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ABSTRACT

We are investigating the distributed optimization problem, where a network of nodes works together to minimize
a global objective that is a finite sum of their stored local functions. Since nodes exchange optimization parameters
through the wireless network, large-scale training models can create communication bottlenecks, resulting in
slower training times. To address this issue, CHOCO-SGD was proposed, which allows compressing information
with arbitrary precision without reducing the convergence rate for strongly convex objective functions. Never-
theless, most convex functions are not strongly convex (such as logistic regression or Lasso), which raises the
question of whether this algorithm can be applied to non-strongly convex functions. In this paper, we provide the
first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives. We derive
a sufficient condition, which limits the fidelity of compression, to guarantee convergence. Moreover, our analysis
demonstrates that within the fidelity threshold, this algorithm can significantly reduce transmission burden while
maintaining the same convergence rate order as its no-compression equivalent. Numerical experiments further
validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and
keeps the same convergence rate order simultaneously. And experiments also show that the algorithm fails to
converge with low compression fidelity and in time-varying topologies. Overall, our study offers valuable insights
into the potential applicability of CHOCO-SGD for non-strongly convex objectives. Additionally, we provide
practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
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1 Introduction

In modern machine learning problems, datasets are frequently too large to be processed by
a single machine or may be distributed across multiple computing nodes due to legal restrictions
or cost considerations. In such scenarios, distributed learning has emerged as a viable solution to
train models in a decentralized fashion. Each computing node trains on its local data samples, and
communicates with other nodes to exchange information and update model parameters. This approach
can significantly reduce processing time and has gained increasing attention in recent years.
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Formally, we consider an optimization problem of the form

x∗ = arg min
x∈Rd

[
f (x) = 1

n

n∑
i=1

fi(x)
]
, (1)

where fi : R
d → R is the local objective function of computing node (alternatively referred to as a

worker) i for i ∈ {1, · · · , n}, x usually refers to the neural network model parameter, and each fi is
determined by the local dataset of node i, i.e.,

fi(x) = 1
mi

mi∑
j=1

Fi(x, ζj), (2)

where mi denotes the number of data samples of node i, ζj represents one data sample, and Fi : Rd ×
� → R is the loss function. For example, in a regression problem, a square loss function is commonly
used as Fi(·).

Consensus-based gradient descent algorithms are extensively researched and employed in dis-
tributed learning owing to their simplicity and efficiency. These algorithms enable nodes to exchange
parameters with neighboring nodes and incorporate new information from received messages to drive
the parameters toward the global average parameter value. Meanwhile, each node computes gradients
using its local data samples and updates its parameters using the gradient descent methods.

One limitation of these algorithms is the requirement for exact parameter transmission among
nodes, which can be challenging in scenarios where there are restrictions on data transmission amount
or high communication latency (e.g., with large neural networks [1] or limited network bandwidth). In
such cases, compressing the parameters becomes necessary. However, parameter compression usually
results in a decrease in the convergence rate. To address this challenge, Koloskova et al. proposed
CHOCO-SGD [2], which was a compressed distributed algorithm designed for strongly convex
objective functions. CHOCO-SGD allows for both biased and unbiased compression operators
and can achieve arbitrary compression precision. Arbitrary compression precision means that any
compression fidelity 0 < ω ≤ 1 (w = 1 indicating no compression) can guarantee the same
convergence rate order as the no-compression equivalent.

However, strong convexity is a restrictive assumption that may not hold in various practical
applications, such as in operations research and machine learning. For instance, consider the Lasso

problem [3] with an objective function represented as
∑m

i=1

1
2
(〈di, x〉− li)

2 +β‖x‖1, where i ∈ {1, · · · , m}
denotes the data index, β denotes the regularization coefficient, and di and li represent data features
and labels, respectively. In this case, each component function is non-strongly convex, as well as
the global objective. Another well-known example is logistic regression [4], where the objective is∑m

i=1 log(1 + exp(−li〈di, x〉). Therefore, it is crucial to investigate the behavior and performance of
CHOCO-SGD for objectives that are non-strongly convex in nature. The main contributions are
summarized as follows:

• We establish a compression fidelity bound for CHOCO-SGD, ensuring its convergence over
non-strongly convex functions. This criterion serves as a valuable guideline for researchers and
engineers when applying CHOCO-SGD in practical scenarios.

• We rigorously prove that within the compression fidelity threshold, CHOCO-SGD achieves the
same convergence rate order as DSGD over non-strongly convex objectives, and compression
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fidelity only affects the higher-order terms in the rate. This means that CHOCO-SGD effectively
reduces the transmitted data without compromising training efficiency.

• We conduct comprehensive experiments to validate our theoretical results. The numerical
outcomes show that when controlling compression fidelity above the lower bound, CHOCO-
SGD effectively reduces communication costs, while remains a comparable convergence rate
to that of DSGD. Additionally, our experiments reveal that CHOCO-SGD fails to converge
when the fidelity falls below acceptable limits, implying that this algorithm cannot achieve
arbitrary compression fidelity on non-strongly convex objectives. Moreover, we also observe
that CHOCO-SGD cannot converge in time-varying network topologies.

Notations. In this paper, we use uppercase letters like X , A to denote various matrices, including
parameter matrix, gradient matrix, weight matrix, etc. Lowercase letters with subscripts are used to
denote vectors, for example, xi means the parameter vector of node i. In terms of some special matrices
and vectors, we use 1 for a column vector whose elements are all 1 and I for the identity matrix whose
size can be inferred from the context. We uniformly use ‖ · ‖ without subscripts for norm notations.
When the norm is on a vector, it should represent the �2 norm, but when it is on a matrix, it should be
the Frobenius norm.

2 Related Work

Consensus algorithm. For the distributed optimization problem, we want every node to reach an
agreement on the global parameter value. The agreement means finding the average of n initial values
stored on n nodes [5,6]. So, the consensus problem can be regarded as a subproblem of distributed
optimization problem. There are a plethora of research works conducted to explore the consensus
problem. It has been proved that the consensus problem can be addressed in the sense of linear
convergence on undirected graph [6].

Distributed optimization. On the basis of consensus algorithms, researchers proposed many
distributed gradient-based algorithms [7–12]. In undirected topology, Nedic et al. [7] and Yuan et al. [8]
analyzed the convergence of Decentralized Stochastic Gradient Descent algorithm (DSGD) on non-
strongly convex objective functions. Lian et al. proved that for nonconvex and Lipschitz-smooth

objective functions, DSGD can converge to a stationary point with the rate O(
1√
nT

) [13], where T

denotes the number of episodes. Furthermore, Shi et al. proposed the EXTRA algorithm that had
linear convergence rate for strongly convex objectives [14]. Assran et al. further addressed challenges
introduced by directed graphs by designing the SGP algorithm based on DSGD [15]. More related
algorithms has been reviewed in [16,17].

Parameter/gradient compression. With the rapid growth of learning models, traditional distributed
learning faces significant communication pressure. As a result, Researchers have increasingly focused
on designing communication-efficient algorithms [2,18–24]. The proposed methods can generally be
classified into three main categories. The first category is quantization. Instead of transmitting precise
vectors (such as model parameters or gradients), nodes exchange limited bits that approximate the
original vectors. The second category is sparsification, where only a few elements of a vector are
transmitted accurately, while the remaining elements are forced to be zero. The third category involves
transmitting parameters in some iterations rather than in every iteration. This aims to reduce the
amount of transmitted information. All these methods aim to find the optimal parameter value by
transmitting less information. Therefore, in this paper, we use the term compression to encompass
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these methods. Kolovaskova et al. proposed the CHOCO-SGD algorithm [2], a distributed stochastic
algorithm over undirected graphs. This algorithm allows for arbitrary compression precision and has
been proven to converge for strongly convex objectives. Taheri et al. [25] extended this algorithm to
directed graphs for both convex and nonconvex objectives based on the SGP algorithm [15]. Different
from this work, our study is based on undirected graphs. Table 1 further illustrates the highlights of
this work and the differences between the work involved.

Table 1: Comparisons on different algorithms for decentralized optimization problem

Literature Algorithm Applied
technology

Graph Condition Rate

[15] SGP DSGD +
Push-sum

Directed graph Non-convex O(
1√
nT

)

[25] Quantized
push-sum

Compressed +
SGP

Directed graph Non-convex O(
1√
nT

)

This work CHOCO-SGD Compressed +
DSGD

Undirected
graph

Non-strongly
convex

O(
1√
nT

)

3 CHOCO-SGD Algorithm

In this section, we will introduce the basic knowledge of distributed optimization and present the
classic Distributed Stochastic Gradient Descent (DSGD) algorithm. Additionally, we will discuss the
fundamental ideas underlying the CHOCO-SGD algorithm.

We assume that the computing nodes are distributed across an undirected graph G = (V, E), where
V and E represent the set of nodes and edges, respectively. The DSGD algorithm is an efficient method
to solve the distributed optimization problem in Eq. (1). It consists of two key components: consensus,
also referred to as gossip, and parameter updates. The consensus step aims to achieve parameter
agreement among all nodes. Specifically, we denote the local parameter of node i as xi, and perform
the following parameter aggregation process:

xi(t + 1) =
n∑

j=1

aijxj(t), (3)

where t denotes the iteration number and aij denotes the weight assigned by node i to node j. For
compatibility with the underlying graph structure, aij is set to be positive if and only if edge(i, j) ∈ E
or i = j. This ensures that only neighboring nodes, as determined by the graph, can communicate
and exchange their parameters. By using a matrix A = (aij)n×n

1 to incorporate all the weights, it has
been proven that when A is row stochastic (i.e., each row of A sums to one and all the entries are non-
negative), the parameters of all nodes can reach a consensus. This implies that each parameter xi(t)

will converge to the average of the initial values
1
n

∑n

i=1 xi(1) [26]. This consensus algorithm enables the

nodes to synchronize their parameter values.

1aij represents the entry in the ith row and the jth column of A.
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The second component of the DSGD algorithm involves parameter updates using stochastic
gradient descent. Combining these components, the update rule of DSGD is given as follows:

xi(t + 1) =
n∑

j=1

aijxj(t) − α∇Fi(xi(t), ζi,t), (4)

where ∇Fi(xi(t), ζi,t) represents the gradient of the local objective function evaluated at xi(t) using the
data batch ζi,t, and α denotes the learning rate. This update rule combines the consensus step, which
ensures parameter agreement, with the gradient descent step, which drives the parameters towards
optimal values. We formally present the DSGD algorithm in Algorithm 1. Under some constraints,
extensive studies [16] have demonstrated that the DSGD algorithm achieves a convergence rate of

O(
1√
nT

) on non-strongly convex objective functions, where T denotes the number of episodes.

Algorithm 1: DSGD
Input: Initial parameters xi(1) = 0 for i ∈ N , step size α, communication graph G = (N , E ) and
weight matrix A
1: for each node i ∈ {1, · · · , n} and t ∈ {1, · · · , T} do
2: for neighbors j such that (i, j) ∈ E do
3: send xi(t) to j and receive xj(t) from j
4: end for
5: temp = ∑n

j=1 aij(xj(t) − xi(t))
6: zi(t + 1) = xi(t) + temp
7: xi(t + 1) = zi(t + 1) − α∇Fi(xi(t), ζi,t)

8: end for

However, when dealing with massive training models, the DSGD algorithm encounters a com-
munication bottleneck. To address this limitation, a straightforward yet effective solution is to
compress the parameters before transmitting them over the network. For this purpose, We introduce
a compression operator denoted as Q, along with the definition of compression fidelity ω, which
indicates the ratio of preserved information. A higher value of ω signifies a greater fidelity, implying
that less information is discarded during the compression process. The value of ω satisfies the following
assumption.

Assumption 3.1. The compression operator Q satisfies

EQ‖Q(x) − x‖2 ≤ (1 − ω)‖x‖2.

We take the expectation in this context because there might be inherent randomness in the
compression operators, such as in the case of randomized gossip discussed later. It is worth noting
that when ω = 1, the compressed parameter Q(x) should ideally be the same as x (almost surely,
although we may disregard negligible difference). And we state that the operator Q can be either biased
or unbiased, encompassing a wide range of compression techniques.

Example 3.1. Examples of compression

• randomized gossip:

Q(x) =
{

x, with probability p
0, with probability 1 − p ,
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where p ∈ (0, 1]. We can find ω = p.

• Top-k sparsification [20]: for a parameter vector x ∈ R
d, we select k dimensions with the highest

magnitude, where k ∈ {1, 2, · · · , d}. Subsequently, we transmit a compressed version of the
parameter vector, retaining only the selected k items while setting all other positions to 0. It is

worth noting that the compression fidelity in this case can be calculated as ω = k
d

.

Through conducting simple experiments, one can observe that when integrating compression
directly into the transmitted parameter in Algorithm 1 (i.e., replacing the transmission of xi(t) with
Q(xi(t))), the algorithm typically fails to converge. The primary reason behind this behavior stems from
the magnitude of xi(t). In general, it lacks a bound, meaning its magnitude is not necessarily close to
zero. As a result, the error introduced by compressing (such as forcing certain positions to be zero)
becomes difficult to control. Hence, it is important to employ the compression operator appropriately
and judiciously.

Based on Assumption 3.1, CHOCO-SGD was proposed and is presented in Algorithm 2. As
the transmitted parameters are compressed and inexact, each node i needs to maintain n additional
auxiliary variables {x̂j(t), j ∈ N} to approximate the true parameters of all n nodes. Specifically, for
each node i ∈ N, the newly added auxiliary variable x̂j(t) represents an estimation of the actual
local parameter of node j. In Algorithm 2, instead of sending the compressed parameters, the nodes
transmit the compressed value of the difference between the true local parameter and its estimator.
Subsequently, upon receiving messages from neighboring nodes, every node updates its estimators of
parameters of other nodes, denoted as {x̂1(t+1), · · · , x̂n(t+1)}. If the estimations maintained by each
node are accurate, the error introduced by compression is minimal and will eventually vanish. It has
been proven that Q(x̂i(t)−xi(t)) asymptotically equals to x̂i(t)−xi(t), which does not hold for Q(xi(t))
and xi(t).

Algorithm 2: CHOCO-SGD
Input: Initiate parameters xi(1) = 0 for i ∈ N , SGD stepsize α, communication graph G = (N , E ),
weight matrix A and all auxiliary variables x̂i(1) = 0, i ∈ N
1: for each node i ∈ {1, · · · , n} and t ∈ {1, · · · , T} do
2: Qi(t) = Q(xi(t) − x̂i(t))
3: for neighbors j such that (i, j) ∈ E do
4: send Qi(t) to j and receive Qj(t) from j
5: x̂j(t + 1) = x̂j(t) + Qj(t)
6: end for
7: temp = ∑n

j=1 aij(x̂j(t + 1) − x̂i(t + 1))

8: zi(t + 1) = xi(t) + temp
9: xi(t + 1) = zi(t + 1) − α∇Fi(xi(t), ζi,t)

10: end for

Koloskova et al. [2] has proved that Algorithm 2 achieved a convergence rate of O(
1
T

) on strongly

convex objective functions when specific parameters such as the step size and regularization parameter
were appropriately chosen. Furthermore, it has been established that this algorithm can converge with
arbitrary compression fidelity, indicating minimal communication pressure. To evaluate its potential
in practical scenarios, we investigate its convergence properties on non-strongly convex objective
functions.
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4 Convergence Analysis for Non-Strongly Convex Objectives

In this section, we begin by introducing assumptions regarding the underlying graph structure.
As mentioned previously, we use G = (V , E ) to denote the undirected graph and use Ni to denote
all the neighbors of node i together with itself, i.e., Ni = {j : (i, j) ∈ E } ∪ {i}. We have a couple of
well-accepted assumptions in distributed optimization, which are related to the graph structure and
the corresponding weight matrix.

Assumption 4.1. The underlying graph structure G is connected.

Assumption 4.2. Given the aggregation weights aij, the weight matrix A = (aij)n×n is doubly
stochastic and non-negative, i.e.,

A · 1 = 1, AT1 = 1, aij ≥ 0,

where A satisfies σ2 < 1, where σ2 denotes the second largest singular value of A.

Remark 4.1. Under the undirected graph setting, a doubly stochastic matrix can be easily found.
Given an undirected graph G , with its adjacent matrix A0, the degree matrix D and the maximum

degree 	, it can be directly shown that
A0 + (	 + 1)I − D

	 + 1
is a valid doubly stochastic matrix [27].

We next introduce several basic assumptions on the objective function and its gradients. Note that
these assumptions are common in first-order continuous optimization.

Assumption 4.3. Each local objective function fi(·) is convex, i.e.,

fi(y) ≥ fi(x) + 〈∇fi(x), y − x〉, ∀x, y ∈ R
d,

and L-smooth, i.e., there exists a constant L > 0 (for all i ∈ N ), such that

fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉 + L
2

‖y − x‖2, ∀x, y ∈ R
d.

The definition of L-smooth is equivalent to the following inequality:

‖∇fi(x) − ∇fi(y)‖ ≤ L‖x − y‖, ∀x, y ∈ R
d.

Assumption 4.4. There exists a constant M, such that

Eζi,t‖∇Fi(x)‖2 ≤ M2, ∀x ∈ R
d.

Assumption 4.5. There exists a constant σ , such that

Eζi,t‖∇Fi(x) − ∇fi(x)‖2 ≤ σ 2, ∀x ∈ R
d.

Assumptions 4.4 and 4.5 bound the local gradients and variance with respect to data samples,
respectively. The latter assumption can be easily satisfied when the dataset across nodes is independent
and identically distributed. Besides, the following asymptotic property of A implies that all the

elements in At will be distributed in the vicinity of
1
m

as t → ∞.

Lemma 4.1. If A ∈ R
n×n is a doubly stochastic matrix with σ2 < 1, then there exists constants

λ ∈ (0, 1) and C > 0, such that

‖At − 1
n

11T‖ ≤ Cλt,

where At refers to the product of t matrices.
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This lemma states that as matrix multiplication progresses, all elements of At converge to
1
n

. The

detailed proof is presented in the appendix. With these assumptions and lemma, we can analyze the
convergence properties of CHOCO-SGD for non-strongly convex objectives.

Theorem 4.1. Under Assumptions 3.1 and 4.1–4.5, and assume α ≤ 1
8L

, the CHOCO-SGD

algorithm satisfies

1
T

∑T

t=1

(
Ef (x̄(t)) − f (x∗)

) ≤ E‖x∗‖2

Tα
+ 2σ 2α

n
+ 24C2βLα2

(1 − λ)2
+ 6C2M2Lα2

(1 − λ)2
, (5)

where

ω > 1 − 1

3 + 24n + 384n2C2

(1 − λ)2

, (6)

and x̄(t) denotes the average parameter after the t iterations, i.e., x̄(t) = X(t)1
n

. Notations C and λ

come from Lemma 4.1, and

β =
3(1 − ω)nM2 + 96(1 − ω)C2n2M2

(1 − λ)2

1 −
[
(3 + 24n)(1 − ω) + 384n2(1 − ω)C2

(1 − λ)2

] . (7)

Let α = O
( n

T

)
, the right-hand side (RHS) of Eq. (5) will be equal to O

(
1√
nT

)
+ O

( n
T

)
.

When T is large enough, the term
n
T

is dominated by another term
1√
nT

and the rate becomes

O
(

1√
nT

)
, which means that the convergence rate will be the same as DSGD (Algorithm 1) on non-

strongly convex objectives, i.e., O
(

1√
nT

)
. We can also discover that the compression fidelity ω and

the graph spectral gap λ only appear in higher order terms O
( n

T

)
and have negligible influence on

the convergence speed.

Furthermore, the expression ω > 1 − 1

3 + 24n + 384n2C2

(1 − λ)2

is a sufficient condition of achieving

O
(

1√
nT

)
convergence rate. In this constraint, ω needs to be higher than a threshold related to the

number of nodes and communication topology. We will demonstrate with experiments that CHOCO-
SGD cannot converge on non-strongly convex objectives with low compression fidelity. In other words,
the CHOCO-SGD algorithm does not allow arbitrary compression fidelity.
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Proof. For simplicity, we let

X(t) = (x1(t), · · · , xn(t))

X̂(t) = (x̂1(t), · · · , x̂n(t))

Z(t) = (z1(t), · · · , zn(t))

∇(t) = (∇F1(x1(t), ζ1,t), · · · , ∇Fn(xn(t), ζn,t))

and then the updating rule of Algorithm 2 can be expressed as⎧⎪⎪⎨
⎪⎪⎩

Q(t) = Q(X(t) − X̂(t))
X̂(t + 1) = X̂(t) + Q(t)
Z(t + 1) = X(t) + X̂(t + 1)(A − I)
X(t + 1) = Z(t + 1) − α∇(t)

(8)

Note that when we use the compression operator Q on a matrix, we mean compressing every
column of that matrix. Since the underlying topology is fixed, node i and node j (i, j ∈ Nk) have the
same estimator x̂k for their common neighbor node k. Then we can use one matrix X̂(t) to denote
the original n × n auxiliary variables. Now, we start the proof by analyzing the distance between the
average parameter in the (t + 1)th iteration, denoted as x̄(t + 1), and the optimum, denoted as x∗. By
the updating rule and properties of A, we have

X(t + 1)1 = X(t)1 + X̂(t + 1)(A − I)1 − α∇(t)1

= X(t)1 − α∇(t)1. (9)

Dividing both sides by n and we can get x̄(t + 1) = x̄(t) − α∇̄(t), where ∇̄(t) denotes the average

gradient of ∇Fi(xi(t), ζi,t), i ∈ N, i.e., ∇̄(t) = ∇(t)1
n

. Then there exists

E‖x̄(t + 1) − x∗‖2 = E‖x̄(t) − x∗‖2 + α2
E‖∇̄(t)‖2 − 2αE〈∇̄(t), x̄(t) − x∗〉. (10)

The second term can be processed as follows:

E‖∇̄(t)‖2 = E‖1
n

n∑
i=1

∇Fi(xi(t), ζi,t)‖2 ≤ 2E
∥∥∥1

n

n∑
i=1

(∇Fi(xi(t), ζi,t) − ∇fi(xi(t)))
∥∥∥2 + 2E

∥∥∥1
n

n∑
i=1

∇fi(xi(t))
∥∥∥2

, (11)

where the inequality comes from Cauchy-Schwarz inequality. The two terms in the right-hand side
(RHS) of the last equation can be bounded as follows:

2E
∥∥∥1

n

n∑
i=1

(∇Fi(xi(t), ζi,t) − ∇fi(xi(t)))
∥∥∥2

= 2
n2

n∑
i=1

E

∥∥∥∇Fi(xi(t), ζi,t) − ∇fi(xi(t)))
∥∥∥2

+ 2
n2

∑
i �=i′

E

〈
∇Fi(xi(t), ζi,t) − ∇fi(xi(t))), ∇Fi′(xi′(t), ζi′ ,t) − ∇fi′(xi′(t)))

〉

= 2
n2

n∑
i=1

E

∥∥∥∇Fi(xi(t), ζi,t) − ∇fi(xi(t)))
∥∥∥2

+ 2
n2

∑
i �=i′

E

〈
∇Fi(xi(t), ζi,t) − ∇fi(xi(t))), Ei′∇Fi′(xi′(t), ζi′,t) − ∇fi′(xi′(t)))

〉
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= 2
n2

n∑
i=1

E

∥∥∥∇Fi(xi(t), ζi,t) − ∇fi(xi(t)))
∥∥∥2

≤ 2σ 2

n
, (12)

where the last inequality applies Assumption 4.5. And for the second term, we have

2E
∥∥∥1

n

n∑
i=1

∇fi(xi(t))
∥∥∥2

≤ 4
n

n∑
i=1

E

∥∥∥∇fi(xi(t)) − ∇fi(x̄(t))
∥∥∥2

+ 4E
∥∥∥1

n

n∑
i=1

∇fi(x̄(t))
∥∥∥2

≤ 4L2

n
E‖X(t) − x̄(t)1T‖2 + 8L(Ef (x̄(t)) − f (x∗)), (13)

where the last inequality comes from Assumption 4.3 and the following result related to ‖∇fi(x̄(t))‖2:

f (x∗) ≤ f (x − 1
L

∇f (x)) ≤ f (x) + 〈∇f (x), − 1
L

∇f (x)〉 + L
2

‖ 1
L

∇f (x)‖2 = f (x) − 1
2L

‖∇f (x)‖2. (14)

Plugging the results in Eqs. (12) and (13) back into Eq. (11) yields the bound for E‖∇̄(t)‖2

E‖∇̄(t)‖2 ≤ 2σ 2

n
+ 4L2

n
E‖X(t) − x̄(t)1T‖2 + 8L(Ef (x̄(t)) − f (x∗)). (15)

Now we handle the third term in the RHS of Eq. (10) as follows:

E〈∇̄(t), x̄(t) − x∗〉

= 1
n

n∑
i=1

E

[〈∇fi(xi(t)), x̄(t) − xi(t)
〉 + 〈∇fi(xi(t)), xi(t) − x∗〉]

≥ E[f (x̄(t)) − f (x∗)] − L
2n

E‖X(t) − x̄(t)1T‖2. (16)

In the first equation, we use Eζi,t∇Fi(xi(t), ζi,t) = ∇fi(xi(t)) for i ∈ N . The inequality comes from
Assumption 4.3. Now, by substituting Eqs. (15) and (16) into Eq. (10), we obtain

E‖x̄(t + 1) − x∗‖2

≤ E‖x̄(t) − x∗‖2 − (2α − 8Lα2) [Ef (x̄(t)) − f (x∗)] + αL + 4α2L2

n
E‖X(t) − x̄(t)1T‖2 + 2σ 2α2

n
. (17)

Arranging this inequality and choosing α ≤ 1
8L

, so that 2 − 8Lα ≥ 1, there exists

α [Ef (x̄(t)) − f (x∗)] ≤ E‖x̄(t) − x∗‖2 − E‖x̄(t + 1) − x∗‖2 + 2σ 2α2

n
+ 3αL

2n
E‖X(t) − x̄(t)1T‖2. (18)

By summing both sides for t from 1 to T , and dividing both sides by Tα, we can find that

1
T

T∑
t=1

(Ef (x̄(t)) − f (x∗)) ≤ E‖x∗‖2

Tα
+ 3L

2nT

T∑
t=1

E‖X(t) − x̄(t)1T‖2 + 2σ 2α

n
, (19)

where we apply x̄(1) = 0. Next we process E‖X(t) − x̄(t)1T‖2. Applying updating rules (8) and the
recursion technique, we have



CMES, 2024, vol.139, no.1 469

X(t)

= X(t − 1)A + [
X̂(t) − X(t − 1)

]
(A − I) − α∇(t − 1)

=
{

X(t − 2)A + [
X̂(t − 1) − X(t − 2)

]
(A − I) − α∇(t − 2)

}
A

+ [
X̂(t) − X(t − 1)

]
(A − I) − α∇(t − 1)

= X(1)At−1 +
t−2∑
k=0

[
X̂(t − k) − X(t − 1 − k)

]
(A − I)Ak − α

t−2∑
k=0

∇(t − 1 − k)Ak. (20)

Since A is doubly stochastic, we get

x̄(t)1T = X(t)
11T

n
= X(1)

11T

n
− α

t−2∑
k=0

∇(t − 1 − k)
11T

n
. (21)

Therefore, after t iterations, the difference between the current parameter and the global average
can be expressed as

E‖X(t) − x̄(t)1T‖2

= E

∥∥∥∥∥
t−2∑
k=0

[
X̂(t − k) − X(t − 1 − k)

]
(A − I)Ak − α

t−2∑
k=0

∇(t − 1 − k)(Ak − 11T

n
)

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥
t−2∑
k=0

[
X̂(t − k) − X(t − 1 − k)

]
(A − I)Ak

∥∥∥∥∥
2

+ 2α2
E

∥∥∥∥∥
t−2∑
k=0

∇(t − 1 − k)(Ak − 11T

n
)

∥∥∥∥∥
2

(22)

where we use X(1) = 0 in the equality. With Lemma 4.1 and ‖A − I‖ ≤ ‖A‖ + ‖I‖ ≤ 2
√

n, we can
bound these two terms as follows:

2E

∥∥∥∥∥
t−2∑
k=0

[
X̂(t − k) − X(t − 1 − k)

]
(A − I)Ak

∥∥∥∥∥
2

= 2E

∥∥∥∥∥
t−2∑
k=0

[
X̂(t − k) − X(t − 1 − k)

]
(A − I)(Ak − 11T

n
)

∥∥∥∥∥
2

≤ 2E

(
t−2∑
k=0

∥∥∥[
X̂(t − k) − X(t − 1 − k)

]
(A − I)(Ak − 11T

n
)

∥∥∥
)2

≤ 8nC2
E

(
t−2∑
k=0

λk
∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥
)2

, (23)
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and

2α2
E

∥∥∥∥∥
t−2∑
k=0

∇(t − 1 − k)(Ak − 11T

n
)

∥∥∥∥∥
2

≤ 2α2
E

(
t−2∑
k=0

∥∥∥∇(t − 1 − k)(Ak − 11T

n
)

∥∥∥
)2

≤ 2α2C2
E

(
t−2∑
k=0

λk
∥∥∥∇(t − 1 − k)

∥∥∥
)2

(24)

Now, substituting Eqs. (23) and (24) to Eq. (22), we have

E
∥∥X(t) − x̄(1)1T

∥∥2

≤ 8nC2
E

(
t−2∑
k=0

λk
∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥
)2

+ 2α2C2
E

(
t−2∑
k=0

λk
∥∥∥∇(t − 1 − k)

∥∥∥
)2

. (25)

We process the first term of RHS of Eq. (25) in the following way:(
t−2∑
k=0

λk
∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥
)2

=
t−2∑
k=0

λ2k
∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥2

+
∑
k �=k′

λkλk′
∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥ ·
∥∥∥X̂(t − k′) − X(t − 1 − k′)

∥∥∥
≤

t−2∑
k=0

λ2k
∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥2

+ 1
2

∑
k �=k′

λkλk′
∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥2

+ 1
2

∑
k �=k′

λkλk′
∥∥∥X̂(t − k′) − X(t − 1 − k′)

∥∥∥2

≤
t−2∑
k=0

(
λ2k + λk

1 − λ

)∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥2

≤
t−2∑
k=0

2λk

1 − λ

∥∥∥X̂(t − k) − X(t − 1 − k)

∥∥∥2

, (26)

where the last inequality comes from λk ≤ 1
1 − λ

. Applying the same technique to the second term of

Eq. (25), we can get

E

(
t−2∑
k=0

λk
E

∥∥∥∇(t − 1 − k)

∥∥∥
)2

≤
t−2∑
k=0

2λk

1 − λ
E

∥∥∥∇(t − 1 − k)

∥∥∥2

≤ 2nM2

(1 − λ)2
, (27)
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where the last inequality applies Assumption 4.5. Then Eq. (25) can be written as

E
∥∥X(t) − x̄(t)1T

∥∥2 ≤ 16nC2

t−2∑
k=0

λk

1 − λ
E

∥∥X̂(t − k) − X(t − 1 − k)
∥∥2 + 4C2α2nM2

(1 − λ)2
. (28)

This motivates us to bound
∥∥X̂(t + 2) − X(t + 1)

∥∥2
as follows:

E
∥∥X̂(t + 2) − X(t + 1)

∥∥2 = E

∥∥∥X̂(t + 1) + Q(t + 1) − X(t + 1)

∥∥∥2

= E

∥∥∥Q
(
X(t + 1) − X̂(t + 1)

) − (
X(t + 1) − X̂(t + 1)

)∥∥∥2

≤ (1 − ω)E
∥∥X(t + 1) − X̂(t + 1)

∥∥2

≤ 3(1 − ω)
(
E

∥∥X(t) − X̂(t + 1)
∥∥2 + α2

E
∥∥∇(t)

∥∥2 + E
∥∥X̂(t + 1)(A − I)

∥∥2
)

≤ 3(1 − ω)E
∥∥X(t) − X̂(t + 1)

∥∥2 + 3(1 − ω)α2nM2

+ 6(1 − ω)E

∥∥∥(X̂(t + 1) − X(t))(A − I)
∥∥∥2

+ 6(1 − ω)E

∥∥∥(
X(t) − x̄(t)1T)

(A − I)
∥∥∥2

≤ (3 + 24n)(1 − ω)E
∥∥X(t) − X̂(t + 1)

∥∥2

+ 3(1 − ω)α2nM2 + 24n(1 − ω)E
∥∥X(t) − x̄(t)1T

∥∥2
, (29)

where the second and the last inequalities come from Eq. (8) and ‖A − I‖ ≤ 2
√

n, respectively. For
simplicity, we use L(t) to denote E‖X̂(t + 1) − X(t)‖2 and use K(t) to denote E‖X(t) − x̄(t)1T‖2. Then
Eqs. (28) and (29) can be presented as

L(t + 1) ≤ (3 + 24n)(1 − ω)L(t) + 3(1 − ω)α2nM2 + 24n(1 − ω)K(t),

K(t) ≤ 16nC2

t−2∑
k=0

λk

1 − λ
L(t − 1 − k) + 4C2α2nM2

(1 − λ)2
. (30)

Next we use induction to prove that when ω > 1 − 1

3 + 24n + 384n2C2

(1 − λ)2

, we have L(t) < βα2, for

some β > 0.

When t = 1, we have L(1) = E‖X̂(2) − X(1)‖2 = 0. Now we assume that the proposition is true
for any index less than or equal to t. Then there exists

L(t + 1) < (3 + 24n)(1 − ω)βα2 + 3(1 − ω)α2nM2 + 96(1 − ω)C2n2M2

(1 − λ)2
α2 + 384n2(1 − ω)C2

(1 − λ)2
βα2

=
[
(3 + 24n)(1 − ω) + 384n2(1 − ω)C2

(1 − λ)2

]
βα2 +

[
3(1 − ω)nM2 + 96(1 − ω)C2n2M2

(1 − λ)2

]
α2. (31)
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By setting ω > 1 − 1

3 + 24n + 384n2C2

(1 − λ)2

and choosing

β =
3(1 − ω)nM2 + 96(1 − ω)C2n2M2

(1 − λ)2

1 − [(3 + 24n)(1 − ω) + 384n2(1 − ω)C2

(1 − λ)2
]
,

the RHS of Eq. (31) will be less than βα2, and the proposition is proved.

With L(t) < βα2, we have

E‖X(t) − x̄(t)1T‖2 = K(t) ≤ 16nC2βα2

(1 − λ)2
+ 4C2α2nM2

(1 − λ)2
. (32)

By substituting this result to Eq. (19), we can get Theorem 4.1.

5 Experiments
5.1 Evaluation Setup

Testbed setting and topology. Our experiments are conducted on a testbed of 8 servers, each with
an 8-core Intel Xeon W2140b CPU at 3.20 GHz, a 32 GB DDR4 RAM and a Mellanox Connect-X3
NIC supporting 10 GbE links. We use PyTorch as the experiment platform and employ its Distributed
Data-Parallel Training (DDP) paradigm to realize parameter communication among the 8 servers.
The main topology in experiments is a ring topology, as shown in Fig. 1a. Ring topology can be used
in Local Area Network (LAN) or Wide Area Network (WAN) networks, and is also commonly used
[28] in distributed learning.

Figure 1: Undirected topologies with 8 nodes

We consider a task where all nodes aim to classify images in the MNIST or CIFAR-10 dataset
into 10 classes using a linear neural network. The key features of both datasets are listed in Table 2.
The objective function for this task is cross-entropy loss. The cross-entropy loss of a data batch is
defined as

1
m

m∑
i=1

l∑
j=1

p(xij)log(q(xij)),

where m and l represent the batch size and the number of categories, respectively. In this equation,
q(xij) denotes the predicted probability of sample i belonging to class j, while p(xij) represents the true
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label, which is equal to 1 when sample i belongs to class j and 0 otherwise. The entire training dataset
is divided into 8 equal partitions, each stored in an independent node. Unless otherwise specified, the
learning rate and batch size are set to be 0.01 and 64, respectively.

Table 2: Key features of datasets

Datasets Train size Feature dimension Number of classes

MNIST 60,000 784 10
CIFAR-10 50,000 1,024 10

5.2 Basic Results
We evaluate the performance of the CHOCO-SGD algorithm in comparison to the DSGD

baseline. In CHOCO-SGD, we examine the efficacy of two compression operators outlined in Example
1: randomized gossip with p = 0.7 and Top-k sparsification with ω = 0.7. To align with our theoretical
convergence criterion, the performance is evaluated based on the global loss computed on the global
average parameter, denoted as f (x̄(t)). The model is trained for 25 episodes, where each episode
corresponds to a pass through the entire dataset.

The results in Fig. 2a demonstrate that CHOCO-SGD and DSGD exhibit comparable conver-
gence rates, with similar reductions in loss after the same number of episodes. To distinguish the curves,
we scale the loss values to the range [0, 1] with the following formula:

vscale = v − vmin

vmax − vmin

,

where v is the real loss value in the training process, vmin and vmax denote the minimal and the maximal
loss value achieved by three algorithms, respectively, and vscale represents the scaled loss value. The
scaled results are depicted in Fig. 2b on a logarithmic scale. In the following context, the scaled training
loss is processed likewise. In Fig. 2b, CHOCO-SGD and DSGD show only marginal differences in
convergence rate. Furthermore, Figs. 2c and 2d (scaled) illustrate the comparison of the loss with
respect to the number of transmitted bits. Remarkably, CHOCO-SGD, employing either randomized
gossip or Top-k sparsification methods, achieves lower loss values while transmitting the same volume
of data. This outcome can be attributed to the compression of certain values, which enables nodes to
transmit fewer data in each communication round without adversely affecting the convergence rate.
Similar results also appear on CIFAR-10 datasets, as shown in Fig. 3. CHOCO-SGD transmits about
1.2×1010 bits, while DSGD needs to transmit 1.7×1010 bits, when they achieve the same training error.
These results align with our theoretical analysis, indicating that compression can effectively reduce the
amount of transmitted data while exerting minimal influence on the convergence rate for non-strongly
convex objectives, provided that the fidelity threshold is appropriately maintained.
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Figure 2: Training loss vs. episodes/transmitted data amount of CHOCO-SGD and DSGD on MNIST
Dataset

Figure 3: Training loss vs. episodes/transmitted data amount of CHOCO-SGD and DSGD on CIFAR-
10 Dataset

5.3 Sensitivity to Compression Fidelity
To further investigate the impact of compression fidelity, we conduct several experiments by

controlling the values of p and ω within the range of 0.9 to 0.5 for two compression operators. In
randomized gossip, a smaller value of p increases the probability of transmitting full-zero parameters,
which could lead to inaccuracies in x̂j as described in Algorithm 2. The change in (scaled) training
loss with respect to iterations and transmitted bits is depicted in Figs. 4a, 4b (MNIST) and Figs. 5a,
5b (CIFAR-10), respectively. We observe that lowering the value of p results in fewer transmission bits
without slowing down the convergence rate. Similarly, the results obtained using Top-k sparsification,
as shown in Figs. 4c, 4d and 5c, 5d indicate that reducing the number of bits, while maintaining ω

within a certain threshold, ensures satisfactory convergence rates and reduces communication burden.
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Figure 4: Training loss of CHOCO-SGD with randomized gossip (a), (b) and with Top-k sparsification
(c), (d) on MNIST dataset. Both p and ω vary from 0.9 to 0.5

Figure 5: Training loss of CHOCO-SGD with randomized gossip (a), (b) and with Top-k sparsification
(c), (d) on CIFAR-10 dataset. Both p and ω vary from 0.9 to 0.5
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Furthermore, we conduct experiments to determine if CHOCO-SGD fails to converge when the
compression fidelity is small for non-strongly convex objectives, as stated in Eq. (6). Specifically, for
randomized gossip and Top-k sparsification, we set both p and ω to 0.4. Fig. 6 demonstrates that in
an over-compression scenario, the training loss of CHOCO-SGD continues to increase, implying that
the algorithm fails to converge. With these results, we empirically verify that within the context of
non-strongly convex functions, CHOCO-SGD requires control of the compression fidelity within a
threshold to ensure convergence, which differs from the situation with strongly convex functions. In
other words, CHOCO-SGD cannot achieve arbitrary compression in a non-strongly convex scenario.

Figure 6: Convergence of CHOCO-SGD with low compression fidelity on MNIST dataset

5.4 Robustness towards Learning Hyperparameters
In this section, we study the influence of hyperparameters (learning rate α and batch size b), on

the convergence performance of the CHOCO-SGD algorithm for non-strongly convex functions. The
compression fidelity is set to be p = ω = 0.7. We test on three learning rates α = 0.01, 0.05, 0.1
and three batch sizes b = 32, 64, 128. The results are displayed in Tables 3 and 4. With the increase
of the batch size, the final loss values of three algorithms after 25 training episodes become larger.
Because each episode is one pass through the whole dataset, and larger batch size leads to fewer
batches and thus fewer times of gradient descent and data transmission. Furthermore, the loss goes
smaller when the learning rate gets larger, since the global parameter takes a larger step towards the
global minimum. No matter in which hyperparameter setting, CHOCO-SGD and DSGD algorithms
can achieve similar convergence error with the same training episodes, but CHOCO-SGD transmits
less data amount. Furthermore, according to Table 4, the change of the learning rate has negligible
influence on communication load, while larger batch size leads to fewer transmission data.

Table 3: Summary of training loss with different hyperparameter settings. The loss values are recorded
after 25 training episodes and are rounded to three decimal places

α = 0.01 α = 0.05 α = 0.1

DSGD Randomized
gossip

Top-k
sparsifica-
tion

DSGD Randomized
gossip

Top-k
sparsifica-
tion

DSGD Randomized
gossip

Top-k
sparsifica-
tion

b = 32 2.793 2.794 2.793 2.534 2.530 2.535 2.578 2.598 2.565
b = 64 2.946 2.976 2.975 2.628 2.628 2.628 2.549 2.568 2.557
b = 128 3.223 3.224 3.224 2.743 2.744 2.743 2.620 2.620 2.620
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Table 4: Summary of Transmitted bits with different hyperparameter settings. The bits values are
recorded after 25 training episodes and are rounded to three decimal places

α = 0.01 α = 0.05 α = 0.1

DSGD Randomized
gossip

Top-k
sparsifica-
tion

DSGD Randomized
gossip

Top-k
sparsifica-
tion

DSGD Randomized
gossip

Top-k
sparsifica-
tion

b = 32 1.033 0.724 0.723 1.033 0.723 0.723 1.033 0.723 0.723
b = 64 0.593 0.416 0.415 0.518 0.364 0.363 0.519 0.364 0.363
b = 128 0.259 0.183 0.182 0.259 0.181 0.182 0.259 0.182 0.182

5.5 Applicability to Various Topologies
5.5.1 Investigating Different Fixed Topologies

To explore the algorithm’s applicability for non-strongly convex objectives, we test the convergence
performance of CHOCO-SGD on two different topologies, as displayed in Fig. 7. Fig. 7a shows a
bipartite topology, where nodes 1−4 and 5−8 are divided into two groups and each edge can only
connect nodes in different groups. Besides, Fig. 7b displays a more sparse topology, where parameters
can only be transmitted along one path in two directions. The compression fidelity is set to be
p = ω = 0.7 which is the same as basic experiments. Figs. 8 and 9 show the scaled training loss of
MNIST dataset training on two topologies, respectively. In Fig. 8, CHOCO-SGD and DSGD have
the same convergence speed, since they have similar loss values after the same training episodes. But
the transmission amount of CHOCO-SGD, about 5 × 109, is much less than 7 × 109 of DSGD.
Besides, in the sparser topology, Fig. 9b demonstrates that both algorithms can transmit fewer data
to achieve convergence, but the transmitted amount of DSGD is 40% more than that of CHOCO-
SGD. Therefore, these results further illustrate the robustness and applicability of CHOCO-SGD for
non-strongly convex functions on various topologies.

Figure 7: Different undirected and connected topologies
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Figure 8: Training loss vs. episodes/transmitted data amount of CHOCO-SGD and DSGD on bipartite
topology Fig. 7a

Figure 9: Training loss vs. episodes/transmitted data amount of CHOCO-SGD and DSGD on sparse
topology Fig. 7b

5.5.2 Time-Varying Topologies

We further explore the impact of time-varying topologies on the convergence of CHOCO-SGD.
The training topology alternates between the two graphs in Fig. 1. For instance, if the nodes are initially
distributed over the left topology, in the next iteration, they will be connected according to the right
topology. It is important to note that this setup still ensures connectivity (as stated in Assumption
4.1). We set the compression coefficients to p = ω = 0.9 to reduce their influence on the convergence.
Fig. 10 illustrates that CHOCO-SGD is not able to converge in a non-strongly convex and time-varying
environment. Because some nodes receive parameters from specific neighbors inconsistently, resulting
in an uncorrectable bias from true parameters and the algorithm diverges eventually.
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Figure 10: Convergence of CHOCO-SGD on time-varying topologies

6 Conclusion and Future Work

In this work, we study CHOCO-SGD algorithm in the case that the objective function is non-
strongly convex. We provide the first theoretical analysis of this situation and prove that when
controlling compression fidelity within a certain threshold, it has the same convergence rate order
as DSGD. Experimental results validate the theoretical analysis by demonstrating that CHOCO-
SGD converges more quickly than DSGD when transmitting the same data amount. Besides, a low
compression fidelity and time-varying topology can make CHOCO-SGD not converge in the end.

There are several open topics worthy of investigating in our future work. The first one is to explore
CHOCO-SGD’s performance in more complex non-convex scenarios, which can provide a deeper
understanding of its capabilities. Besides, it will be meaningful to improve this algorithm to achieve
arbitrary compression fidelity for non-strongly convex functions, since most real-world problems are
non-strongly convex and such improvement can enhance CHOCO-SGD’s durability and applicability.
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Appendix A. Proof of Lemma 4.1

We firstly prove that for any matrix M ∈ R
d×n, if M1 = 0, we have ‖MA‖ ≤ σ2‖M‖. Assume that

with singular value decomposition, A = U�V T, where U is a matrix consists of eigenvectors of AAT.
If U = (u1, · · · , un), because AAT has eigenvalue 1, we can choose u1 to be 1, which is the eigenvector
of eigenvalue 1. Then

‖MA‖ = ‖MU�V T‖ = ‖MU�‖ = ∥∥(M1, u2, · · · , un) · diag{1, σ2, · · · }
∥∥ ≤ ‖M‖, (33)

and∥∥At − 1
n

11T
∥∥ = ∥∥[At−1 − 1

n
11T]A

∥∥ ≤ σ2. (34)

We can obtain

∥∥At − 1
n

11T
∥∥ ≤ σ t

2

∥∥I − 1
n

11T
∥∥ ≤ Cσ t

2 , (35)

where C = ‖I − 1
n

11T‖ = √
n − 1.
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