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ABSTRACT

This study presents a proposed method for assessing the condition and predicting the future status of condensers
operating in seawater over an extended period. The aim is to address the problems of scaling and corrosion, which
lead to increased loss of cold resources. The method involves utilising a set of multivariate feature parameters
associated with the condenser as input for evaluation and trend prediction. This methodology offers a precise
means of determining the optimal timing for condenser cleaning, with the ultimate goal of improving its overall
performance. The proposed approach involves the integration of the analytic network process with subjective expert
experience and the entropy weight method with objective big data analysis to develop a fusion health degree model.
The mathematical model is constructed quantitatively using the improved Mahalanobis distance. Furthermore,
a comprehensive prediction model is developed by integrating the improved Informer model and Markov error
correction. This model takes into account the health status of the equipment and several influencing factors,
including multivariate feature characteristics. This model facilitates the objective examination and prediction of the
progression of equipment deterioration trends. The present study involves the computation and verification of the
field time series data, which serves to demonstrate the accuracy of the condenser health-related models proposed
in this research. These models effectively depict the real condition and temporal variations of the equipment, thus
offering a valuable method for determining the precise cleaning time required for the condenser.
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1 Introduction

In the preceding thirty years, the secondary loop systems of nuclear power plants have encountered
diverse levels of degradation and deterioration in their crucial equipment. Hence, conducting research
on the health status of nuclear power unit equipment carries significant importance [1]. The condenser,
being a crucial heat exchange apparatus within the conventional island of nuclear power plants, has
a direct influence on the safety of the turbine unit by ensuring its proper and steady operation. The
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extended exposure of condensers to seawater might result in the occurrence of scaling and corrosion.
Presently, the prevailing method for cleaning condensers involves the utilisation of conventional
online rubber ball cleaning equipment in order to uphold cleanliness and optimise heat transfer
efficiency. Nevertheless, the utilisation of rubber balls for cleaning purposes incurs a substantial
financial burden, while inadequate cleaning intervals, whether too prolonged or excessively brief, can
lead to unnecessary energy consumption [2,3]. The determination of condenser cleaning time holds
considerable importance in enhancing the operational dependability of the condensing system and the
economic efficiency of the turbine unit. Therefore, it is important to conduct monitoring and analysis
of the condenser’s status in order to determine the appropriate timing for cleaning the condenser
equipment. This can be achieved by quantitatively assessing the degree of equipment health.

For the purpose of successfully cleaning the condenser, it is essential to accurately evaluate its
overall condition. Currently, the predominant approach employed to assess the condition of the
equipment is based on the notion of health degree. Nevertheless, the concept of a “healthy degree”
lacks quantifiability and necessitates the identification and analysis of pertinent aspects that contribute
to its attainment. The establishment of a scientifically valid assessment approach for determining the
status of equipment is deemed required [4,5]. The assessment methods can be broadly categorised
into subjective weighting methods and objective weighting methods. Subjective weighing methods
are predominantly exemplified by two prominent approaches, namely the Analytic Hierarchy Process
(AHP) and the Fuzzy Comprehensive Evaluation method (FCE). The literature employs the use of
AHP [6,7] in order to establish an evaluation model that is based on scientific principles. This approach
presents the benefits of a straightforward procedure and yielding intuitive outcomes. Nevertheless,
the susceptibility of this phenomenon to subjective factors, such as expert knowledge and experience,
should be acknowledged. As a result, it is possible that this could result in inaccuracies when evaluating
the outcomes. The FCE [8] methodology employs fuzzy mathematics in order to thoroughly evaluate
a wide range of criteria that pose challenges in terms of quantitative assessment. In their study,
Hassan et al. [9] utilised a Fuzzy Analytic Hierarchy Process (FAHP) methodology to evaluate the level
of satisfaction among borrowers. Nevertheless, their methodology exclusively facilitates a thorough
fuzzy assessment, without immediately offering a quantitative depiction of the level of health of the
item. The Principal Component Analysis (PCA) and the Entropy Weighting Method (EWM) are
the primary objective weighting approaches. In their study, Giorgi et al. [10] employed an enhanced
Principal Component Analysis (PCA) technique to extract the feature parameters that carry the
most relevant information for the purpose of monitoring the health status of engines. Nevertheless,
the use of PCA involves the conversion of correlated indicators into principle components, hence
resulting in the potential loss of certain information. This loss of information can subsequently
lead to the wrong determination of weights. In their study, Erkhembaatar et al. [11] employed the
entropy weighting approach to ascertain the significance coefficients of indicators. In their study,
Zavadskas et al. [12] utilised the Entropy Weighting Method to evaluate alternative solutions. Their
objective was to identify the most optimal alternative solution by identifying the most suitable
criteria. In their study, Gorgij et al. [13] employed the Exponential Weighted Moving Average (EWM)
technique to construct a model for evaluating groundwater quality. The researchers evaluated the
weights of pertinent factors in order to assess the water quality level of 21 groundwater samples.
This model is well-suited for scenarios that involve several indications, since it has the capability to
objectively reflect the significance of these indicators based on big data analysis. Nevertheless, it is
worth noting that this issue can be delicate, potentially resulting in the inefficiency of parameters.
Hence, there is a need for a more precise approach to ascertain the weights of feature parameters in
order to quantify the degree of equipment health. By integrating the benefits of subjective weighting



CMES, 2024, vol.139, no.1 681

methods and objective weighting methods, a more comprehensive depiction of equipment health status
can be attained through mutually reinforcing approaches.

The assessment of the operational condition and estimation of the cleaning duration of the
condenser are crucial tasks in evaluating the health status of the equipment, as per the healthy
degree model. In their study, Ma [14] focused on the determination of the equipment health index
and its status after a one-year period. This was achieved by establishing a functional link between
the equipment health index and the failure rate. Furthermore, Alinejad et al. [15] proposed a
complete approach to determine the equipment health index by employing the Monte Carlo method.
Nevertheless, the aforementioned approaches solely consider the past health condition, neglecting the
influence of previous running parameters on the future condition of the equipment. On the other
hand, deep learning techniques facilitate the implementation of multilayer nonlinear transformations,
hence enhancing the ability to extract and discern correlations among input parameters. The utilisation
of layer-by-layer coding networks and Deep Neural Networks (DNN) for condition monitoring of
wind turbine main bearings and gearboxes has been proposed in references [16,17]. The operational
data of condensers comprises multidimensional time series, wherein there exists temporal dependence
between the current and historical moment data. The modelling methods mentioned above have
limitations due to their reliance on single time point input and their inability to account for time series
dependencies. In recent times, there has been an increase in the utilisation of LSTM techniques by
researchers for the purpose of forecasting the operational condition of nuclear power plants. In their
study, Zhang et al. [18] employed a Long Short-Term Memory (LSTM) neural network to forecast the
pressure of steam generators by utilising a fusion technique for multi-sensor signals. The experimental
outcomes provided confirmation of the LSTM model’s effectiveness in predicting the operational
condition of nuclear power plants. Babu et al. [19] employed a Long Short-Term Memory (LSTM)-
based neural network to estimate the state of water health. Similarly, Tuerxun et al. [20] utilised LSTM
to predict renewable energy generation in wind farms. However, it should be noted that the training
pace of this model is relatively slow while achieving comparable prediction accuracy. In comparison
to alternative deep learning approaches, the Informer model is employed for the purpose of extracting
time connections between input sequences, resulting in superior accuracy in temporal prediction.
In their study, Bommidi et al. [21] put out the utilisation of the Informer model for the prediction
of wind speed indicators characterised by intricate uncertainties. Li et al. [22] introduced a novel
approach for predicting the Remaining Useful Life (RUL) of rolling bearings. This method combines
multiscale degradation metrics with the Informer model, addressing the limitations of traditional
prediction models in terms of slow runtime and limited reliance on long time series data. However,
it is important to note that the generalisation of this approach still requires improvement, particularly
when handling feature parameters with varying probability distributions. In response to the variability
in condenser performance caused by external factors, certain scientists have proposed integrating error
correction techniques with predictive models as a means to improve the resilience and adaptability
of these models. The researchers in the study conducted by Theocharides et al. [23] utilised linear
regression as a method to address the prediction bias associated with solar radiation angles. This
approach resulted in improved accuracy of day-ahead forecasts for photovoltaic power generation.
The aforementioned model possesses the merits of being straightforward and exhibiting a notable
degree of computational efficacy. Nevertheless, the performance of this method is influenced by the
distribution of data and the underlying assumptions of the model, limiting its ability to capture non-
linear correlations. Zou et al. [24] employed a Markov chain methodology to rectify the prediction
outcomes pertaining to China’s Gross Domestic Product (GDP). The present model incorporates
the empirical data collected throughout a specific historical timeframe, effectively accounting for the
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cumulative effects of inaccuracies. This study aimed to examine the progression of condenser health
status. This paper presents a novel approach by integrating the Informer model with the MC error
correcting method to estimate the health of condensers, taking into account the natural state transition
patterns in health evolution. This methodology enables enhanced precision in forecasting the condition
of equipment, particularly within the framework of extensive data settings.

In order to effectively schedule the cleaning time of equipment and optimise the monitoring of
condenser health status, as well as accurately predict the equipment’s deterioration trend, this paper
proposes two models: a fusion health degree model utilising high-dimensional Mahalanobis distance,
and a combined prediction model that incorporates this health degree. The initial step involves utilising
a collection of multivariate feature parameters associated with health degree as the input. This input
is then utilised to construct a fusion health degree model, employing high-dimensional Mahalanobis
distance. The fusion model integrates both subjective Analytic Network Process (ANP) and objective
Entropy Weight Method (EWM), and is commonly referred to as ANP-EWM. In this study, we
propose the utilisation of a refined Informer model in conjunction with a Markov error correction
technique referred to as Generalised Correntropy-Informer-Markov Error Correction (GC-Informer-
MEC). The Informer model utilises the generalized correlation entropy as its loss function to enhance
the correlation between feature data and the sequential correlation of time-series data. This approach
addresses the issue of low prediction accuracy observed in Informer models when handling non-
Gaussian probability distribution parameters. Furthermore, the issue of unpredictability in the process
of predicting the level of health degree is mitigated through the implementation of enhanced error
correcting techniques. This research shows that the condenser’s calculated health degree using the
proposed approach is congruent with its real health condition based on the examination of field time-
series data. The provided analysis delivers a quantitative assessment of the equipment’s health status
based on its running time. This analysis effectively forecasts the future trend of the condenser and
provides a dependable reference for selecting the optimal cleaning time for the condenser.

2 Building of Weight Fusion Health Degree Model Based on High-Dimensional Mahalanobis Distance

Let X = [x1, x2, x3, . . . , xm] be a multidimensional vector composed of m features, then the
Mahalanobis distance between the ith step feature vector Xi and the health feature X0 can be expressed
as [25]:

DM (X i, X0) =
√

(Xi − X0)�−1
(Xi − X0)

T (1)

where Xi = [xi1, · · · , xik, · · · , xim], xik denotes the k eigenparameter value in the ith step of monitoring;
X0 = [x1, · · · , xk, · · · , xm], xk represents the k eigenparameter value when the equipment is in full
health; � is the covariance matrix of the multidimensional variables X i and X0.

Taking into account the varying degrees of influence that each characteristic parameter within
the multivariate characteristic parameters has on the equipment’s health status, we introduce weights
to enhance their significance in determining the health degree. Thus, the fusion healthiness model can
be formulated as follows:

H (X i, X0) = 1/

[
1 +

√
W (Xi − X0) �−1

(Xi − X0)
T

]
(2)
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where H (X i, X0) represents the health degree of step i, and the health degree range is defined as [0,1];
The weight vector, denoted as W , is derived by integrating the analytic network process incorporating
subjective experience and the entropy weight method based on objective big data analysis.

2.1 Calculation of W 1 Based on Analytic Network Process
The Analytic Network Process (ANP) is a hierarchical multi-criteria decision-making method

that builds upon the AHP method. ANP takes into account the multi-level structure and the
interdependencies among numerous indicators, resulting in an enhanced approach [26]. This study
focuses on the condenser as the subject of investigation, employing a thermodynamic mechanism
analysis. The primary objective is to develop a health evaluation system comprising four distinct
characteristic factors. The comprehensive evaluation of the condenser equipment’s performance can be
achieved to a certain extent by considering the overall heat transfer coefficient and cleaning coefficient.
Condensate subcooling degree X�tgl, circulating water temperature rise X�txhs

, circulating water pump
motor current XIsb

and end difference X�tdc
all have certain influence on heat transfer coefficient

and cleaning coefficient. Analyzing the working principle of the condenser, it can be obtained that
there is a coupling relationship between the four characteristic parameters [27]. Establishing a health
assessment framework for the condenser requires analyzing the extent to which its characteristic
parameters affect overall performance. This involves calculating the weights of different characteristic
parameters in the evaluation of equipment health. The use of the analytic network process allows for
the comprehensive consideration of the interrelationships among these characteristic parameters. It
facilitates the development of a multi-criteria weight calculation method, enabling accurate assessment
of the impact of different characteristic parameters on equipment health degree. The diagram in Fig. 1
illustrates the hierarchical structure of the algorithm applied in the analytic network method.

Figure 1: The hierarchical structure of analytic network process

Based on the above hierarchical structure, with the control layer as the main criterion and the four
characteristic parameters in the network layer as the secondary criterion, the elements are compared
in pairs to build an initial unweighted supermatrix W s:

W s =
[

W 11 W 12

W 21 W 22

]
(3)
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where the column vector of W ij represents the indirect dominance degree comparison of the influence
of the elements in element group i on the elements in element group j with the elements in element
group j as sub-criteria:

W ij =

⎡
⎢⎢⎣

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

⎤
⎥⎥⎦ (4)

Taking the overall heat transfer coefficient and the overall cleaning coefficient as the secondary
criterion, a judgment matrix is established by pairwise comparison, and then the weight supermatrix
As is obtained:

As =
[

a11 a12

a21 a22

]
(5)

On the basis of formulas (3) and (5), the weighted supermatrix W as shown in formula (6) is
constructed:

W as = AsW s (6)

Finally, the weight is obtained by calculating the limit weighted supermatrix, and the priority of
the feature variable is determined:

W 1 = lim
k→∞

Ww
as (7)

where W 1 is the weight vector calculated by the ANP.

2.2 Calculation of W 2 Based on Entropy Weight Method
According to the above four characteristic parameters and the data set of n groups of samples,

an evaluation matrix M = (
mij

)
n×4

is built. In instances when the initial evaluation matrix comprises
values that are equivalent to zero, it indicates that these characteristic parameters do not contribute
to any loss of information in the health assessment. As a result, the entropy values associated with
these parameters reach a state of zero, hence causing a proportional augmentation in their respective
weights. This phenomenon has the potential to induce bias into the outcomes of health assessments. In
real-world scenarios, feature parameters may face instances of zero values as a result of measurement
mistakes and various other factors. In order to mitigate any bias in the weights, this study proposes
the incorporation of a little perturbation when employing the Entropy Weight Method (EWM) to
calculate weights, particularly in cases when zero values are present. The purpose of this perturbation
is to reduce the potential influence of zero values on the process of determining weights. Subsequently,
mij is standardized to obtain a standard evaluation matrix V = (

vij

)
n×4

[28].

The entropy value ej of the jth feature parameter can be expressed as:

ej = −k
n∑

j=1

hij ln hij, k = 1/ ln n (8)

where hij = vij/
∑n

i=1 vij, i = 1, 2, · · · , n; j = 1, 2, · · · , 4 denotes the weight of the ith sample value under
the jth characteristic parameter.
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Further, the weight vector calculated by the entropy weighting method is obtained as [29]:

W 2 = [
ω1, · · · , ωj, · · · , ω4

]T
(9)

where W 2 is the weight vector calculated by entropy weight method, ωj = ∂j/
∑4

j=1 ∂j, j = 1, 2, · · · , 4.

2.3 Health Degree Model of Weight Fusion
To enhance the precision of assessing the health degree, the health degree model is constructed by

incorporating the high-dimensional Mahalanobis distance. Additionally, a fusion weighting method
is employed, which combines both subjective and objective weighting methods, to determine the
weights assigned to the characteristic parameters that represent the health degree. This methodology
circumvents the inherent subjectivity associated with the ANP and addresses the computational bias
resulting from the limited data available in the EWM. W is a linear combination of W 1 and W 2.
Due to the subjective sources of representing health degrees using the ANP and the objective sources
of representing health degrees using the EWM, this study considers both subjective and objective
sources, each contributing equally to the composite weight, to characterize equipment health degree.
The proposed model for determining the fusion weight of health degree is as follows:{

H (X i, X0) = 1/
[
1 +

√
W (Xi − X0) �−1

(Xi − X0)
T
]

W = αW 1 + βW 2

(10)

where α and β are the proportions of the weights calculated by the ANP and the EWM in the
comprehensive weight, respectively.

3 Combined Prediction Model Based on GC-Informer and Markov Error Correction

Various aspects in the operational environment of nuclear power plants have an impact on the
operating parameters of the condenser. The equipment parameter data in this context generally follows
a non-Gaussian distribution. The health degree time-series data is subject to the influence of the
equipment operating environment and many characteristics, resulting in a non-Gaussian distribution.
In order to further understand the deterioration trend of the condenser and improve the stability and
accuracy of the health degree prediction model, aiming at the problem that the Informer model has low
prediction accuracy for non-Gaussian distribution parameters, an improved combination prediction
model of Informer and MEC is established. By changing model loss function and increasing the error
correction amount to achieve the purpose of accurately predicting the health degree of the condenser.
This model comprehensively takes into account the impact of historical running data on health status.
It utilizes various time series as input variables in order to forecast the health degree of the condenser.

3.1 GC-Informer Model
The GC-Informer prediction model obtains the temporal dependence of the five-dimensional

feature parameter set including the historical health degree of the condenser through the encoder,
and generates the health prediction result through the decoder. Considering the significance of time in
health degree prediction, before inputting the model, time stamp encoding is used to encode the year,
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month, day, hour, minute and other information in the data to improve the predictive ability of the
model in long-term series. The operation is as follows:

PE(pos, 2i) = sin

(
pos

10000
2i

dmodel

)
(11)

PE(pos,2i + 1) = cos

(
pos

10000
2i

dmodel

)
(12)

3.1.1 Encoder

The encoder is mainly composed of multi-head probsparse self-attention mechanism modules and
distillation modules. It takes the historical running data Xt = [Xt

�tgl, X�txhs
, Xt

Isb, Xt
�tdc

, Ht (X, X0)] of
the condenser as input and uses the multi-head sparse self-attention mechanism to extract long-term
dependencies in the temporal data. The attention distillation mechanism is then applied to reduce
the temporal dimension by half for each individual layer’s features. The feature dimension is further
compressed and essential information is extracted using a 1D convolutional neural network [30]. The
distillation process from j layer to j+1 layer is illustrated by Eq. (14), enhancing the model’s capability
to handle long time series data.

Xt
j+1 = MaxPool

(
ELU

(
Convld

([
Xt

j

]
ATTENTION

)))
(13)

Among them,
[
X t

j

]
ATTENTION

represents the processing process in the multi-head probsparse self-
attention mechanism, Convld represents the one-dimensional convolution operation on the time-
series, and ELU(·) is the activation function. After applying a max-pooling layer, the dimension of
Xt is reduced by 1/2. The dimension of the self-attention block is also reduced by 1/2 compared to
the previous one, thereby reducing the memory footprint and runtime of the encoder. The encoder
structure is shown in Fig. 2.

Figure 2: Encoder structure
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3.1.2 Multi-Head Probsparse Self-Attention Mechanism

The self-attention mechanism assigns weight coefficients by calculating the similarity between the
Query and Key [31]:

Attention(Q, K , V) = Softmax
(

QKT

√
d

)
V (14)

where Q ∈ RLQ×d, K ∈ RLK ×d, V ∈ RLν×d is the feature matrix obtained by linear transformation of the
input feature variables, d is the input dimension, and Softmax(·) is the activation function. To further
discuss the self-attention mechanism, let the ith row of Q, K , V be qi, ki, vi, respectively. The attention
coefficient of the ith row of Query is defined as a kernel smoother in the probabilistic form:

Attention
(
qi, K , V

) =
∑

j

k
(
qi, kj

)
∑

l k
(
qi, kl

)vj = Ep(kjqi)

[
vj

]
(15)

where p
(
kj | qi

) = k
(
qi, kj

)
/
∑

l k
(
qi, kl

)
, k

(
qi, kj

) = exp
(

qik
T
i /

√
d
)

. The GC-Informer model

sparsifies the attention mechanism by distinguishing high-importance queries based on the similarity
between distributions p and q, using KL divergence to measure the similarity.

M
(
qi, K

) = ln
LK∑
j=1

e
qik

T
j√
d − 1

LK

LK∑
j=1

qik
T
j√

d
(16)

where the first term is the Log-Sum-Exp (LSE) of qi on all Keys, and the second term is their arithmetic
mean. If the ith row of Query obtains a larger M

(
qi, K

)
, the dot product has a larger contribution to

attention. The probsparse self-attention mechanism is implemented by allowing each Key to focus
only on the Query with higher importance, thus reducing the model computational complexity.

Attention (Q, K , V) = Softmax

(
QKT

√
d

)
V (17)

3.1.3 Decoder

The input to the decoder is a five-dimensional data sequence, including the historical health index
of the condenser, along with a segment of zeros that is equal to the prediction step length. Zeros are
used as placeholders for the predicted values to prevent the model from accessing future sequence
information during training. The input vector is represented as shown in Eq. (19).

Xt
decoder = Concat

(
Xt

token, Ot) (18)

Within the decoder, the input time series data is first calculated by the masked multi-head prob-
sparse self-attention mechanism module, and then the sparse self-attention operation is performed
with the feature map output by the encoder. The resulting computation is then passed through a
fully connected layer to obtain the prediction result Y = [yt+1, yt+2, · · · , yt+m, · · · , yt+n]. The prediction
results are compared with the actual values to calculate the loss function, which is used to continuously
optimize the model based on the errors. In order to address the probability distribution characteristics
of the running parameters in the subject of this study, the generalized correntropy function is applied
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as the loss function for training the Informer prediction model. The mathematical formula for the GC
is shown in Eq. (20):

LGCloss

(
yr+m, Hr+m

) = Gα,β(0) − Vα,β

(
yr+m, Hr+m

)
= Gα,β(0) − 1

N

N∑
i=1

Gα,β

(
yr+m, Hr+m

)

= α

2β	
(

1
α

) − 1
N

N∑
i=1

α

2β	
(

1
α

) exp
(

−
∣∣∣∣yr+m − Hr+m

β

∣∣∣∣
α)

(19)

where yr+m is the predicted value, Hr+m samples the true value, N is the number of data, α > 0 is the

shape parameter of the generalized Gaussian distribution, β = σ

√
1/σ

3/σ
, σ is the Gaussian kernel

parameter, and 	(•) is the gamma function. Input the test data set into the trained GC-Informer
model, and output the health degree prediction result. Its overall structure is shown in Fig. 3.

Figure 3: Informer model structure

3.2 Markov Error Correction
Considering the presence of randomness in the prediction process and aiming to enhance the pre-

diction accuracy of condenser health degree, a Markov chain is applied to partition the development
pattern and potential outcomes of condenser health into different states. The transition rules between
different states are studied to modify the predicted results of condenser health degree. Characterized by
the transition matrix, in the process of solving the state probability, the states are divided into n types
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(namely S1, S2, · · · , Sn) through the analysis of the condenser health degree prediction error sequence,
and the state division is based on the following [32]:

n = EVEN
(

d
σ

)
(20)

σ =
√√√√ 1

n − 1

n∑
i=1

(
εj − ε̄i

)2
(21)

where the EVEN(·) function is the nearest even number taken along the direction of increasing absolute
value, ε is the sequence of residuals, and d is the difference between the maximum and minimum
residuals. Next, based on the statistics of health prediction errors, the transition probabilities between
states are calculated. Specifically, the probability of relative error transitioning from state Si to state Sj

over k time steps is given by:

Pij(k) = Mij(k)

Mi

(22)

where Mij(k) represents the number of times state Si transitions to state Sj after k time steps, and Mi

represents the number of occurrences of relative error in state Si. The matrix form is:

P =

⎡
⎢⎢⎣

P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn

⎤
⎥⎥⎦ (23)

Assuming that the current state is Si, in the ith row of the transition probability matrix, Pij is the
maximum value in this row, then the possibility of the state Sj appearing at the next moment is the
greatest, and it is taken as the corresponding prediction result.

Finally, an error correction value et+m is taken for each state to modify it, resulting in the predicted
health degree. The correction basis is as follows:

et+m = [(�max + �min) /2] yt+m (24)

where �max and �min are the upper and lower limits of the relative error state interval, respectively,
and yt+m is the predicted health degree of GC-Informer model.

3.3 Establishment of GC-Informer-MEC Combined Prediction Model
Based on the above theories, this paper combines GC-Informer and MEC to establish a combined

predicting model that improves Informer and Markov error correction. The input of the prediction
model is Xt = [Xt

�tgl, X�txhs
, Xt

Isb, Xt
�tdc

, Ht (X, X0)]. The inputs of the model are presented in Table 1.
The historical time-series data of the condenser’s characteristic parameters include the condensate
subcooling degree X�tgl, circulating water temperature rise X�txhs

, circulating water pump motor current
XIsb

and end difference X�tdc
. Additionally, the historical time-series data of the condenser’s health

degree is represented by the health degree. One instance of variable data at a particular moment (row)
can be observed as [0.4977, 7.1874, 0.5846, 6.7075, 0.9571]. The time-series data, which consists of five
dimensions, is divided into segments for the composite prediction model. The segmentation is achieved
by utilising a sliding time-series window with a length of 200. In every iteration of the model, a matrix
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with dimensions of 200 ∗ 5 is employed as input data, which is segmented using the sliding window
technique.

Table 1: The inputs of the GC-Informer-MEC combined prediction model

No. Symbol Name

1 �tgl Condensate subcooling degree
2 �txhs Circulating water temperature rise
3 Isb Circulating water pump motor current
4 �tdc End difference
5 H (X, X0) Historical health degree

In order to enhance the reliability of predicting outcomes, the data utilised for the model is divided
into three distinct sets: training datasets Xt

1, validation datasets Xt
2, and testing datasets Xt

3. These sets
are allocated in a ratio of 6:2:2, respectively. The training dataset Xt

1 and validation dataset Xt
2 are

used to train the model, and the testing dataset Xt
3 is fed into the trained GC-Informer model for

health degree prediction. The first part of the proposed combined prediction model is the GC-Informer
prediction model. This model compares the Informer method’s predicted results against actual values
using the training and validation datasets, calculating the GC loss function. Continuous optimization
of the model is achieved through error minimization, resulting in a well-trained GC-Informer model.
Using the testing dataset Xt

3, the trained GC-Informer model generates predictions. The latter half
of the combined prediction model applys the Markov Error Correction algorithm to calculate errors
between the GC-Informer predicted results and actual values. It subdivides the error state space and
calculates the state transition matrix, obtaining error correction values. The final prediction of the
model is a combination of GC-Informer predictions and MC correction values. The overall process is
illustrated in Fig. 4.

Ht+m = yt+m + et+m (25)

4 Example Verification

This paper utilizes an example dataset comprising 12,960 sets of field operation data from January
to March 2022 of a domestic 1000 MW nuclear power plant unit for validation and analysis. Using
four characteristic parameters X�tgl, X�txhs

, XIsb
, and X�tdc

, the health degree H (X, X0) of the condenser
is determined. In addition, the computed condenser health degree is utilised in conjunction with these
four distinctive factors to forecast the trajectory of changes in the health degree of the condenser. In
order to improve the quality of the data, several procedures were adopted during the processes of data
collecting and conversion. The missing data were resolved by employing the mean fill approach, and
the outliers were managed with the plural fill method.
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Figure 4: GC-Informer-MEC model
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4.1 Calculation of Condenser Health Degree
Through the hierarchical analysis of the fusion health degree model, the overall heat transfer

coefficient and the overall cleanliness coefficient are taken as the determining factors, and the initial
unweighted supermatrix for the control layer health degree indicator is obtained as follows:

Ws =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.25 0.1365 0.25 1 0 0 0
0.25 0 0.2385 0.75 0 1 0 0

0 0 0 0 0 0 1 0
0.75 0.75 0.625 0 0 0 0 1

1 0 0 0 0 0.1047 0.1169 0.25
0 1 0 0 0.1667 0 0.1998 0.75
0 0 1 0 0 0.2582 0 0
0 0 0 1 0.8333 0.6370 0.6833 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

Using the overall heat transfer coefficient being superior to the overall cleanliness coefficient as a
sub-criterion, the weight supermatrix is obtained as:

As =
[

0.6667 0.3333
0.3333 0.6667

]
(27)

The weighted supermatrix W as is obtained according to Eq. (6):

W as =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.1667 0.091 0.1667 0.3333 0 0 0
0.1667 0 0.159 0.5 0 0.3333 0 0

0 0 0 0 0 0 0.3333 0
0.5 0.5 0.4167 0 0 0 0 0.3333

0.3333 0 0 0 0 0.0698 0.0779 0.1667
0 0.3333 0 0 0.1111 0 0.1332 0.5
0 0 0.3333 0 0 0.1722 0 0
0 0 0 0.3333 0.5556 0.4247 0.4556 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Ultimately, the weight vector of the feature parameters based on the analytic network process
according to Eq. (7) is:

W 1 = [0.1734, 0.3454, 0.0713, 0.4099]T (29)

The weight vector W 2 of the feature parameters calculated based on the entropy weight method is:

W 2 = [0.1771, 0.2509, 0.2543, 0.3177]T (30)

Weighting was performed using the fusion weighting method based on Eq. (11). The subjective
AHP and objective EWM based weighting methods contributed to proportions α and β, respectively,
in the comprehensive weight, with both being 0.5. The final weights of each feature parameter are
presented in Table 2. The weights of the health feature parameters were substituted into the fusion
health degree model Eq. (11), resulting in the health degree values of the condenser at each time step.

4.2 Validation of Condenser Health Degree Trend Prediction
On the basis of the fusion health degree model, the health degree of the condenser is predicted

in multiple steps with 12960 sets of data in the example data set, and then the deterioration evolution
trend of the condenser can be judged. Next, based on Eqs. (21) and (22), the training set data were
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used to partition the error state space. By considering the relative error, the error sequence was
divided into four state intervals, which are defined as follows: S1(−0.059, −0.005), S2(−0.005, −0.001),
S3(−0.001, 0.005), S4(0.005, 0.047). The state transition matrix P is obtained by counting the state
transition as follows:

P =

⎡
⎢⎢⎣

0.3552 0.4352 0.2411 0.1321
0.4564 0.1432 0.1618 0.1334
0.4352 0, 2641 0.1642 0.1424
0.2443 0.1617 0.2815 0.2514

⎤
⎥⎥⎦ (31)

Table 2: Feature weight coefficient

No. Characteristic parameters weight

1 �tgl 0.1753
2 �txhs 0.2981
3 Isb 0.1628
4 �tdc 0.3638

In order to demonstrate the improvement in the accuracy of condenser health degree prediction
achieved by the multidimensional inputs GC-Informer-MEC combination prediction model proposed
in this paper, predictions were made using only one-dimensional time-series data consisting of
historical health information as the model input. These health prediction results were then compared
with the approach presented in this paper, as depicted in Fig. 5. The image depicts three curves: green,
blue, and orange. These curves correspond to the actual health degree, health degree forecasts derived
from five-dimensional time-series data as input, and health degree predictions derived from one-
dimensional time-series data as input, respectively. The graphic illustrates three vertical dashed lines,
where the black line represents the commencement of the prediction, and the two red lines represent
the anticipated condenser cleaning times for the multi-input and single-input scenarios, respectively.

Figure 5: GC-Informer-MEC model prediction results

Upon careful examination of Fig. 5, it becomes apparent that the utilisation of both historical
running parameters and historical health degree as inputs to the model regularly results in projected
health degrees that closely coincide with the genuine degree. This alignment demonstrates a notable
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level of accuracy and few discrepancies. In contrast, employing a solitary metric of previous health
degree for the purpose of predicting future health outcomes results in diminished levels of accuracy.
In this study, the determination of the optimal time point for condenser cleaning is based on the
application of a health degree threshold of 0.8. The single-input prediction model exhibits a delay
of 508 sample points, each representing a 10-minute interval, compared to the multi-input prediction
model in predicting the cleaning time point. As a result, the single-input prediction model indicates a
cleaning time point that is approximately 84 h later than that of the multi-input prediction model. The
delay has the potential to have a negative impact on the operational quality of the equipment, resulting
in extended operation of the condenser at a reduced efficiency level. This, in turn, can lead to a decline
in the economic efficiency of the secondary loop. When the condenser operates below a health degree
of 0.8, performing timely cleaning can increase its efficiency by 1%. Based on the thermal calculation
of a 1000 MW unit with a coal consumption of 320 grams per kWh, it can be determined that the
impact of this timely condenser cleaning on coal consumption is:

B = 84 h × 1000 MW × 320/KW · h × 1% = 268.8 T (32)

When calculated at 460 RMB per metric ton of standard coal, utilizing the multi-input prediction
model for timely cleaning of the condenser equipment can result in a cost saving of 123,648 RMB.

The prediction errors are presented in Table 3. The analysis table illustrates that incorporating
numerous data inputs significantly improves the predictive accuracy of the model. Furthermore, it
indicates that the selected historical running parameters of the condenser have a certain impact on
the forecast of the health degree. When solely utilising health degree time series data as the primary
input for the prediction model, there is a notable discrepancy in the projected health outcomes, despite
the approximate alignment of the predicted trend with the actual health progression. This approach
provides an impartial reflection of the anticipated future evolution trend of condenser equipment.
The predictive model demonstrates strong performance in accurately projecting future trends for a
single time-series. In situations when exactitude is not the primary concern, a solitary indicator may
be employed to forecast the forthcoming condition of the apparatus. In scenarios where the precise
prediction of equipment condition is of utmost importance, the construction of multi-dimensional
time series allows for more accurate forecasts of the health level. This, in turn, aids operators in
effectively monitoring the health status of the condenser equipment and facilitates the development
of a well-informed cleaning schedule for the condenser.

Table 3: Predictive errors under multiple indicators

Input parameters MAPE

Five-dimensional time-series data containing health degree 0.077%
Historical health degree time series data 1.147%

In order to assess the enhanced efficacy of the GC-Informer-MEC prediction model in compar-
ison to utilising a solitary model, three commonly applied prediction models, specifically Informer,
Long Short-Term Memory (LSTM), and Deep Neural Network (DNN), were chosen as control
experimental groups for the purpose of comparing their respective prediction performances. The
sample data for this study consists of 12,960 sets of field operating data obtained from a 1000 MW
unit of a nuclear power plant. To create a training set, the historical data from the prior 7,800 sets at
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the projected time were picked. The comparative analysis of the projected outcomes derived from the
utilisation of multi-source time-series data is presented in Fig. 6.

Figure 6: Comparison of prediction results of different models

Upon examination of Fig. 6, it becomes apparent that the chosen prediction models, namely
Informer, LSTM, and DNN, demonstrate differing levels of accuracy in forecasting the future trend
of the health degree. These models closely align with the progression of the actual health degree.
Nevertheless, the efficacy of forecasting future health outcomes varies based on the selected predictive
model. The present study highlights the effectiveness and accuracy of the suggested GC-Informer-
MEC combined prediction model, as evidenced by the results presented in Fig. 6. Table 4 displays the
discrepancies observed in the forecast outcomes across several prediction models.

Table 4: Error results from multiple predictive models

Predictive model MSE MAE MAPE

GC-Informer-MEC 1.23e-06 0.00071 0.077%
Informer 8.47e-06 0.00224 0.241%
LSTM 2.09e-05 0.00405 0.437%
DNN 1.10e-04 0.00798 0.867%

5 Conclusion

Aiming at the problem of determining the cleaning time for condensers, this paper proposes a
fusion health degree model based on improved Mahalanobis distance. On the basis of the fusion health
degree model, a combined prediction model based on GC-Informer-MEC is established to predict the
health degree of the condenser, and then the state trend of the deterioration and evolution of the
condenser can be judged. Applying the above method to an example, the following conclusions are
obtained:

The improvement of the Mahalanobis distance is achieved by the utilisation of a weighting method
that combines the analytic network process and the entropy weight method. This approach allows for
the integration of expert knowledge and objective observations, enabling a quantitative assessment
of the actual status of the condenser’s health. The GC-Informer-MC combination prediction model
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is constructed based on the health degree, utilising past running parameters and historical health
degree data. In contrast to a single-input model, the combined model has the capability to anticipate
condenser deterioration durations at 508 sample locations, hence facilitating prompt equipment
cleaning and resulting in an estimated cost savings of roughly 123,648 RMB. In contrast to a singular
prediction model, the utilisation of this approach yields a more refined forecast and study of the
degradation pattern exhibited by the condenser. Consequently, it furnishes a more precise benchmark
for ascertaining the optimal timing for equipment cleaning.

Health indicators, which are derived from the measurement of health status, are extensively
utilised in various industrial processes. However, further enhancements are needed in order to get
a more precise depiction of equipment status through the utilisation of health degree indicators. In
our future research, we aim to improve the health degree model by employing optimisation methods.
Additionally, we plan to implement online weight updates for the subjective and objective source
weights, denoted as α and β respectively, which are used to quantify the health degree. This approach
is expected to enhance the accuracy of equipment status quantification.
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