves reflect each gradient change of the real curve, but the different models show different degrees
of prediction. In the data set used in this study, the data content is simple and the data features are not
difficult to extract, so good prediction results can be obtained for simple network structures [32,33].
The most volatile of the four models is the Conv1D model, which has a good overall fit as indicated by
the evaluation metrics, but some of the predicted values are too far off. The CLG model is the closest
to the true value, with only small fluctuations in some of the predicted values, proving that the model
fits well.

Figure 5: The comparison between predicted and actual load for CPU
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The loss function curves for each model are shown in Fig. 6. As recurrent network models, RNN
and BiLSTM models have only one layer due to their extremely simple structures, they show relatively
large fluctuations in both the training process and the testing process, while the Conv1D model has
relatively less fluctuations in both the training and testing processes, but there is a gap between the
training and testing processes. The CLG model has a relatively high fit in both the training and testing
processes, reflecting good. The CLG model has good stability and shows good generalization ability
of the model.

Figure 6: Evolution of training and testing losses for different models

4.5 Ablation Experiments
To verify the validity of the model, ablation experiments were conducted. C represents the

Covn1D, L represents the LSTM, and G represents the GRU.

(1) C+L

As shown in Table 2, when GRU is not used, the MSE indicator error of the model increases,
reflecting the widening of the fluctuation range of the predicted values of the model and the decrease
in the stability of the prediction. The change in the MSE indicator is confirmed by the prediction curve
in Fig. 7, which also shows a small shift in the prediction curve. In spite of this, the overall predictive
ability of the model is still good. This suggests that the presence of the GRU improves the predictive
stability of the model. On the other hand, the training time of the model is reduced to about 465 s,
suggesting that the GRU significantly impacts the computation speed.
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Table 2: Results of ablation experiments

Models MAE MSE RMSE R2 Training time (s)

C+L 0.7201 1.8810 1.3714 0.9724 465.17
C+G 0.6382 2.2649 1.5049 0.9668 391.38
L+G 0.7825 1.9428 1.3938 0.9715 786.87
CLG 0.7709 1.3375 1.0796 0.9859 760.61

Figure 7: The comparison between predicted and actual load using C+L for CPU

(2) C+G

As shown in Table 2, when LSTM is not used, the MSE indicator error of the model increases,
reflecting the widening of the fluctuation range of predicted values of the model. As shown in Fig. 8,
the prediction curve changes dramatically, with sharp fluctuations in predicted values, in line with the
MSE indicator. The C+G prediction curve fits the true value curve better than the C+L curve. The
functions of the LSTM include improving the stability of the model. In terms of training time, the
model was further reduced to around 391 s, suggesting that the GRU is less computationally intensive
than the LSTM, which is consistent with the relationship between the two, as the GRU simplifies the
actual LSTM.

(3) L+G

As shown in Table 2, when Conv1D is not used, the MSE indicator error of the model increases,
reflecting the widening of the range of fluctuations in the predicted values of the model. As shown in
Fig. 9, combined with the change in the prediction curve, the change in the magnitude of the curve
fluctuation can be seen clearly, while the curve shows a drift, which affects the prediction accuracy.
The presence of the Conv1D suggests that the prediction curve can be better fitted to the true curve,
improving the accuracy of the prediction model. In terms of training time, it increased significantly to
about 786 s, even more than the CLG model as a whole, indicating that the existence of Conv1D can
reduce the computational workload and shorten the training time, and also indicating that the LSTM
and GRU are the most computationally intensive parts of the model.
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Figure 8: The comparison between predicted and actual load using C+G for CPU

Figure 9: The comparison between predicted and actual load using L+G for CPU

5 Conclusion

In this paper, a CLG model for predicting the load of edge servers is proposed, which provides
a scientific basis for scientific scheduling of computing resources of edge devices. After a series of
experiments, the following conclusions are drawn. (1) Conv1D can efficiently acquire local features
of time series data; (2) LSTM can obtain the global features of time series data and establish the
temporal connection between the features, but the model parameters are relatively complex and have
a significant impact on the length of the model training time; (3) GRU obtains global features of time
series data, but its relatively simple structure can alleviate the problem of gradient disappearance and
improve the robustness of the model; (4) Experimentally verified that the CLG model can acquire
multi-scale time series data features and has good robustness, it is an accurate and efficient CPU
load prediction model for edge computing devices, and provides an effective method for scientific
deployment of edge computing device resources.
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