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ABSTRACT

Infection of leukemia in humans causes many complications in its later stages. It impairs bone marrow’s ability
to produce blood. Morphological diagnosis of human blood cells is a well-known and well-proven technique
for diagnosis in this case. The binary classification is employed to distinguish between normal and leukemia-
infected cells. In addition, various subtypes of leukemia require different treatments. These sub-classes must also
be detected to obtain an accurate diagnosis of the type of leukemia. This entails using multi-class classification to
determine the leukemia subtype. This is usually done using a microscopic examination of these blood cells. Due
to the requirement of a trained pathologist, the decision process is critical, which leads to the development of an
automated software framework for diagnosis. Researchers utilized state-of-the-art machine learning approaches,
such as Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes, K-Nearest Neighbor (KNN), and
others, to provide limited accuracies of classification. More advanced deep-learning methods are also utilized.
Due to constrained dataset sizes, these approaches result in over-fitting, reducing their outstanding performances.
This study introduces a deep learning-machine learning combined approach for leukemia diagnosis. It uses deep
transfer learning frameworks to extract and classify features using state-of-the-art machine learning classifiers. The
transfer learning frameworks such as VGGNet, Xception, InceptionResV2, Densenet, and ResNet are employed as
feature extractors. The extracted features are given to RF and XGBoost classifiers for the binary and multi-class
classification of leukemia cells. For the experimentation, a very popular ALL-IDB dataset is used, approaching a
maximum accuracy of 100%. A private real images dataset with three subclasses of leukemia images, including
Acute Myloid Leukemia (AML), Chronic Lymphocytic Leukemia (CLL), and Chronic Myloid Leukemia (CML),
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is also employed to generalize the system. This dataset achieves an impressive multi-class classification accuracy
of 97.08%. The proposed approach is robust and generalized by a standardized dataset and the real image dataset
with a limited sample size (520 images). Hence, this method can be explored further for leukemia diagnosis having
a limited number of dataset samples.
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1 Introduction

The ability of bone marrow to form blood results in the production of various blood components.
Blood, an essential human body component, keeps the human alive. It consists of various cells such
as White Blood Cells (WBC), Red Blood Cells (RBC), plasma (a fluid made up of various gases
and electrolytes), and others [1]. An infection in the body alters blood components regarding their
counts, size, shape, and others. These changes must be analyzed to diagnose the particular infection
[2]. Leukemia is an infection that causes an increase in the number of blast cells in the blood [3]. These
are immature WBC blasts. Because of the higher percentage of blasts, RBC has very little space to flow
through the blood. This reduces the percentage of RBC, resulting in anemia and other abnormalities
[4]. The leukemia is broadly classified as chronic and acute, with lymphoblastic and myeloid leukemia
being sub-classified [5]. Fig. 1 depicts the various blood cells with and without leukemia infection.

Figure 1: (a) Normal cells, and (b) Leukemia cells [6]

The best way to diagnose leukemia is to examine the morphology of white blood cells under
a microscope [7]. Such diagnosis requires a highly trained and experienced pathologist [8], as the
shape, size, and presence of Auer rods in the blood sample influence the decision regarding leukemia
infection. This complexity in diagnostic decisions has prompted many researchers to explore the issue
and develop software solutions for diagnostic purposes [9]. Various methods such as SVM [10], Näive
Bayes [11], decision trees [12], random forest [13], XGBoost [14], AdaBoost [15], CNN [16], and other
software algorithms are employed by researchers for diagnostic decisions.

Traditional image processing techniques like thresholding [17], edge detection [18], and contour
detection [19] are employed to detect and segment leukemia. These techniques offer optimal accuracies
compared to machine learning and deep learning methods [20]. However, to enhance system robustness
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and improve diagnostic accuracy, more advanced techniques, including machine learning and deep
learning, are employed [21]. Due to the limited number of sample images in medical datasets, deep
learning techniques can lead to overfitting [22], affecting detection accuracy [23]. However, there exists
a trade-off between accuracy and interpretability with machine learning [24].

In order to address these challenges, this study presents a hybrid approach to harness the strengths
of both machine learning and deep learning models. In many strategies, machine learning or deep
learning classifiers are used exclusively. Given the limited sample images, deep learning classification
can result in overfitting, thereby limiting accuracy. Thus, instead of relying solely on deep learning, the
approach is hybridized with cutting-edge machine learning algorithms. Transfer learning frameworks
are employed solely for feature extraction. These features are then passed to machine learning
algorithms for the final classification. This approach is innovative and robust for limited dataset
images, achieving an accuracy of 100% for the standard dataset (ALL-IDB) and approaching 96%
for multi-class classification of the real-image-dataset.

The paper’s second section introduces the proposed methodology and dataset, followed by the
results and discussion section. The conclusion is then presented, accompanied by remarks on future
work directions.

2 Related Work

There are different traditional image processing and machine learning approaches employed by
researchers for leukemia detection, such as support vector machine (SVM) [25–28], SVM and k-means
clustering [29], K-nearest neighbor (KNN) and Naïve Bayes [30], KNN [31], Zack algorithm [32,33],
and deep learning approaches such as CNN [34], deep learning nets [35], CNN plus SVM approach
[36,37], AlexNet [38,39], Ensembles of CNN [40], a special CNN called ConVNet [41], and ANN
[42]. Singhal et al. [43] used a support vector machine (SVM) classifier for leukemia detection. This
work utilized features including geometry and local binary pattern (LBP), which achieved accuracies
of 88.79% and 89.72%, respectively.

Mohamed et al. [44] presented a study on the diagnosis of sub-classes of leukemia, viz. (ALL
and AML) and Myeloma. Features were extracted via methods such as scale-invariant feature
transform (SIFT), speeded-up robust features (SURF), and oriented FAST and rotated BRIEF (ORB)
approaches. These different features were combined and passed to classifiers, such as SVM, K-nearest
neighbor (KNN), and random forest (RF). The accuracy of their approach reached 94.3% using the
RF classifier. Here, pre-processing and segmentation stages should be included for better results. After
this, different features such as area, perimeter, statistical feature, and gray-level-co-occurrence-matrix
are utilized, and these were hand-crafted. Instead of using hand-crafted features, more sophisticated
deep learning feature extractors could improve performance. Also, DL feature extractors could be
tested for better results without segmentation.

Mohapatra et al. [45] used an ensemble classifier in which the data were segmented before
classification. Afterward, feature extraction was performed considering different morphological and
textural features. Their results were compared with state-of-the-art machine learning algorithms
(Naïve Bayes, KNN, multilayer perceptron, SVM, radial basis functional network) and were found
superior with an accuracy of 94.73%. This work produces sub-images consisting of a single malignant-
infected cell. Hence, during the analysis of real images, this work might fail to demonstrate its
robustness and generalization. Additionally, this work experiments on binary classification, but in a
practical scenario, there is a need to classify different sub-classes of leukemia, necessitating multi-class
classification.
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Mishra et al. [46] proposed a feature extractor based on the gray-level co-occurrence matrix
(GLCM). Probabilistic principal component analysis was also used, followed by an RF classifier. This
method used marker-based segmentation before the application of RF, which can be removed when DL
methods are applied. This method deals only with binary classification, considering ALL and normal
cells. Multi-class classification with leukemia sub-classes is not addressed in this work. Das et al. [47]
employed feature extraction based on the gray-level-run-length matrix (GLRLM) and GLCM texture
features, and they also considered color and shape features. The most prominent features were selected
based on PCA and then used with an SVM for binary leukemia classification. This method segments
sub-images based on which leukemia decisions are made. When a larger dataset is used, this sub-image
segmentation takes longer, increasing the time required for classifier decisions. Real image datasets
contain many leukocyte blasts, making it challenging to segment each via sub-image segmentation.
The number of blasts determines the disease’s severity. Hence, applying this method to a real-image
dataset may challenge the achievement of good accuracies.

Abdeldaim et al. [48] proposed a system that extracted different features, including shape, color,
texture, and hybrid features. After normalizing these features, several state-of-the-art machine learning
algorithms were used for final classification, such as Naïve Bayes with Gaussian distribution, decision
tree, SVM with RBF kernel, and KNN. In their work, only binary classification is considered,
and sub-classes of leukemia are not addressed. In research, Mandal et al. [49] used a decision tree
(DT) with Gradient Boosting for the classification of Acute Lymphoblastic Leukemia (ALL). This
work did not measure the accuracy metric; instead, the F1-score was considered with sensitivity and
specificity. The maximum F1-score was 85%, which could be improved further. Mishra et al. [50]
conducted experimentation using a discrete orthogonal S-transform and linear discriminant analysis
(LDA) feature extractors. The final classification was done with the AdaBoost algorithm. This work
addresses only the binary classification of leukemia, detecting normal and infected cells. Different
leukemia subtypes also need to be predicted in a practical scenario, and multi-class classification must
be implemented. Al-Jaboriy et al. [51] used artificial neural networks (ANN) with a four-moment
statistical feature extraction stage. The accuracy obtained in this technique was 97%, but the algorithm
should be generalized by applying it to a real-image dataset and considering multi-class classification
to identify the sub-classes of leukemia.

In 2020, Banik et al. [52] applied a convolutional neural network (CNN)-based approach for
detecting white blood cells in microscopic blood images. In this method, the features from the first and
last layers were combined to enhance performance. Pre-processing and segmentation were conducted
before extracting features via the CNN. This approach should be generalized by considering a real-
image dataset. Honnalgere et al. [53] used the VGG16 framework with transfer learning from a pre-
trained model on the ImageNet dataset. Batch normalization and data augmentation helped achieve
a larger sample size. Their experiments resulted in a precision, recall, and F1-score of 91.70%, 91.75%,
and 91.70%, respectively. Shah et al. [54] introduced a method that combined CNN and a recurrent
neural network (RNN), achieving an accuracy of 86.6%. Although decent, this can be improved.
Yu et al. [55] explored this area with a CNN-based approach, considering and combining different
frameworks such as ResNet50 [56], InceptionV3 [57], VGG16 [58], VGG19 [59], and Xception. Their
methods achieved an accuracy of 88.5%. Pan et al. [60] proposed an approach using a pre-trained
RNN with various feature extraction and combination stages, claiming an F1-score of 92.50%.
Marzahl et al. [61] employed the ResNet18 deep learning framework to detect leukemia and normal
cells. With advanced dataset augmentation, they achieved an F1 score of 87.46%. Still, there is a need
for more reliable and robust methods, especially for smaller datasets. The methods by [54–60] achieved
accuracy up to 92.50%, and the same researchers [54–60] tested binary classification on the standard
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ALL-IDB datasets. Hence, it is necessary to generalize and fortify these methods by applying them to
a real-image dataset with multi-class classification.

In a separate work, Mittal et al. [62] presented a review of leukemia detection using blood smear
images. They explored blood components, databases, leukemia types, and various methodologies for
leukemia detection. Different steps, such as pre-processing, segmentation, feature extraction, and
classification methods employed by various researchers, are reviewed in this study. The challenges
faced by classifiers, including large training data, achieving good accuracy, generalization, and
reproducibility, are highlighted in this survey. The need for data augmentation is also discussed.

The need for a large dataset and augmentation, as mentioned by Mittal et al. [62], can be addressed
by employing a hybrid approach that combines deep learning and machine learning. The number of
required dataset images can be reduced if deep learning is used for feature extraction and machine
learning for the final classification.

Although the methods discussed in the previous section achieved reasonable accuracies, there
is still room for improvement. While deep learning algorithms offer higher accuracies compared to
traditional algorithms [63], the challenge lies in the dataset’s image size. For leukemia, there is a
limitation on the number of images in the dataset. Consequently, deep learning algorithms might face
over-fitting during training. Thus, this study introduces a solution using a hybrid machine learning-
deep learning (ML-DL) combination. Features are extracted through a deep learning framework, and
classification is executed using RF and XGBoost algorithms. This experiment achieved notable results
using the publicly available dataset (ALL-IDB) and a private real-image dataset.

The ALL-IDB1 dataset contains 109 images, while the ALL-IDB2 has 260. For multi-class
classification, there are 528 images divided into three sub-classes. Since deep learning is employed
solely for automatic feature extraction and not for classification, there is no risk of overfitting
during experimentation. Although data augmentation is typically employed to increase sample sizes,
achieving the desired accuracy with the available samples meant that augmentation was unnecessary in
this study. The proposed approach, combining deep learning and machine learning, promises enhanced
performance for datasets with limited images, applicable to binary and multi-class classification.

3 Proposed Methodology

Fig. 2 shows the proposed hybrid approach methodology for the diagnosis of leukemia via binary
classification and multi-class classification.

3.1 Image Loading
Images from the dataset are loaded to process them and propagate in further stages for classifica-

tion. ALL-IDB dataset is used for the processing.

3.2 Feature Extraction
There are different frameworks available with convolutional neural networks. Some popular

frameworks, including VGG16, VGG19, ResNet50, Xception, Inception-ResNet-v2, and Densenet,
are employed for feature extraction. These architectures are explained below.

3.2.1 VGGNet [64]

CNNs’ depth was increased with VGG to improve model performance. Visual Geometry Group,
or VGG, is a typical deep CNN architecture with several layers. Two classical models were developed
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as VGG, namely VGG16 and VGG19. Fig. 3 depicts a typical VGG16 architecture. Very tiny
convolutional filters are used in the construction of the VGG network. A total of sixteen layers, of
which three are fully connected, and thirteen convolutional layers are present in the VGG16 network.
The VGGNet accepts input of size 224 × 224-sized images.

Figure 2: Proposed methodology of leukemia classification

Convolutional layers: This layer uses a receptive field of 3 × 3 to record two movements, viz.
left to right and up to down. Additionally, 1 × 1 convolution filters are employed for the linear
transformation of the input. The next part is a ReLU unit, a progressive step over AlexNet regarding
training time [65]. The convolution stride is set to 1 pixel to maintain spatial resolution. The stride
represents the number of pixel shifts across the input matrix.

Hidden layers: These layers primarily make use of ReLU. Local Response Normalization (LRN)
is commonly avoided when using VGG because it increases memory usage and training time.
Furthermore, it does not affect overall accuracy.

Fully-connected layers: It has three layers that are fully connected. The first two levels have 4096
channels each. The third layer has 1000 channels, one for each class.

3.2.2 ResNet [66]

ResNet50, as shown in Fig. 4, is a variant of a typical Reset model. It has 50 layers in total. The
model consists of 48 convolutional, one maximum pool, and one average pooling layer. It has one
convolution layer having a 7 × 7 kernel size and distinct kernels of 64. All layers have a stride size of 2.
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After this, there is a max pooling layer with a size of stride 2. Another convolution contains a 1 × 1
layer, with 64 kernel, then a 3 × 3 sized kernel, which continues with a 64 kernel and a 1 × 1, 256 kernel.
This phase has nine layers. Following that, there is a kernel of 1 × 1, 128. After this, 3 × 3, 128 kernel
and a kernel of 1 × 1, 512 size at the final stage.

This stage was repeated four times, which resulted in 12 layers. After this stage, there are different
combinations, including 1 × 1, 3 × 3, and 1 × 1, with convolution filter sizes of 256, 256, and 512,
respectively, repeated six times. The sequence of 1 × 1, 3 × 3, and 1 × 1 was repeated with convolution
filter sizes of 512, 512, and 2048, respectively. A fully connected layer of 1000 nodes comes at the last
with the Softmax function.

Figure 3: VGG16 architecture

3.2.3 XceptionNet [67]

This has depth-wise separable convolutions. Xception is another name for an “extreme” version
of an Inception module. Xception is an abbreviation for “extreme inception”, it uses the Inception
principles. There is a use of 1 × 1 convolutions to compress the original input in Inception, and
different filters were used on each depth space from each input space. Xception simply reverses this
step. This method is nearly identical to the depth-wise separable convolution used in designing the
neural network. There is one more distinction between Inception and Xception. The presence or
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absence of a nonlinearity following the initial operation. A ReLU nonlinearity follows both operations
in the Inception model, whereas Xception does not. The data is processed after passing through the
entry flow, through the middle flow (which repeats eight times), and through the exit flow. Fig. 5 shows
the detailed architecture of XceptionNet.

Figure 4: ResNet architecture

3.2.4 Inception-ResNet-v2 [68]

Inception-ResNet-v2 was trained with a vast number of images from the ImageNet database. The
164-layer network can classify images into numerous additional object categories, allowing it to learn
detailed representations of features for a wide range of images. The input to the network is a 299 × 299
image, and it produces class probabilities at the output. This network is a combination of Inception
and residual connections [69]. It has a residual connection with a combination of convolutional filters
of multiple sizes. Due to the use of the residual connections, the degradation issue was compensated,
and training time was also reduced to some extent. Fig. 6 shows the basic network architecture of
Inception-ResNet-v2.

3.2.5 Densenet [70]

Fig. 7 shows a Densenet architecture consisting of low level layers, high level layers, upsampling
layers, and integration layers. Densenet has shorter connections between the layers, making it efficient
during training [71]. Each layer is deeply connected to the other, ensuring the free flow of information
within the network. Every layer receives input from previous layers to maintain the feed-forward
nature. This input is then passed on to subsequent layers via its feature maps. There is the concatenation
of features of different layers. So, the ith layer has I input and comprises feature maps from all previous
convolutional blocks. All subsequent ‘I-i’ layers receive their feature maps. In contrast to traditional
deep learning architectures, this introduces ‘(I(I + 1))/2’ connections into the network. It requires
fewer parameters than traditional CNN because it does not need to learn unimportant feature maps.
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Densenet has two crucial blocks besides the basic convolutional and pooling layers. They are known
as Transition Layers and Dense Blocks.

Figure 5: Xception architecture
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Figure 6: Inception-ResNet-Version-2 architecture

After the feature extraction, popular state-of-the-art, classical machine learning algorithms are
employed for classification. RF and XGBoost classifiers are utilized after the feature extraction via
deep learning frameworks.

3.3 Classification
For this stage, RF and XGBoost classification techniques are employed.

3.3.1 RF

These models predict output by combining the outcomes of multiple regression decision trees [72].
The architecture of RF is shown in Fig. 8. It has many decision trees, each with its training dataset. As
a result, this algorithm performs better in classification problems than a decision tree [73]. The pruning
method selection and the branching criteria are regarded as the two most important factors [74]. This
algorithm is determined by the number of created trees and the utilized samples by a particular node.
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Each tree is generated independently as a random vector sampled from input data, while the forest’s
tree distribution remaining constant. The forest predictions are averaged using bootstrap aggregation
and random feature selection [75].

Figure 7: Densenet architecture

Figure 8: RF architecture
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3.3.2 XGBoost

Extreme Gradient Boosting (XGBoost) is a scalable, distributed gradient-boosted decision tree
(GBDT) machine learning library [76]. It works with many problems, including classification, regres-
sion, and ranking. This algorithm supports parallel tree boosting [77]. Gradient-boosted decision trees
are implemented in XGBoost, which are dominant in many cases [78]. This algorithm sequentially
generates decision trees [79]. Weights are crucial in XGBoost [80]. The architecture of XGBoost is
shown in Fig. 9. In this algorithm, the weights are assigned to each independent variable. These
weights are then transferred into the decision tree, which predicts the outcome. The weight of variables
incorrectly predicted by the tree is increased, and these variables are input into the second decision tree.
Then, individual classifiers and predictors are combined to create a more robust and precise model. It
can solve regression, classification, ranking, and user-defined prediction problems [81].

Figure 9: XGBoost architecture

3.3.3 Hyperparameter Tuning of Model

As explored in Subsection 3.3.2, two state-of-the-art machine learning models are employed for
final classification, including RF and XGBoost. The following steps were used for the tuning of
hyperparameter of the classification models:

1. RF is tuned with n_estimators (no. of trees). It has experimented with the number of trees with
values of 1 to 100.
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2. For getting the best value of n_estimaters, the GridSearchCV object is used. It performs an
exhaustive search over the hyperparameter grid, fitting and evaluating the RF model for the
specified values of trees.

3. Cross-validation is employed to estimate the model’s performance, and the value of n_estimater
obtained is 24. Hence, fine-tuning is done to get the value of 24 trees.

4. XGBoost is tuned for n_estimators, maximum depth, and Gamma. These parameters are tuned
by considering n_estimators, Maximum depth, and Gamma.

5. With the GridSearchCV object, the parameters are obtained after the tuning with the following
values. In order to find the best values of these parameters, these parameters are tested with
values as n_estimators with 10, 20, 40, and 100; max_depth: 3, 4, and 5; Gamma with the values
as 0, 0.15, 0.30, 0.50, and 1.

6. Finally, the values of these parameters obtained for the best accuracies with cross-validation
of 5 for the XGBoost are as follows:

i) N_estimators = 10

ii) Maximum Depth = 3

iii) Gamma = 0

3.4 Performance Metrics
Classification of normal and abnormal cell images and multi-class classification are the prime

motivations of the presented work. Different metrics are employed to evaluate the performance of the
proposed system. Following are the parameters utilized for accuracy measurement:

Accuracy [82]:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

where TP = true positive, TN = true negative, FP = false positive, FN = false negative.

Recall [83]:

Recall = TP
TP + FN

(2)

Precision [84]:

Precision = TP
TP + FP

(3)

F1-score [85]:

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Confusion matrix [86]:

A confusion matrix is often employed to demonstrate classifier performance based on the four
values listed above (TP, FP, TN, and FN). When these are plotted against each other, a confusion
matrix is formed.
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4 Datasets Used
4.1 ALL-IDB1 and ALL-IDB2

This study utilizes A very popular dataset employed by many researchers, i.e., ALL-IDB1 and
ALL-IDB2. Figs. 10a and 10b show images from the ALL-IDB1 dataset, while Figs. 10c and 10d show
images from the ALL-IDB2 dataset. This database is used for acute leukemia analysis and research.
This dataset has two subtypes: ALL-IDB1 and ALL-IDB2. All images were captured using a Canon
Powershot G5 camera. The microscope’s magnification range was between 300 and 500. JPEG images
with a 24-bit color depth were used. The ALL-IDB1 dataset contains 109 images with a total element
count of 3,900 and a resolution of 2592 ∗ 1944. There are 510 lymphoblasts in total. The ALL-IDB2
dataset consists of 260 images with a total element count of 257 and a resolution of 257 × 257. It has
a total of 130 lymphoblasts.

Figure 10: (a) ALL-IDB1 infected image; (b) ALL-IDB1 normal image; (c) ALL-IDB2 infected image;
(d) ALL-IDB2 normal image

4.2 Private Real Images Dataset
In addition to this dataset, a real image dataset is also utilized for the experiment. The dataset

is a multi-class dataset with three sub-classes of leukemia, namely acute myeloid leukemia (AML),
(Chronic myeloid leukemia) CML, and (Chronic lymphocytic leukemia) CLL. The AML class
contains 181 images, while the CLL and CML have 166 and 173 images, respectively. Figs. 11a–11c
show images from the dataset with CLL, CML, and AML types, respectively. This dataset contains
520 images of blood slides from three classes. This dataset was provided by Nidan Diagnostic in
Ahmednagar, India.

5 Results

The experimentation was conducted in two ways. A binary classification was performed on ALL-
IDB1 and ALL-IDB2 datasets, which output metrics showing the normal cell and infected cells’
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classification. Subsequently, a real-image dataset consisting of different sub-classes of leukemia (AML,
CML, and CLL) was tested, yielding a multi-class classification. The following sections discuss this in
detail.

Figure 11: Images from the real dataset: (a) CLL; (b) CML; (c) AML

5.1 Binary Classification
Performance metrics considering ALL-IDB1 and ALL-IDB2 datasets for binary classification of

leukemia cells and normal cells are shown in this section.

5.1.1 VGG16 Feature Extractor

Figs. 12a–12d show the confusion matrix as an outcome of VGG16 as a feature extractor and RF,
and XGBoost classifier for ALL-IDB1 and 2 datasets.

Figure 12: Confusion matrix considering VGG16 as feature extractor: (a) VGG16 plus RF for ALL-
IDB1 dataset; (b) VGG16 plus RF for ALL-IDB2 dataset; (c) VGG16 plus XGBoost for ALL-IDB1
dataset; (d) VGG16 plus RF for ALL-IDB2 dataset
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Table 1 shows performance measures using VGG16 as the feature extractor and two classical
machine learning algorithms for final classification. RF and XGBoost are employed for classification.
Different measures are presented, including precision, recall, F1-score, and accuracy. ALL-IDB1 and
ALL-IDB2 both are applied for the analysis. Precision varies from 0.87 to 0.96 for both parts of the
dataset. Recall takes the value from 0.86 to 0.96, while the F1-score varies from 0.86 to 0.95 in the case
of RF and XGBoost with ALL-IDB1 and ALL-IDB2. The accuracy reaches a peak of 95.45% for the
ALL-IDB1 dataset.

Table 1: Metrics show VGG16 as a feature extractor

Algorithm Classes Precision Recall F1-score Support

ALL-IDB2 0 0.82 0.96 0.88 70
1 0.94 0.75 0.83 60
Macro average 0.88 0.85 0.86 130
Weighted average 0.87 0.86 0.86 130
Average accuracy 0.86

VGG16-RF ALL-IDB1 0 0.91 1 0.95 10
1 1 0.92 0.96 12
Macro average 0.95 0.96 0.95 22
Weighted average 0.96 0.95 0.95 22
Average accuracy 0.95

ALL-IDB2 0 0.91 0.89 0.9 70
1 0.87 0.9 0.89 60
Macro average 0.89 0.89 0.89 130
Weighted average 0.89 0.89 0.89 130
Average accuracy 0.89

VGG16- ALL-IDB1 0 0.91 1 0.95 10
XGBoost 1 1 0.92 0.96 12

Macro average 0.95 0.96 0.95 22
Weighted average 0.96 0.95 0.95 22
Average accuracy 0.95

5.1.2 VGG19 Feature Extractor

Figs. 13a–13d show the confusion matrices as outcomes of VGG19 used as a feature extractor,
combined with RF and XGBoost classifiers, for the ALL-IDB1 and 2 datasets.

As indicated in Table 2, VGG19 is used as a feature extractor, and RF and XGBoost are employed
for final classification. The precision obtained in this case is 0.88 to 0.92, which is a good and
permissible value. Recall also varies from 0.87 to 0.91, and the score range is from 0.87 to 0.91. The
maximum accuracy value is over 90% for both datasets and the machine learning classifiers.
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Figure 13: Confusion matrix considering VGG19 as feature extractor: (a) VGG19 plus RF for ALL-
IDB1 dataset; (b) VGG19 plus RF for ALL-IDB2 dataset; (c) VGG19 plus XGBoost for ALL-IDB1
dataset; (d) VGG19 plus RF for ALL-IDB2 dataset

Table 2: Metrics show VGG19 as a feature extractor

Algorithm Classes Precision Recall F1-score Support

ALL-IDB1 0 0.83 1 0.91 10
1 1 0.83 0.91 12
Macro average 0.92 0.92 0.91 22
Weighted
average

0.92 0.91 0.91 22

Average accuracy: 0.91
VGG19-RF ALL-IDB2 0 0.84 0.94 0.89 70

1 0.92 0.78 0.85 60
Macro average 0.88 0.86 0.87 130
Weighted
average

0.88 0.87 0.87 130

Average accuracy: 0.87

(Continued)
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Table 2 (continued)

Algorithm Classes Precision Recall F1-score Support

ALL-IDB1 0 1 1 1 10
1 1 1 1 12
Macro average 1 1 1 22
Weighted
average

1 1 1 22

Average accuracy: 1
VGG19-XGBoost ALL-IDB2 0 0.88 0.96 0.92 70

1 0.94 0.85 0.89 60
Macro average 0.91 0.9 0.91 130
Weighted
average

0.91 0.91 0.91 130

Average accuracy: 0.91

5.1.3 Xception as a Feature Extractor

Figs. 14a–14d show the confusion matrix as an outcome of Xception as a feature extractor and
RF and XGBoost classifiers for ALL-IDB1 and two datasets.

Table 3 shows the results obtained utilizing Xceptionnet as a feature extractor, with RF and
XGBoost as the final classifiers. Parameters, such as precision, recall, and F1-score, vary from 0.90
to 1. As far as accuracy is concerned, it ranges from 90% to 100% in the cases mentioned above.

5.1.4 ResNet Feature Extractor

Figs. 15a–15d show the confusion matrices as outcomes of ResNet50 used as a feature extractor,
in combination with RF and XGBoost classifiers, for the ALL-IDB1 and ALL-IDB2 datasets.

ResNet50 is used as a feature extractor using a transfer learning approach in the next case. After
extracting features, they are passed through RF and XGBoost algorithms. Different metrics obtained
with these approaches are listed in Table 4. Precision, recall, and F1-score achieve a maximum value
of 0.86, while the maximum accuracy is 86%.

5.1.5 InceptionResNetV2 Feature Extractor

Figs. 16a–16d show the confusion matrices as outcomes of InceptionResNetV2 used as a feature
extractor, in combination with RF and XGBoost classifiers, for the ALL-IDB1 and ALL-IDB2
datasets.

There is a popular framework consisting of Inception-Restnet-Version-2, which is used as a feature
extractor, and both RF and XGBoost as the final stage of the classifier. Table 5 shows the different
performance measures in this case. It indicates that precision, recall, and F1-score approaches a
maximum of 0.96 and a minimum of 0.86. The maximum and minimum accuracy values are 95%
and 86%, respectively. In addition to these networks, Denset is employed to extract features, which
are passed through RF and XGBoost algorithms for the final classification. As shown in Table 6,
Inception-ResNet-V2 is utilized as a feature extractor, producing a maximum precision of 94%, a
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maximum recall value obtained of 96%, and the F1-score achieves a maximum value of 95%. For
this approach, accuracy ranges from 88% to 95%.

Figure 14: Confusion matrix considering Xception as feature extractor: (a) Xception plus RF for ALL-
IDB1 dataset; (b) Xception plus RF for ALL-IDB2 dataset; (c) Xception plus XGBoost for ALL-
IDB1 dataset; (d) Xception plus RF for ALL-IDB2 dataset

Table 3: Metrics show Xception as a feature extractor

Algorithm Classes Precision Recall F1-score Support

ALL-IDB1 0 1 1 1 10
1 1 1 1 12
Macro average 1 1 1 22
Weighted average 1 1 1 22
Average accuracy: 1

Xception-RF ALL-IDB2 0 0.94 0.89 0.91 70
1 0.88 0.93 0.9 60
Macro average 0.91 0.91 0.91 130
Weighted average 0.91 0.91 0.91 130

(Continued)
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Table 3 (continued)

Algorithm Classes Precision Recall F1-score Support

Average accuracy: 0.91
ALL-IDB1 0 1 1 1 10

1 1 1 1 12
Macro average 1 1 1 22
Weighted average 1 1 1 22
Average accuracy: 1

Xception-
XGBoost

ALL-IDB2 0 0.94 0.89 −0.91 70

1 0.88 0.93 0.9 60
Macro average 0.91 0.91 0.91 130
Weighted average 0.91 0.91 0.91 130
Average accuracy: 0.91

Figure 15: Confusion matrix considering ResNet as feature extractor: (a) ResNet plus RF for ALL-
IDB1 dataset; (b) ResNet plus RF for ALL-IDB2 dataset; (c) ResNet plus XGBoost for ALL-IDB1
dataset; (d) ResNet plus RF for ALL-IDB2 dataset
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Table 4: Metrics showing ResNet50 as a feature extractor

Algorithm Classes Precision Recall F1-score Support

ALL-IDB1 0 0.71 1 0.83 10
1 1 0.67 0.8 12
Macro average 0.86 0.83 0.82 22
Weighted average 0.87 0.82 0.82 22
Average accuracy 0.82

ResNet50-RF ALL-IDB2 0 0.75 0.79 0.77 70
1 0.74 0.7 0.72 60
Macro average 0.75 0.74 0.74 130
Weighted average 0.75 0.75 0.75 130
Average accuracy 0.75

ALL-IDB1 0 0.77 1 0.87 10
1 1 0.75 0.86 12
Macro average 0.88 88 0.86 22
Weighted average 0.9 0.86 0.86 22
Average accuracy 0.86

ResNet50-
XGBoost

ALL-IDB2 0 0.84 0.89 0.86 70

1 0.86 0.8 0.83 60
Macro average 0.85 0.84 0.84 130
Weighted average 0.85 0.85 0.85 130
Average accuracy 0.85

5.1.6 Densenet Feature Extractor

Figs. 17a–17d show the confusion matrices as outcomes of Densenet used as a feature extractor,
in combination with RF and XGBoost classifiers, for ALL-IDB1 and ALL-IDB2 datasets.

Fig. 18 shows the graphical representation of accuracies obtained by different approaches for
binary classification of leukemia, considering datasets ALL-IDB1 and ALL-IDB2. It indicates that the
accuracies of the XGBoost classifier with different feature extractor is greater than RF in most cases,
except Densenet and Inception-ResNet-V2 as feature extractors. It approaches 100% in Xception and
VGG19 as feature extractors.

5.2 Multi-Class Classification
Performance metrics consider real image datasets for leukemia sub-classes multi-class classi-

fication with Acute Myloid Leukemia (AML), Chronic Myloid Leukemia (CML), and Chronic
Lymphocytic Leukemia (CLL) types. Figs. 19a–19f show the confusion matrices as outcomes of
different feature extractors with RF classifiers for the ALL-IDB1 and ALL-IDB2 datasets.
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Figure 16: Confusion matrix considering Inception-ResNet-V2 as feature extractor: (a) Inception-
ResNet-V2 plus RF for ALL-IDB1 dataset; (b) Inception-ResNet-V2 plus RF for ALL-IDB2 dataset;
(c) Inception-ResNet-V2 plus XGBoost for ALL-IDB1 dataset; and (d) Inception-ResNet-V2 plus RF
for ALL-IDB2 dataset

Table 5: Metrics show Inception-ResNet-Version-2 as a feature extractor

Algorithm Classes Precision Recall F1-score Support

ALL-IDB1 0 0.91 1 0.95 10
1 1 0.92 0.96 12
Macro average 0.95 0.96 0.95 22
Weighted average 0.96 0.95 0.95 22
Average accuracy 0.95

Inception-
ResNet-V2-
RF

ALL-IDB2 0 0.91 0.87 0.89 70

1 0.86 0.9 0.88 60
Macro average 0.88 0.89 0.88 130
Weighted average 0.89 0.88 0.88 130
Average accuracy 0.88

(Continued)
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Table 5 (continued)

Algorithm Classes Precision Recall F1-score Support

ALL-IDB1 0 0.82 0.9 0.86 10
1 0.91 0.83 0.87 12
Macro average 0.86 0.87 0.86 22
Weighted average 0.87 0.86 0.86 22
Average accuracy 0.86

Inception-
ResNet-V2-
XGBoost

ALL-IDB2 0 0.94 0.83 0.88 70

1 0.82 0.93 0.87 60
Macro average 0.88 0.88 0.88 130
Weighted average 0.88 0.88 0.88 130
Average accuracy 0.88

Table 6: Metrics show Densenet as a feature extractor

Algorithm Classes Precision Recall F1-score Support

ALL-IDB1 0 0.89 0.8 0.84 10
1 0.85 0.92 0.88 12
Macro average 0.87 0.86 0.86 22
Weighted average 0.87 0.86 0.86 22
Average accuracy 0.86

Densenet-RF ALL-IDB2 0 0.88 0.9 0.89 70
1 0.88 0.85 0.86 60
Macro average 0.88 0.88 0.88 130
Weighted average 0.88 0.88 0.88 130
Average accuracy 0.88

ALL-IDB1 0 0.91 1 0.95 10
1 1 0.92 0.96 12
Macro average 0.95 0.96 0.95 22
Weighted average 0.96 0.95 0.95 22
Average accuracy 0.95

Densenet-
XGBoost

ALL-IDB2 0 0.94 0.84 0.89 70

1 0.84 0.93 0.88 60
Macro average 0.89 0.89 0.88 130
Weighted average 0.89 0.88 0.88 130
Average accuracy 0.88
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Figure 17: Confusion matrix considering Densenet as feature extractor: (a) Densenet plus RF for ALL-
IDB1 dataset; (b) Densenet plus RF for ALL-IDB2 dataset; (c) Densenet plus XGBoost for ALL-
IDB1 dataset; (d) Densenet plus RF for ALL-IDB2 dataset

Table 7 shows different performance metrics with RF for real-image multi-class datasets. All these
results are obtained utilizing the real image dataset. Precision value achieves a maximum value of
96% for Densenet and VGG16 feature extractors, while recall achieves a maximum value of 96% for
Densenet F1-score, which also achieves a 9% maximum value for Densenet. A good and acceptable
range is obtained as the accuracies are observed in this part of the experimentation. It ranges from
88% to 96%.

Figs. 20a–20f show the confusion matrices as outcomes of different feature extractors with
XGBoost classifiers for the ALL-IDB1 and ALL-IDB2 datasets.

Table 8 presents the performance metrics for XGBoost classification and different deep learning
frameworks, including VGG16, VGG19, Xception, Inception-ResNet-V2, ResNet50, and Densenet.
Precision takes the minimum value of 94% and a maximum of 95% by observing all the feature
extractors’ weighted and macro average values. Recall has a maximum value of 89% and a minimum
of 97%. Weighted and macro average values of the F1-score range from 89% to 97% while moving
through all the feature extractors. A maximum accuracy of 97.08% is obtained with this part of the
experimentation.
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(a)

(b)

Figure 18: Comparison of average accuracies of different approaches for: (a) ALL-IDB1; (b) ALL-
IDB2 dataset

Fig. 21 compares the accuracies of various feature extractors with RF and XGBoost classifiers. In
this Figs. 1–6 represent different feature extractors: VGG16, VGG19, Xception, ResNet50, Incepri-
onResNetV2, and Densenet, respectively. The Xception and XGBoost combination achieved the
maximum accuracy.

Table 9 compares the accuracy obtained by the proposed approaches with Ahmed et al. [87].
The study employed CNN classifier and other classical machine learning classifiers, including SVM,
Naïve Bayes, decision trees, and KNN. With the same dataset, the accuracies in these approaches
varied from 50% to 88%, with the highest accuracy for the CNN classifier. The accuracies obtained
by Singhal et al. [43], Patel et al. [88], Rawat et al. [89], and Shahin et al. [90] are 89.72%, 93.75%,
89.80%, and 96.01%, respectively. The accuracies vary from 74% to 100% compared to the proposed
approaches.
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Figure 19: Confusion matrix of different feature extractors with RF classifier for real image dataset:
(a) VGG16 plus RF; (b) VGG19 plus RF; (c) Xception plus RF; (d) ResNet50 plus RF; (e) Inception-
ResNet-V2 plus RF; (f) Densenet plus RF

Table 7: Metrics showing performance with different feature extractors and RF classifiers

Algorithm Classes Precision Recall F1-score Support

0 0.88 0.95 0.91 37
1 0.90 0.88 0.89 32
2 0.88 0.80 0.85 34

(Continued)
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Table 7 (continued)

Algorithm Classes Precision Recall F1-score Support

VGG16-RF Macro average 0.88 0.88 0.88 103
Weighted average 0.88 0.88 0.88 103
Accuracy 0.88
0 0.97 0.97 0.97 37
1 1 0.94 0.97 32
2 0.92 0.97 0.94 34

VGG19-RF Macro average 0.96 0.96 0.96 103
Weighted average 096 0.96 0.96 103
Accuracy 0.96
0 0.97 0.95 0.96 37
1 1 0.94 0.97 32
2 0.89 0.97 0.93 34

Xception-RF Macro average 0.95 0.95 0.95 103
Weighted average 0.95 0.95 0.95 103
Accuracy 0.95
0 0.97 0.86 0.91 37
1 0.92 0.75 0.83 32
2 0.75 0.97 0.85 34

ResNet50-RF Macro average 0.88 0.86 0.86 103
Weighted average 0.88 0.86 0.86 103
Accuracy 0.86
0 0.89 0.92 0.91 37
1 0.82 0.88 0.85 32
2 0.87 0.79 0.83 34

Inception- Macro average 0.86 0.86 0.86 103
ResNet-V2-RF Weighted average 0.86 0.86 0.86 103

Accuracy 0.86
0 0.97 0.97 0.97 37
1 1 0.94 0.97 32
2 0.92 0.97 0.94 34

Densenet-RF Macro average 0.96 0.96 0.96 103
Weighted average 096 0.96 0.96 103
Accuracy 0.96
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Figure 20: Confusion matrix of different feature extractors with XGBoost classifier for real image
dataset: (a) VGG16 plus XGBoost; (b) VGG19 plus XGBoost; (c) Xception plus XGBoost;
(d) ResNet50 plus XGBoost; (e) Inception-ResNet-V2 plus XGBoost; (f) Densenet plus XGBoost

Table 8: Metrics showing performance metrics with different feature extractors and XGBoost classi-
fiers

Algorithm Classes Precision Recall F1-score Support

0 0.92 0.97 0.95 37
1 0.97 0.94 0.95 32
2 0.94 0.91 0.93 34

(Continued)
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Table 8 (continued)

Algorithm Classes Precision Recall F1-score Support

VGG16-XG- Macro average 0.94 0.94 0.94 103
Boost Weighted average 0.94 0.94 0.94 103

Accuracy 0.94
0 0.95 0.97 0.96 37
1 0.97 0.94 0.95 32
2 0.91 0.91 0.91 34

VGG19- Macro average 0.94 0.94 0.94 103
XGBoost Weighted average 0.94 0.94 0.94 103

Accuracy 0.94
0 1 1 1 37
1 0.94 0.97 0.95 32
2 0.97 0.94 0.96 34

Xception-XG- Macro average 0.97 0.97 0.97 103
Boost Weighted average 0.97 0.97 0.97 103

Accuracy 0.97
0 0.91 0.86 0.89 37
1 0.90 0.88 0.89 32
2 0.86 0.94 0.90 34

ResNet50-XG- Macro average 0.89 0.89 0.89 103
Boost Weighted average 0.89 0.89 0.89 103

Accuracy 0.89
0 0.92 0.95 0.93 37
1 0.91 0.94 0.92 32
2 0.94 0.88 0.91 34

Inception- Macro average 0.92 0.92 0.92 103
ResNet-V2-XG- Weighted average 0.92 0.92 0.92 103
Boost Accuracy 0.92

0 0.97 0.95 0.96 37
1 1 0.94 0.97 32
2 0.89 0.97 0.93 34

Densenet-XG- Macro average 0.95 0.95 0.95 103
Boost Weighted average 0.95 0.95 0.95 103

Accuracy 0.95



622 CMES, 2024, vol.139, no.1

Figure 21: Accuracy comparison of different feature extractors for real image datasets

Table 9: Comparison of accuracies of proposed approaches with state-of-the-arts models from
published literature

Approach Classification
algorithm/framework

Dataset Average accuracy

Ahmed et al. [87] CNN ALL-IDB 88.25
Naïve Bayes ALL-IDB 69.69
Decision tree ALL-IDB 62.94
K-nearest neighbor
(K = 3)

ALL-IDB 58.57

Support vector machine ALL-IDB 50.091
Singhal et al. [43] LBP features with SVM

classifier
ALL-IDB2 89.72%

Patel et al. [88] SVM ALL-IDB2 93.75%
Rawat et al. [89] Shape and texture

features with SVM
classifier

ALL-IDB 89.80%

Shahin et al. [90] WBCsNet ALL-IDB 96.1%
AlexNet ALL-IDB 92.5%
LeNet_5 ALL-IDB 88.7%

Our proposed approaches VGG16-RF ALL-IDB1 95.45
VGG19-RF ALL-IDB1 90.91
Xception-RF ALL-IDB1 100
ResNet50-RF ALL-IDB1 81.82
Inception-ResNet-V2-
RF

ALL-IDB1 95.45

Densenet-XGBoost ALL-IDB1 86.36
VGG16-XGBoost ALL-IDB1 95.45
VGG19-XGBoost ALL-IDB1 100
Xception-XGBoost ALL-IDB1 100

(Continued)
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Table 9 (continued)

Approach Classification
algorithm/framework

Dataset Average accuracy

ResNet50-XGBoost ALL-IDB1 86.36
Inception-ResNet-V2-
XGBoost

ALL-IDB2 86.36

Densenet-XGBoost ALL-IDB2 95.45
VGG16-RF ALL-IDB2 86.15
VGG19-RF ALL-IDB2 86.92
Xception-RF ALL-IDB2 90.77
ResNet50-RF ALL-IDB2 74.61
Inception-ResNet-V2-
RF

ALL-IDB2 88.46

Densenet-XGBoost ALL-IDB2 87.69
VGG16-XGBoost ALL-IDB2 89.23
VGG19-XGBoost ALL-IDB2 90.73
Xception-XGBoost ALL-IDB2 90.77
ResNet50-XGBoost ALL-IDB2 84.62
Inception-ResNet-V2-
XGBoost

ALL-IDB2 87.69

Densenet-XGBoost ALL-IDB2 88.46

6 Discussions

Leukemia is a disease that proves life-threatening in many cases at its later stages of infection. It
has different sub-types, which differ in treatment guidelines. This variability in sub-types has motivated
the work for multi-class leukemia cell classification. The designed framework classifies infected and
normal cells in binary classification on a standard ALL-IDB dataset. Additionally, a real-image
dataset consisting of leukemia sub-class images was tested with this framework for predicting the sub-
type of leukemia, including AML, CML, and CLL.

The proposed approaches here are hybrid, consisting of a deep learning-machine learning (DL-
ML) architecture. Popular deep learning frameworks are utilized for feature extraction with a transfer
learning approach. Transfer learning frameworks VGG16, VGG19, Xception, Inception-ResNet-V2,
Densenet, and ResNet are used for this purpose. If these frameworks are used for training, they may
lead to over-fitting due to the limited number of dataset images. Additionally, deep learning training
consumes more time as the number of epochs increases. This challenge is addressed by using these
frameworks solely for feature extraction. After feature extraction, the final classification is performed
by state-of-the-art machine learning models. RF and XGBoost are applied for the final classification,
and various performance metrics, including precision, recall, F1-score, and accuracy, are considered
for model evaluation.

Precision is a crucial metric for measuring classification results. It represents the true positive
predictions against all positive predictions from the model’s testing. Various DL frameworks are
combined with RF and XGBoost classifiers. Precision values obtained for VGG16, VGG19, Xception,
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Inception-ResNet-V2, Densenet, and ResNet feature extractors hybridized with RF for the ALL-
IDB1 dataset are 0.96, 0.92, 1, 0.95, 0.87, and 0.87, respectively. For the ALL-IDB2 dataset, precision
values are 0.88, 0.88, 0.91, 0.88, 0.74, and 0.88 for the above respective feature extractors. With the
XGBoost classifier, the feature extractor frameworks VGG16, VGG19, Xception, Inception-ResNet-
V2, Densenet, and ResNet achieved precision values of 0.95, 1, 1, 0.86, 0.95, and 0.88 for the ALL-
IDB1 dataset. For the ALL-IDB2 dataset, precision values are 0.89, 0.91, 0.91, 0.88, 0.89, and 0.85
for the respective feature extractors. A notable observation from the comparison of precision values is
that the XGBoost classifier consistently delivered higher precision than the RF in most cases.

Recall is another critical measure, indicating positive predictions of an experiment against
true positives and false negatives. Ideally, recall should approach a value of 1, ensuring no false
negatives during predictions. Recall values, calculated by considering various feature extractors used
in this experimentation, for VGG16, VGG19, Xception, Inception-ResNet-V2, Densenet, and ResNet
hybridized with RF for the ALL-IDB1 dataset are 0.95, 0.92, 1, 0.96, 0.82, and 0.86, respectively, with
the RF classifier. For the ALL-IDB2 dataset, these values are 0.85, 0.87, 0.91, 0.89, 0.74, and 0.88
for the same feature extractors. With the XGBoost classifier, the same feature extractor frameworks
achieved recall values of 0.96, 1, 1, 0.87, 0.96, and 0.88 for ALL-IDB1. ALL-IDB2 recall values are
0.89, 0.90, 0.91, 0.88, 0.89, and 0.84 for the respective frameworks. As previously observed in precision,
the XGBoost classifier generally outperformed the RF in recall across most feature extractors.

The F1-score metric is also important when evaluating the performance of machine learning
and deep learning models. As there is a trade-off between precision and recall, if one increases, the
other decreases. To measure the performance of any model, the F1-score can prove to be a valuable
measure alongside precision and recall. It essentially provides the harmonic mean of precision and
recall. This metric considers both precision and recall, addressing false positives and false negatives.
For all employed feature extractors, the F1-score is calculated. For the ALL-IDB1 dataset and the
RF classifier, the feature extractors VGG16, VGG19, Xception, Inception-ResNet-V2, Densenet, and
ResNet achieved F1-scores of 0.95, 0.91, 1, 0.95, 0.82, and 0.86, respectively. ALL-IDB2 was used for
the same steps of experimentation, yielding F1-scores of 0.86, 0.87, 0.91, 0.88, 0.74, and 0.88 for the
respective feature extractors. Additionally, the XGBoost classifier replaced RF, using the same feature
extractors. The F1-scores obtained for VGG16, VGG19, Xception, Inception-ResNet-V2, Densenet,
and ResNet were 0.95, 1, 1, 0.86, 0.95, and 0.86 for ALL-IDB1. When ALL-IDB2 was tested with
the same feature extractors and XGBoost classification, the observed F1-scores were 0.89, 0.91, 0.91,
0.88, 0.88, and 0.84 for VGG16, VGG19, Xception, Inception-ResNet-V2, Densenet, and ResNet,
respectively.

Another critical parameter for evaluating model performance is accuracy, which offers the number
of correct predictions relative to the total predictions. For the ALL-IDB1 and ALL-IDB2 datasets,
accuracy was calculated using various feature extractors and classifiers. The accuracy values for
feature extractors VGG16, VGG19, Xception, Inception-ResNet-V2, Densenet, and ResNet with
RF classifiers were 0.95, 0.909, 1, 0.88, 0.818, and 0.86 for the ALL-IDB1 dataset. For the ALL-
IDB2 dataset, the accuracy values were 0.86, 0.87, 0.907, 0.9545, 0.74, and 0.876 for these feature
extractors. XGBoost was another classifier employed in this study. The accuracy values for the
frameworks above were 0.95, 1, 1, 0.876, 0.95, and 0.86 for the ALL-IDB1 dataset. For the ALL-
IDB2 dataset, the accuracy values were 0.89, 0.907, 0.907, 0.86, 0.88, and 0.846 for VGG16, VGG19,
Xception, Inception-ResNet-V2, Densenet, and ResNet, respectively. Accuracy generally improved
with XGBoost over RF for most of the feature extractors.
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The proposed approach aims to be generalized and robust by testing on a real-image dataset with
multiple classes. AML, CLL, and CML sub-types of leukemia are diagnosed in the second step of
this work. Precision, recall, F1-score, and accuracy are the metrics for performance evaluation in this
phase. The values for feature extractors VGG16, VGG19, Xception, Inception-ResNet-V2, Densenet,
and ResNet were 0.88, 0.96, 0.95, 0.86, 0.96, and 0.88 with the RF classifier. For the XGBoost classifier,
these values were 0.94, 0.94, 0.97, 0.92, 0.95, and 0.89 for the same feature extractors. For recall, the
real-image dataset yielded values of 0.88, 0.96, 0.95, 0.86, 0.96, and 0.86 with RF. Using XGBoost,
the recall values were 0.94, 0.94, 0.97, 0.92, 0.95, and 0.89 for these feature extractors. The F1-score
was also calculated using both RF and XGBoost classifiers. The values were 0.88, 0.96, 0.95, 0.86,
0.96, and 0.86 with RF, and 0.94, 0.9, 0.97, 0.92, 0.95, and 0.89 with XGBoost for VGG16, VGG19,
Xception, Inception-ResNet-V2, Densenet, and ResNet, respectively. Accuracy, a crucial evaluation
metric, was calculated for all feature extractors, yielding values of 0.88, 0.96, 0.95, 0.86, 0.96, and 0.86
with RF, and 0.94, 0.9, 0.97, 0.92, 0.95, and 0.89 with XGBoost. The precision, recall, F1-score, and
accuracy metrics showed improvement with XGBoost over RF for most classifiers.

There are different state-of-the-art methods presented and experimented on by researchers for
the binary classification of leukemia cells. Rawat et al. [89] employed classical machine learning
algorithms, including Naïve Bayes, Decision Tree, SVM, and KNN, with accuracies ranging from
50% to a maximum of 88% for the CNN approach. Singhal et al. [43] utilized the SVM classifier
with LBP features, yielding an accuracy of 89.72%. Additionally, Singh et al. [67] and Ali et al. [66]
utilized the SVM and SVM with shape and texture features, respectively, and achieved accuracies of
93.75% and 89.80% on the same ALL-IDB dataset. Separately, Shahin et al. [90] applied WBCsNet,
Alexnet, and Lenet, achieving accuracies between 88% and 96%. In our experimentation, the presented
frameworks achieved an accuracy of 100% on the ALL-IDB dataset for binary classification. The
proposed approach was tested on a real-image dataset consisting of 520 images of leukemia sub-
classes, including AML, CML, and CLL. For this multi-class classification, the approaches achieved
an accuracy of 97.08%.

However, there are some concerns in this domain. The primary challenge with deep learning
approaches is the dataset size. Achieving desirable accuracy and performance metrics requires a vast
number of images. In medical imaging, there is a consistent constraint on the number of available
images. There are fewer images in the datasets we employed, ALL-IDB1 and ALL-IDB2. This dataset
is highly popular among researchers for leukemia diagnosis and is widely used. Another real-image
dataset used in this study comprises approximately 520 images. Due to the limited number of images,
relying solely on deep learning may not yield optimal results. Consequently, a hybrid approach
is proposed. This method uses established deep learning frameworks for feature extraction, while
classical machine learning algorithms handle the final classification. In detecting leukemia, which
is binary classification, our proposed method has shown promising precision, recall, F1-score, and
accuracy results. Another challenge in deep learning is the increased training time as the number of
epochs grows. However, in our method, DL classifiers are only used for feature extraction, meaning
their trainable parameters are considered zero across all frameworks. As a result, training and model
fitting occur solely in the final RF/XGBoost classification stage.

While various combinations of methods yield impressive accuracies and other metrics, Xception
Net combined with RF and XGBoost achieved the highest accuracy at 100%. In other instances, an
intriguing observation was that accuracy increased with XGBoost over RF classification. Observing
the real-image dataset has proven suitable for our methods, delivering impressive accuracies across
different strategies and peaking at 97.08% for multi-class classification with real dataset images. In this
study, leukemia classification occurs in two phases. First, using the publicly available ALL-IDB1 and
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two datasets, binary classification distinguishes between normal and infected images. In the second
phase, multi-class classification uses the real-image dataset to identify three leukemia sub-classes:
AML, ALL, and CLL. With the real-image accuracy nearing 97%, this method can be deemed robust
and generalized. As such, the proposed method might be valuable to researchers and professionals in
this field for leukemia sub-class predictions and expedited, accurate diagnoses.

7 Conclusions

A hybrid DL-ML framework is implemented for the diagnosis of leukemia and classification.
Classification is conducted in two ways: binary classification, with output predictions of cells as
normal or infected, and multi-class classification using a real-image dataset. Three sub-classes of
leukemia, AML, CML, and CLL, are considered. When comparing machine learning to deep learning
classification, deep learning is consistently ahead in terms of accuracy. Regarding leukemia diagnosis,
the primary constraint is dataset size. The widely used dataset, ALL-IDB, has a limited number of
images. Hence, the deep learning framework may become overfitted and deviate from its remarkable
accuracy. The same issue arises with the real-image dataset used, which contains approximately 520
images. Although this dataset is large, the deep learning framework requires more time to train the
network, especially when many trainable parameters exist. Popular frameworks like Xception, ResNet,
VGGnet, and Densenet possess many trainable parameters, leading to extended training times as
the number of epochs increases. Therefore, a hybrid approach combining deep learning and machine
learning is adopted for classification. Features are extracted using a deep learning classifier, including
convolutional neural networks and other frameworks such as VGGNet, Xception, Inception-ResNet-
V2, Densenet, and ResNet. Final classification is performed using state-of-the-art machine learning
classifiers, with RF and XGBoost chosen for the task. The proposed approach demonstrates an
improvement in leukemia diagnosis performance. Testing accuracies reached nearly 100% for the ALL-
IDB dataset and 96% for the real-image dataset in the current experimentation.
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