
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.031229

ARTICLE

ThyroidNet: A Deep Learning Network for Localization and Classification
of Thyroid Nodules

Lu Chen1,#, Huaqiang Chen2,#, Zhikai Pan7, Sheng Xu2, Guangsheng Lai2, Shuwen Chen2,5,6,
Shuihua Wang3,8, Xiaodong Gu2,6,* and Yudong Zhang3,4,*

1Ultrasonic Department, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
2School of Physics and Information Engineering, Jiangsu Second Normal University, Nanjing, 211200, China
3School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK
4Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, 21589, Saudi Arabia
5State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China
6Jiangsu Province Engineering Research Center of Basic Education Big Data Application, Jiangsu Second Normal University,
Nanjing, 211200, China
7School of Software Engineering, Quanzhou Normal University, Quanzhou, 362000, China
8Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China

*Corresponding Authors: Xiaodong Gu. Email: guxiaodong@jssnu.edu.cn; Yudong Zhang. Email: yudongzhang@ieee.org
#These authors contributed equally to this work. Lu Chen and Huaqiang Chen are considered co-first authors
Received: 23 May 2023 Accepted: 27 September 2023 Published: 30 December 2023

ABSTRACT

Aim: This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules
using deep learning techniques accurately. Methods: A novel method, ThyroidNet, is introduced and evaluated
based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask
TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the
DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of
the localization and classification tasks to help improve the model’s generalization ability. Third, we introduce
strategies for augmenting the data. Finally, we submit a novel deep learning model, ThyroidNet, to accurately
detect thyroid nodules. Results: ThyroidNet was evaluated on private datasets and was comparable to other
existing methods, including U-Net and TransUnet. Experimental results show that ThyroidNet outperformed
these methods in localizing and classifying thyroid nodules. It achieved improved accuracy of 3.9% and 1.5%,
respectively. Conclusion: ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports
medical image analysis tasks. Future research directions include optimization of the model structure, expansion of
the dataset size, reduction of computational complexity and memory requirements, and exploration of additional
applications of ThyroidNet in medical image analysis.
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1 Introduction
1.1 Background and Significance

A thyroid nodule is a localized mass within the thyroid gland that is typically painless and may be
benign or malignant. In recent years, the incidence of thyroid nodules has been steadily increasing [1],
significantly impacting people’s health and quality of life. Therefore, accurate and timely diagnosis of
thyroid nodules and the development of appropriate treatment plans are of paramount importance.
Ultrasonography is widely used in clinical practice to detect and evaluate thyroid nodules [2]. However,
the localization and classification of nodules still rely on the experience and judgment of medical
professionals, leading to potential errors. Therefore, developing highly automated, accurate, and
reliable methods for image localization and classification of thyroid nodules is of great clinical value [3].

1.2 Clinical Requirements for Thyroid Nodules
Clinical requirements for thyroid nodules [4] can be divided into two main aspects: first, accurate

localization of nodules to facilitate measurement of size, shape, and other characteristics to provide
evidence for clinical evaluation. Second, accurate classification of nodules, distinguishing between
benign and malignant nodules, serves as a reference for devising treatment plans. Traditional image
processing methods are challenged by image quality variability and the diversity of nodule shape and
density [5]. Therefore, developing novel methods that address the clinical need for thyroid nodule image
analysis is essential.

1.3 Application of Deep Learning in Medical Image Analysis
Deep learning technology has made significant advances in computer vision, natural language

processing [6], and other fields in recent years, particularly in image localization and classification
tasks, where it has demonstrated exceptional performance. Deep learning methods overcome the
limitations of manually designed features in traditional approaches by automatically learning complex
patterns within the data [7]. In medical image analysis, deep learning techniques have achieved
remarkable results [8], such as lung nodule detection and skin cancer detection [5]. Applying deep
learning to localizing and classifying thyroid nodules in medical image analysis undoubtedly has great
potential. Recently, some work has been done on the application of deep learning to thyroid imaging
diagnosis by our research group. Our aim is to verify whether our models could automatically locate
and classify thyroid nodules, and whether it could achieve the same high level of diagnostic accuracy
as that of experienced radiologists.

1.4 The Main Contributions of This Paper
The main contributions of this paper are as follows:

(1) In the multitask TransUNet, we propose combining the TransUnet encoder and decoder with
multitask learning [9].

(2) We propose DualLoss functions tailored to thyroid nodule localization and classification tasks,
balancing the learning of localization and classification tasks to improve the generalization ability of
the model [10].

(3) We introduce data augmentation strategies and validate their effectiveness [11].

(4) We submit a novel deep-learning model, ThyroidNet, to detect thyroid nodules accurately.

(5) ThyroidNet performs better than other mainstream thyroid nodule localization and classifica-
tion methods.
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In conclusion, we propose a ThyroidNet-based thyroid nodule detection that exploits the advan-
tages of deep learning in medical image analysis and provides robust technical support for clinical
diagnosis and treatment.

2 Related Works
2.1 Localization and Classification of Thyroid Nodule Image

In recent years, significant progress has been achieved in the research of thyroid nodule image
localization and classification [12]. Traditional localization and classification methods mainly rely on
manually designed features and various pattern recognition techniques, such as template matching
[13], clustering algorithms, and machine learning classifiers, such as support vector machines (SVM)
and decision trees.

However, these methods face challenges when processing complex thyroid nodule images, such
as unstable image quality and diversity in nodule shape and density [14]. To address these issues,
researchers have begun exploring deep-learning methods to facilitate thyroid nodule image localization
and classification performance. Some research groups also made progress on the application of
deep learning algorithms to thyroid ultrasound cancer diagnoses [15], and their experimental results
achieved a high level of accuracy compared with radiologist’s manual identification [16,17].

2.2 Deep Learning Models in Localization and Classification
Deep learning models, particularly convolutional neural networks (CNNs), have shown excellent

performance in image localization and classification tasks [18]. Among them, deep networks such
as VGG and ResNet have achieved remarkable results in classification tasks. In contrast, models
such as YOLO (You Only Look Once) and SSD (Single Shot MultiBox Detector) have shown their
effectiveness in object localization [19].

In medical image analysis, these deep learning models have been extensively applied to tasks such
as lung nodule localization and classification and other medical image analysis applications [20]. The
paper [15] proposed a kind of ensemble deep learning-based classification model (EDLC-TN) for
precise thyroid nodules localization. The work [16] developed and trained a deep CNN model called
the Brief Efficient Thyroid Network (BETNET) using 16,401 ultrasound images and demonstrates the
general applicability. Then a multiscale detection network for classifying thyroid nodules was proposed
with an attention-based method [17]. By exploiting the strength of these models, researchers aim to
develop more accurate and efficient methods for localization and classification tasks in medical image
analysis.

2.3 TransUnet
TransUnet is an innovative deep-learning architecture that combines the advantages of Trans-

former and U-Net models, specifically designed for thyroid nodule localization and classification
in medical image analysis [21]. This architecture consists of encoder and decoder modules, where
the encoder extracts high-level features from the input image combined with convolutional and
transformer layers.

The convolutional layers in TransUnet focus on capturing local information using local receptive
fields, allowing the model to learn fine-grained details of the thyroid nodules. This allows TransUnet
to capture medical images’ intricate features and subtle patterns effectively [22].

What sets TransUnet apart is the integration of Transformer layers, which excel at capturing long-
range dependencies and global contextual information through their self-attention mechanism [23].
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This mechanism allows the model to consider relationships between spatially distant regions of the
input image, resulting in a more comprehensive understanding of the overall structure and context of
the image [24].

By combining local and global feature extraction, TransUnet enhances its ability to localize and
classify thyroid nodules accurately, overcoming the limitations of traditional methods that rely solely
on local features. This capability is significant in medical image analysis, where thyroid nodules exhibit
shape, density, and image quality variations.

Integrating Transformer and U-Net into TransUnet provides a powerful framework for accurately
analyzing thyroid nodules. The U-Net-like decoder maps the high-level features back into the original
image space, enabling pixel-level segmentation and precise localization of thyroid nodules [25].
Combining convolutional and transformer layers allows TransUnet to capture local detail and global
context, improving segmentation and localization performance.

2.4 Multitask Learning in Medical Image Analysis
Multitask learning has emerged as a promising approach in the field of medical image analysis,

aiming to improve the performance and generalization of deep learning models by jointly optimizing
multiple related tasks [26]. By exploiting the inherent relationships between tasks, multitask learning
can effectively address the challenges posed by limited labeled data and complex dependencies between
medical image analysis tasks [27].

There are often multiple tasks of interest in medical image analysis, such as segmentation,
classification, and localization [28]. Traditionally, these tasks have been treated as separate and
independent problems, leading to suboptimal performance and limited knowledge transfer between
tasks. On the other hand, multitask learning provides a solution by enabling the model to learn shared
representations that capture task-specific and shared information [29].

By learning multiple tasks together, the model can benefit from the complementary information in
the data, leading to improved performance on each task. For example, in thyroid nodule analysis, the
nodule localization and classification tasks are closely related. Accurate localization is critical for accu-
rate classification and vice versa. Multitask learning allows the model to exploit the interdependencies
between these tasks, leading to improved performance in both localization and classification [30].

In addition, multitask learning offers the advantage of improved generalization. By learning
from multiple related tasks simultaneously, the model can better capture the underlying patterns and
structures in the data, resulting in improved performance on unseen samples [31]. This is particularly
valuable in medical image analysis, where labeled data is often limited, and acquiring new labeled
samples can be challenging.

Several strategies can be used to implement multitask learning effectively. One common approach
is to share the initial layers of the network across tasks, allowing the model to learn common
representations [29]. This facilitates knowledge transfer between tasks and promotes the discovery
of task-specific features in subsequent layers.

Appropriate loss functions and regularization techniques can be used to balance the learning
process across tasks. This ensures that the model does not favor one task over the other and achieves
a good trade-off between task-specific and shared representations.

Overall, multitask learning holds great promise for medical image analysis tasks. Jointly opti-
mizing multiple tasks allows the model to exploit the relationships and dependencies between them,
improving performance and generalization. In the context of thyroid nodule analysis, multitask
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learning can improve localization, classification, and other related tasks, ultimately providing more
accurate and reliable diagnostic capabilities for medical professionals [32].

3 Methodology of Proposed ThyroidNet
3.1 Datasets and Preprocessing
3.1.1 Source and Composition of the Dataset

The thyroid nodule dataset used in this study is a private dataset derived from ultrasound images
provided by the ultrasound department of Zhongda Hospital, affiliated with Southeast University,
Nanjing, Jiangsu, China. The judgment of patient images is done by professional radiologists. The
dataset contains 600 thyroid nodule images, covering six categories of a thyroid nodule, including
no nodule, benign possible, low suspicious, moderately suspicious, highly suspicious, and highly
malignant, as shown in Fig. 1, with 100 images for each type of nodule. In addition, the dataset includes
nodules of different shapes, sizes, and densities, which is conducive to training models with a strong
generalization ability to meet the needs of practical clinical applications in the hospital.

Figure 1: Six types of thyroid nodules in the dataset

3.1.2 Data Preprocessing

Data preprocessing is essential in training ThyroidNet to improve the model’s effectiveness. In this
study, several preprocessing methods were employed to ensure the quality and suitability of the dataset
for training the deep learning model.

Normalization: Normalization is used to standardize pixel values to account for variations in
brightness and contrast between images. By dividing each pixel value by 255, the pixel values are
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rescaled to a range between 0 and 1. This normalization process eliminates differences in image
intensities, allowing the model to concentrate on the relevant features of the thyroid nodules rather
than being influenced by intensity variations.

Cropping: Cropping is performed on the original images to reduce computational complexity
and memory requirements without compromising the integrity of the nodules [33]. A fixed size of
256 × 256 pixels is chosen for the cropped images in this study. The cropping area is determined based
on the nodule boundary boxes, ensuring the nodules are centered within the cropped images. This
cropping strategy helps to standardize the input size and allows the model to focus on the region of
interest, facilitating accurate localization and classification of the nodules.

Data pre-processing plays a crucial role in preparing the dataset for training ThyroidNet. The
normalization step reduces the impact of intensity variations, allowing the model to learn meaningful
patterns and features. Cropping images to a fixed size reduces computational complexity and ensures
that nodules are prominently represented in the input data. These pre-processing techniques contribute
to the overall performance of ThyroidNet by improving its ability to diagnose thyroid nodules
accurately.

3.2 Multitask TransUNet
To address thyroid nodules’ localization and classification tasks, we propose a multitask learning

approach using a modified version of the TransUNet architecture. Our model, named ThyroidNet,
combines the strengths of TransUNet for localization with an additional classification branch,
allowing simultaneous learning of features relevant to both tasks and improving overall performance.

In the proposed multitask TransUNet, we exploit the encoder-decoder architecture of TransUnet.
The encoder module extracts high-level features from the input image using a combination of convolu-
tional and transform layers. These layers allow ThyroidNet to extract local and global information for
accurately localizing and classifying thyroid nodules. The encoder module is formulated as follows (1):⎧⎨
⎩

hl
i = ConvLayer(hl−1

i )

zl
i = MHSA(hl

i)

hl
i = LayerNorm(zl

i + hl−1
i )

(1)

where hl
i the i-th encoder layer output at level l, ConvLayer denotes the convolutional layer, MHSA

refers to the Multi-Head Self-Attention mechanism, and LayerNorm represents the layer normaliza-
tion operation.

In the decoder module, we introduce two separate branches: one for nodule localization and
the other for nodule classification. The localization branch aims to generate precise spatial maps
highlighting the exact locations of thyroid nodules within the input image. The classification branch,
on the other hand, focuses on assigning labels to the detected nodules.

The localization branch is formulated as follows (2):⎧⎨
⎩
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where dl
i represents the output of the i-th decoder layer at level l, UpConv denotes the up-sampling

convolutional layer, and Concat represents the concatenation operation.
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The classification branch is formulated as follows (3):⎧⎨
⎩
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(3)

where cl
i represents the output of the i-th classification layer at level l.

The shared encoder parameters facilitate knowledge transfer between the localization and classi-
fication tasks, allowing the model to learn robust representations that capture task-specific and shared
information. This sharing of encoder parameters increases learning efficiency and enables the model
to exploit the complementary information present in the data [34].

By jointly optimizing both tasks within a single model, ThyroidNet can exploit the interdepen-
dencies between localization and classification, improving performance in both tasks. The shared
encoder architecture enables the model to learn rich, discriminative features that benefit localization
and classification.

Furthermore, the decoder module introduces a novel attention mechanism called Multi-Head Self-
Attention (MHSA) [35] within the decoder module. MHSA allows ThyroidNet to pay attention to
different regions of the input image simultaneously, thereby improving localization and capturing fine-
grained details of thyroid nodules. This attention mechanism enhances the model’s ability to focus
on informative regions while suppressing irrelevant background regions, thereby improving overall
performance.

3.3 Proposed DualLoss Function
The DualLoss function is a crucial component in ThyroidNet, designed to strike a balance between

the learning of localization and classification tasks, thereby enhancing the model’s generalization
ability. It is achieved by combining two separate loss functions, one for each task: the localization
loss (L_loc) and the classification loss (L_class) [36].

Localization Loss (L_loc): The localization loss is a critical metric for evaluating the model’s
performance in accurately identifying the spatial position of thyroid nodules within medical images.
It quantifies the discrepancy between the ground truth localization map, which represents the
true locations of thyroid nodules, and the predicted localization map, which indicates the model’s
estimation of nodule locations. The Dice loss function is a widely-used pixel-wise loss metric for this
purpose (4).⎧⎨
⎩

L_loc = 1 − DSC(A, B)

DSC(A, B) = 2 ∗ |A ∩ B|
|A| + |B|

(4)

This loss function effectively captures the model’s performance in localizing thyroid nodules
within medical images by measuring the agreement between the predicted and ground truth localiza-
tion maps [37]. ThyroidNet aims to improve its ability to accurately localize thyroid nodules in medical
images by optimizing this loss during training.

Classification Loss (L_class): The classification loss evaluates the model’s performance in correctly
identifying the category of thyroid nodules in the images. It measures the dissimilarity between the
ground truth labels and the predicted class probabilities. The multi-class cross-entropy loss is a widely
used loss metric for multi-class classification problems. In this case, the classification loss is combined
with the Dice loss function to form a modified loss function (5).
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L_class = 1
N

∗
N∑

i=1

(
C∑

j=1

(
yij ∗ log(pij) ∗ l_loc + (1 − yij) ∗ log(1 − pij) ∗ (1 − L_loc)

))
(5)

Here, L_class denotes the modified classification loss, L_loc represents the Dice loss function for
localization, and N is the total number of samples. The variables yij and pij stand for the true label
for the j-th class of the i-th sample (1 if the true class, 0 otherwise) and the predicted probability for
the j-th class of the i-th sample, respectively. The outer summation

∑
iterates over all samples in the

dataset (from i = 1 to N), while the inner summation
∑

iterates over all the classes in the problem
(from j = 1 to C).

Incorporating the Dice loss function, the modified multi-class cross-entropy loss considers
the model’s classification and localization performance [38]. This joint loss function evaluates the
model’s ability to classify thyroid nodules accurately while considering the localization information.
ThyroidNet aims to improve its performance in classifying and localizing thyroid nodules within
medical images by minimizing this combined loss during training.

DualLoss: The DualLoss Function combines the Localization Loss (L_loc) and the modified
Classification Loss (L_class). It is designed to optimize both localization and classification tasks
simultaneously during the training process of ThyroidNet. The DualLoss Function can be defined
as follows (6).

DualLoss = α ∗ L_loc + β ∗ L_class (6)

In this equation, α and β are weight parameters that balance the contributions of the localization
loss (L_loc) and the modified classification loss (L_class) to the overall DualLoss Function. By
minimizing the DualLoss Function, ThyroidNet aims to improve its performance in accurately
localizing and classifying thyroid nodules in medical images. The model adjusts the weight parameters
α and β according to the application’s requirements, ensuring an optimal balance between localization
and classification performance [39].

3.4 Data Augmentation Strategy
In order to further enhance the model’s generalization ability, we adopt a data augmentation strat-

egy [11]. Data augmentation generates new training samples through various image transformations,
thus enlarging the scale of the training set. In this study, we used the following data augmentation
methods:

Rotation: The image is rotated at random angles, ranging from −15 to 15 degrees. This helps the
model adapt to nodular images from different angles.

Translation: The image is translated horizontally and vertically at random with a range of 5% of
the image width and height. This helps the model adapt to different positions of the nodules in the
image.

Zoom: The image is randomly scaled with a range of 0.9 to 1.1 times. This helps the model adapt
to nodules of different sizes.

Flip: The image is flipped horizontally. This helps the model adapt to nodules in diverse
directions [40].

Contrast and brightness adjustment: The image is randomly adjusted for contrast and brightness,
varying from 0.8 to 1.2 times. This helps the model adapt to images with different contrast and
brightness [41].
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Using these data enhancement methods, as shown in Fig. 2, we can significantly improve the
model’s generalization ability and enhance its performance when handling actual clinical data.
Simultaneously, data augmentation also is used to reduce overfitting and improve model performance
on validation and test sets [42]. In the subsequent experiments, we will evaluate the effects of numerous
data augmentation methods on ThyroidNet’s performance to select the best augmentation strategy.

Figure 2: Thyroid nodule image enhancement

3.5 Architecture of ThyroidNet
ThyroidNet’s specific structure is shown in Fig. 3. ThyroidNet is an advanced deep learning archi-

tecture designed to localize and accurately classify thyroid nodules in medical images. By leveraging
the strengths of TransUnet, the model effectively captures local and global features to enhance its
performance [43]. Multitask Learning is employed to optimize localization and classification tasks
simultaneously, allowing the model to learn features relevant to both tasks concurrently [44].

The DualLoss function, combining Localization Loss (L_loc) and the modified Classification
Loss (L_class), plays a crucial role in balancing learning localization and classification tasks. This
approach ensures the optimization of both tasks, leading to improved performance in accurately
localizing and classifying thyroid nodules in medical images.

By refining its performance in localizing and classifying thyroid nodules, ThyroidNet has the
potential to significantly contribute to advancing medical imaging and diagnosis in the field of thyroid
disease.
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Figure 3: ThroidNet neural network architecture diagram

The ThyroidNet is an innovative deep learning-based method developed for thyroid nodule
localization and classification tasks. Its design is motivated by the need to address the challenges
associated with the efficient and accurate detection of thyroid nodules in medical images. The key
components of ThyroidNet’s neural network structure are as follows:

Integration of TransUnet: ThyroidNet leverages the TransUnet architecture, which combines the
Transformer and U-Net models. The Transformer architecture, originally introduced for natural lan-
guage processing tasks, has shown remarkable capabilities in capturing long-range dependencies and
learning contextual information. By incorporating Transformer blocks into the U-Net, ThyroidNet
can effectively model global context while retaining the excellent feature extraction capabilities of
U-Net for image segmentation.

Multitask Learning: To unify the localization and classification tasks and improve the overall
performance of ThyroidNet, multitask learning is employed. The network is trained jointly to simulta-
neously perform both tasks, with shared feature representations. This enables the model to leverage the
complementary information from localization and classification tasks, leading to enhanced detection
and better classification of thyroid nodules.

Data Augmentation Strategies: ThyroidNet utilizes various data augmentation techniques to
augment the training dataset. Augmentation includes image rotations, flips, zooming, and other
transformations, which help improve the model’s ability to generalize to diverse real-world clinical
data. This ensures that ThyroidNet remains robust and effective even when dealing with variations in
image appearances and nodule characteristics.
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DualLoss Function: The loss function used in ThyroidNet, referred to as DualLoss, is designed to
handle both localization and classification tasks jointly. The DualLoss combines the Dice loss, which
is well-suited for segmentation tasks, and the cross-entropy loss, commonly used in classification tasks.
This combination enables ThyroidNet to effectively optimize the model for both tasks simultaneously,
striking a balance between accurate localization and precise classification.

3.6 Experimental Design
3.6.1 Experimental Settings

Hardware environment: We experimented on a computer equipped with an NVIDIA GeForce RTX
3090 graphics card, 64 GB of RAM, and an Intel Core i9-10900K processor.

Software environment: We used the Python programming language for model implementation,
using the PyTorch deep learning framework. We also used the OpenCV library for image processing
and the Scikit-learn library for evaluation metrics.

Training parameters: When training ThyroidNet, we adopted the following parameter settings: a
learning rate of 10−4, a batch size of 64, and 500 training epochs.

3.6.2 Selection of Comparative Methods

To evaluate the performance of ThyroidNet, which integrates TransUnet for localization and
multitask learning for the classification of six categories of thyroid nodules (including five positive
categories), we selected the following comparison methods:

U-net-based method: Comparing ThyroidNet with the classic U-net allowed us to evaluate the
impact of incorporating TransUnet and multitask learning [17].

TransUnet-based method: We compared ThyroidNet with the original TransUnet to evaluate the
effect of incorporating multitask learning for classification tasks [19].

Traditional image segmentation methods: ThyroidNet was also compared with traditional methods
based on threshold segmentation to illustrate the superiority of deep learning methods in thyroid
nodule segmentation and classification tasks.

In addition, we compared the performance of ThyroidNet and the following models on the
datasets in this experiment:

FCN: ThyroidNet is compared with FCN as a benchmark model to assess the improvements
achieved by incorporating TransUnet and multitask learning for thyroid nodule localization and
classification tasks [45].

Mask R-CNN: Mask R-CNN is compared with ThyroidNet to explore the advantages and disad-
vantages of instance-level segmentation methods for thyroid nodule localization and classification [46].

SegNet: SegNet and ThyroidNet are compared to investigate the impact of different model
architectures on thyroid nodule localization and classification tasks [47].

DeepLab: DeepLab is another model to compare with ThyroidNet to investigate the benefits of
multiscale feature extraction for thyroid nodule localization and classification [48].

Finally, we tested the performance of ThyroidNet on different datasets to thoroughly evaluate its
applicability and effectiveness in different scenarios.



372 CMES, 2024, vol.139, no.1

3.6.3 Evaluation Metrics

We used the following metrics to evaluate the performance of the model in the thyroid nodule
localization and classification tasks [49]:

Dice: The Dice coefficient measures segmentation quality ranging from 0 to 1. A higher Dice
coefficient indicates more agreement between segmentation results and ground-truth annotations.

Accuracy: Accuracy is an evaluation metric for classification tasks, representing the proportion of
samples correctly classified by the model out of the total number of samples.

Precision: Precision is an evaluation metric for classification tasks and represents the proportion
of true positive cases correctly identified by the model out of all samples identified as positive cases by
the model.

Recall: Recall is an evaluation metric for classification tasks and represents the proportion of
true positive cases correctly identified by the model out of all confirmed positive cases (covering five
categories of thyroid nodules).

F1: The F1 score is the harmonic mean of precision and recall and is used to evaluate the
classification model’s performance comprehensively. The F1 score ranges from 0 to 1, with values
closer to 1 indicating better model performance.

In this study, we will separately calculate the performance metrics of ThyroidNet for different
tasks, including the Dice coefficient, accuracy, precision, recall, and F1 score. At the same time, we
will compare ThyroidNet with various control methods to comprehensively evaluate the performance
of ThyroidNet. Through the above experimental design and evaluation metrics, we aim to explore in
depth the performance of ThyroidNet in the localization and classification of thyroid nodules and
provide further validation of its potential value in clinical applications. In addition, this study will
provide valuable insights and guidance for future research in related areas.

By incorporating TransUnet for localization and multitask learning for classification, we aim
to provide an efficient and accurate thyroid nodule localization and classification method. The
experimental design and evaluation metrics used in this study will help validate the performance
and potential value of ThyroidNet in clinical applications, providing valuable insights and guidance
for researchers and medical professionals working in thyroid nodule detection and related areas. By
comparing ThyroidNet with various control methods and models, we will highlight the benefits of
integrating TransUnet and multitask learning in thyroid nodule localization and classification tasks.

4 Experiments
4.1 Comparison of Localization and Classification Performance of ThyroidNet

Table 1 compares different models’ localization and classification performance, including Thy-
roidNet, U-Net, TransUnet, traditional image segmentation methods, FCN, Mask R-CNN, SegNet,
and DeepLab. The evaluation metrics used for comparison include the Dice coefficient, accuracy,
precision, recall rate, and F1 score [19,50,51].

It is important to note that the reported performance of each model in Table 1 is contingent
upon their specific training methodologies, with variations in the utilization of augmented data
during training. However, ThyroidNet, in particular, achieved remarkable results by incorporating
TransUnet and multitask learning. This led to significant improvements in the Dice coefficient,
accuracy, precision, recall rate, and F1 score compared to U-Net, TransUnet-based, and traditional
image segmentation methods.
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Table 1: The localization and classification performance comparison of different models

Dice Accuracy Precision Recall F1

ThyroidNet 0.957 0.950 0.984 0.971 0.976
U-Net 0.918 0.911 0.918 0.916 0.917
TransUnet 0.942 0.935 0.946 0.942 0.944
Traditional 0.782 0.796 0.804 0.773 0.788
FCN 0.901 0.896 0.905 0.900 0.902
Mask R-CNN 0.936 0.930 0.942 0.940 0.939
SegNet 0.875 0.872 0.879 0.871 0.875
DeepLab 0.922 0.916 0.928 0.916 0.922

ThyroidNet demonstrated a Dice coefficient of 0.957, accuracy of 0.950, precision of 0.984, recall
rate of 0.971, and an F1 score of 0.976. In contrast, U-Net, TransUnet, traditional image segmentation
methods, FCN, Mask R-CNN, SegNet, and DeepLab achieved lower scores across these metrics. These
results indicate the superior performance of ThyroidNet in localizing and classifying thyroid nodules.

Moving on to Table 2, it compares the localization and classification performance on different
datasets. ThyroidNet consistently exhibited excellent performance across various datasets. Moreover,
ThyroidNet achieved a comparable or even better performance than other models on each dataset, as
reflected by the Dice coefficient, accuracy, precision, recall rate, and F1 score.

Table 2: The localization and classification performance comparison of different data sets

Dice Accuracy Precision Recall F1

Private Dataset 0.957 0.950 0.984 0.971 0.976
TirAds 0.937 0.933 0.940 0.938 0.937
MASS 0.928 0.923 0.934 0.931 0.933
MIMT 0.914 0.908 0.918 0.912 0.914
CameLyon-16 0.936 0.932 0.940 0.937 0.938
MEDI 0.942 0.937 0.950 0.940 0.945
BimCv 0.894 0.887 0.901 0.893 0.898
ImageCLEFmed 0.927 0.922 0.934 0.930 0.930

The results presented in Tables 1 and 2 demonstrate the outstanding performance of ThyroidNet.
By incorporating TransUnet and multitask learning, ThyroidNet outperformed other models regard-
ing the localization and classification of thyroid nodules. These findings emphasize the effectiveness
of the proposed methodology and highlight the suitability of ThyroidNet for tasks involving thyroid
nodule localization and classification.
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4.2 Performance of the Model under Different Data Augmentation Strategies, Network Structure
Adjustments, and Loss Function Design

We further investigated the performance of ThyroidNet, now based on TransUnet and multi-
task learning for thyroid nodule localization and classification, under different data augmentation
strategies, network structure adjustments, and loss function designs. Table 3 shows the performance
comparison for these scenarios:

Table 3: Performance comparison under different strategies, adjustments, and designs

Model Dice Accuracy Precision Recall F1

ThyroidNet (No augmentation) 0.930 0.925 0.935 0.931 0.933
ThyroidNet (No MT) 0.942 0.935 0.946 0.942 0.944
ThyroidNet (Original loss) 0.948 0.940 0.958 0.950 0.954
ThyroidNet 0.957 0.950 0.984 0.971 0.976

The generalization ability of ThyroidNet is significantly improved when the data augmentation
strategy is applied, as evidenced by the increase in the Dice coefficient, accuracy, precision, recall, and
F1 score compared to the model without data augmentation.

In addition, when trying different network structure adjustments, we found that combining
TransUnet with multitask learning (MT) further optimized model performance, leading to better
evaluation metrics.

Finally, we investigated the effects of discrete loss function designs on model performance. We
found that an appropriate loss function design (DualLoss: (7)) can help the model better balance
localization and classification tasks, resulting in higher evaluation metrics than the alternative loss
function (OriginalLoss: (7)).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L_loc = 1 − 2 ∗ |A ∩ B|
|A| + |B|

OriginalLoss = α ∗ L_loc + β ∗
(

− 1
N

∗
N∑

i=1

(
C∑

j=1

(
yij ∗ log(pij) + (1 − yij) ∗ log(1 − pij)

)))

DualLoss = α ∗ L_loc + β ∗
(

− 1
N

∗
N∑

i=1

(
C∑

j=1

(
yij ∗ log(pij) ∗ L_loc + (1 − yij) ∗ log(1 − pij) ∗ (1 − L_loc)

)))

(7)

These findings support the importance of selecting appropriate data enrichment strategies,
network structure adjustments, and loss function designs to optimize the performance of ThyroidNet
in thyroid nodule localization and classification.

4.3 Performance Differences of the Models in Different Categories of Thyroid Nodules
We also assessed the performance differences of the models for different categories of thyroid

nodules. Table 4 shows that ThyroidNet has a high recognition ability across distinct categories
of thyroid nodules. However, the model’s performance slightly decreased in some categories, such
as nodules with lower contrast or smaller size. This suggests that ThyroidNet still has room for
improvement when dealing with these challenging nodules.
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Table 4: The performance difference of different types between thyroid nodules

Dice Accuracy Precision Recall F1

Benign possible 0.932 0.960 0.970 0.958 0.961
Low suspicious 0.972 0.950 0.977 0.973 0.973
Moderately suspicious 0.966 0.900 0.984 0.982 0.982
Highly suspicious 0.948 0.930 0.965 0.980 0.969
Highly malignant 0.953 0.960 0.971 0.981 0.971

4.4 Visual Presentation of Model Performance
We used the confusion matrix visualization method to demonstrate the model’s performance [52].

The performance of ThyroidNet on the classification tasks of different thyroid nodules can be seen
from the confusion matrix in Fig. 4. The confusion matrix shows that most nodules were correctly
classified, and only a few were misclassified. This proves that the model has a high classification
accuracy.

Figure 4: Confusion matrix

In conclusion, ThyroidNet performs well in the localization and classification of thyroid nodules.
ThyroidNet significantly improves the evaluation metrics compared to other methods. Experiments
with different data augmentation strategies, network structure adjustments, and loss function designs
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show that the model has a better generalization ability and performance optimization potential
[53]. Although the model’s performance decreased slightly on certain difficult nodes, the overall
performance was still very satisfactory. The visualization of the confusion matrix further confirmed
the superior performance of ThyroidNet in the segmentation and classification of thyroid nodules.

Regarding the numbers in Fig. 4, it is crucial to explain the sum of values in each row being 10, as
it relates to the composition of our dataset. Our dataset consists of six distinct types of thyroid nodules,
with 100 images per type, and the test set constitutes ten percent of the entire dataset. Therefore, the
confusion matrix reflects these proportions accurately.

The model successfully focused on the thyroid nodule areas in the ultrasound images. As seen in
Figs. 4 and 5, the blue box area denotes the thyroid nodule location, and the heat map represents the
visual location result.

Figure 5: Localization of thyroid nodules. The blue circle is the location of the thyroid nodules, and
the heat map represents the visualization results. Each column shows the same ultrasound image. The
cold tone region of the visualization image is the most important part that our model could recognize

5 Discuss and Future Work
5.1 The Potential Value of ThyroidNet in Clinical Application

ThyroidNet demonstrates strong performance in the localization and classification of thyroid
nodules with high accuracy. This gives ThyroidNet significant potential value in clinical applications.
By automatically and accurately identifying and classifying thyroid nodules, ThyroidNet helps reduce
the risk of misdiagnosis and missed diagnoses and improves the effectiveness of clinical diagnosis
[54]. In addition, ThyroidNet can help clinicians develop more appropriate treatment plans, thereby
improving patient outcomes and quality of life.

5.2 Compare the Pros and Cons of Other Methods
ThyroidNet has several advantages over U-Net, TransUnet-based methods, and traditional image

segmentation methods:

Applying TransUnet and multitask learning improves the model’s handling of thyroid nodule
localization and classification tasks.
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Using data enhancement strategies improves the model’s generalization ability, making it more
suitable for actual clinical data processing.

Proper loss function design allows the model to balance localization and classification tasks,
improving overall performance [55].

However, other methods have advantages in certain aspects. For example, traditional image
segmentation methods are more suitable for resource-constrained scenarios due to their low com-
putational complexity and memory requirements [56].

5.3 Limitations and Challenges of the Method
Despite the remarkable performance of ThyroidNet in the tasks of localization and classification

of thyroid nodules using TransUnet and multitask learning, some limitations and challenges remain:

The model’s performance slightly decreases when dealing with low-contrast or small nodules,
suggesting that ThyroidNet has room for improvement when dealing with these challenging nodules.

Limited by the training dataset size, the model may need to be able to generalize sufficiently when
confronted with more complex and diverse clinical data [57].

ThyroidNet has relatively high computational complexity and memory requirements, which may
make it unsuitable for certain resource-constrained scenarios [58].

5.4 Future Research Directions and Applications
Considering the above limitations and challenges, future research directions and applications can

be explored from the following perspectives:

Optimization of the model structure: The model structure can be improved to improve the
performance on low contrast or small-size nodules. For example, introducing multiscale feature fusion
allows the model to capture detailed and global information.

Expanding the dataset size: To increase the generalization ability of the model, a larger dataset can
be constructed by collecting more thyroid nodule data [59]. At the same time, increasing data diversity
helps the model to better adapt to actual clinical data.

Reduce computing complexity and memory requirements: In resource-constrained scenarios,
lightweight model structures can be developed to reduce computational complexity and memory
requirements [60]. In addition, model compression and distillation techniques can be used to maintain
performance while reducing resource requirements.

Multi-modal data fusion: As different imaging techniques can provide different information,
multimodal data (e.g., ultrasound, CT, MRI, etc.) can be fused [61] further to improve the localization
and classification performance of thyroid nodules.

Broadening the scope of application: ThyroidNet can be applied to other medical image localization
and classification tasks, such as lung nodules and liver tumors, to explore the universality and
adaptability of the model in different domains.

In conclusion, ThyroidNet performs well in the localization and classification of thyroid nod-
ules, providing robust support for clinical diagnosis and treatment. By continuously optimizing the
model structure, expanding the dataset size, reducing the computational complexity and memory
requirements, and expanding the application domain, ThyroidNet is expected to provide constructive
solutions for more medical image analysis tasks in the future.
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6 Conclusion

This paper presents ThyroidNet, an innovative deep learning-based thyroid nodule localization
and classification method. ThyroidNet unifies the localization and classification tasks by incor-
porating TransUnet and multitask learning, thus facilitating efficient and accurate thyroid nodule
detection. The experimental section details the design, evaluation metrics, and performance analysis
of ThyroidNet. The experimental findings show that ThyroidNet outperforms other techniques in
terms of thyroid nodule localization and classification accuracy.

This paper’s primary contributions are as follows:

ThyroidNet, a groundbreaking deep learning approach, has been devised to locate and classify
thyroid nodules precisely. By integrating TransUnet and multitask learning, ThyroidNet achieves
significant performance improvements in thyroid nodule localization and classification tasks.

We are enhancing ThyroidNet’s performance through data augmentation strategies, network
structure refinements, and loss function (DualLoss) design, resulting in a model with robust gener-
alization capabilities suitable for handling real-world clinical data.

A comprehensive comparison of ThyroidNet with other methods, including U-Net-based,
TransUnet-based, traditional image segmentation methods, FCN, Mask R-CNN, SegNet, and
DeepLab, was conducted, revealing the superior performance of ThyroidNet in terms of accuracy
in the localization and classification of thyroid nodules. Furthermore, examining the variation in
performance across various categories of thyroid nodules offers valuable insights that can be utilized
to enhance and refine the model in future iterations.

An exploration of ThyroidNet’s potential value in clinical practice, highlighting its ability to
reduce the risk of misdiagnosis and missed diagnoses, increase diagnostic efficiency, and support the
formulation of personalized treatment plans.

Despite the impressive results of ThyroidNet in the localization and classification of thyroid
nodules, there are still limitations and challenges to be addressed. Future research may include
optimizing the model structure, increasing the dataset size, reducing computational complexity and
memory requirements, and exploring applications in other medical imaging domains. By continuously
refining and expanding its capabilities, ThyroidNet is expected to provide valuable solutions for
various medical image analysis tasks and advance the medical imaging field by continuously refining
and expanding its capabilities.
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