
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.043469

ARTICLE

A Bitcoin Address Multi-Classification Mechanism Based on Bipartite
Graph-Based Maximization Consensus

Lejun Zhang1,2,3,*, Junjie Zhang1, Kentaroh Toyoda4, Yuan Liu2, Jing Qiu2, Zhihong Tian2 and
Ran Guo5

1College of Information Engineering, Yangzhou University, Yangzhou, 225127, China
2Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou, 510006, China
3Research and Development Center for E-Learning, Ministry of Education, Beijing, 100039, China
4Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A∗STAR),
Singapore, 138632, Singapore
5School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China

*Corresponding Author: Lejun Zhang. Email: zhanglejun@gzhu.edu.cn

Received: 03 July 2023 Accepted: 28 September 2023 Published: 30 December 2023

ABSTRACT

Bitcoin is widely used as the most classic electronic currency for various electronic services such as exchanges,
gambling, marketplaces, and also scams such as high-yield investment projects. Identifying the services operated
by a Bitcoin address can help determine the risk level of that address and build an alert model accordingly.
Feature engineering can also be used to flesh out labeled addresses and to analyze the current state of Bitcoin
in a small way. In this paper, we address the problem of identifying multiple classes of Bitcoin services, and for
the poor classification of individual addresses that do not have significant features, we propose a Bitcoin address
identification scheme based on joint multi-model prediction using the mapping relationship between addresses
and entities. The innovation of the method is to (1) Extract as many valuable features as possible when an address
is given to facilitate the multi-class service identification task. (2) Unlike the general supervised model approach,
this paper proposes a joint prediction scheme for multiple learners based on address-entity mapping relationships.
Specifically, after obtaining the overall features, the address classification and entity clustering tasks are performed
separately, and the results are subjected to graph-based maximization consensus. The final result is made to baseline
the individual address classification results while satisfying the constraint of having similarly behaving entities as
far as possible. By testing and evaluating over 26,000 Bitcoin addresses, our feature extraction method captures
more useful features. In addition, the combined multi-learner model obtained results that exceeded the baseline
classifier reaching an accuracy of 77.4%.

KEYWORDS
Bitcoin; multi-service classification; graph maximization consensus; data security

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.043469
https://www.techscience.com/doi/10.32604/cmes.2023.043469
mailto:zhanglejun@gzhu.edu.cn


784 CMES, 2024, vol.139, no.1

1 Introduction

In recent years, Bitcoin [1] has gained popularity worldwide as the most valuable cryptographic
digital currency currently on the market. Fig. 1 shows the price change of Bitcoin from its launch to
the present day. As Fig. 1 shows, the price of Bitcoin has not changed significantly for a long time since
its launch, however, with the widespread use of blockchain and the emergence of various e-services,
electronic currencies are gradually gaining respect and the price of Bitcoin has peaked in the past few
years.

Figure 1: USD/BTC exchange rates (Source: Blockchain.info)

Tasca et al. [2] have analyzed the evolution of the Bitcoin economy and summarized three
distinguishable economic regimes as the Bitcoin economy has developed and matured. Bitcoin’s early
phase was dominated by mining and proof-of-concept without much substantial economic activity.
Followed by a period of criminal growth, when early participants were attracted to the unique
properties of cryptocurrencies, hence the proliferation of “criminal” enterprises (HYIP, dark markets,
etc.) under this phase. The third stage is led by legitimate exchanges, which are businesses that convert
digital currencies into fiat currency to cover costs and avoid price fluctuations. They found that
different commercial categories populate the various stages of Bitcoin’s development and that each
commercial category has its different transaction flow patterns.

Bitcoin has so many commercial categories because it has properties that traditional currencies
do not have. Bitcoin has a decentralized nature, it is not controlled by governments or financial
institutions, and it can even be traded directly across borders. Besides, openness, transparency,
immutability and anonymity are its key characteristics. Everyone can see all the transactions that have
taken place, which makes Bitcoin transactions open and transparent. Blockchain utilizes cryptography
and consensus mechanisms so that all blocks retain the hash of their previous block, and if one block
is changed, then all subsequent blocks must be changed, so that transaction information cannot be
tampered with. The addresses involved in Bitcoin transactions are obtained as pseudonyms through
layers of cryptographic calculations with the user’s public key and do not contain any identifiers
to verify their identity, so the user has a certain degree of anonymity. While all these features are
guaranteed to improve blockchain security, the fact is that transactions on the blockchain are not
secure. Zhang et al. [3] investigated that only a small percentage of blockchain platforms can achieve
a set of security goals in practice. Xu et al. [4] argued that blockchain can prevent only a portion of

https://www.blockchain.com/explorer
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fraudulent and malicious activities and remains vulnerable to attacks. They suggested appropriate
defensive measures and called for further research to combat malicious activities associated with
blockchain.

Recently, the website blockchain.info [5] classified the existing mainstream Bitcoin cryptocurrency
services in terms of risk levels with respect to their risk factors, as shown in Fig. 2. Due to the lack
of regulation and investigation by law enforcement, many services come with a certain amount of
risk. For example, with high-risk exchanges and coin-mixing companies, sometimes we have no way
of knowing whether they are providing a legitimate service or engaging in illegal fundraising, while
lost virtual currency property is difficult to retrieve without credentials. In traditional anti-fraud or
anti-money laundering efforts, the government monitors the behavior of suspicious people through
financial services institutions that must verify the identity of customers before providing financial
services, at which point the government can accurately track down suspicious people based on perfect
knowledge of the user’s identity. In contrast, Bitcoin’s users are difficult to identify, with no real identity
information embedded in any participant’s address, and worse, new addresses can be generated at will,
which increases user anonymity and allows illegal activities and financial crimes to flourish, making it
difficult to guarantee the security of legal user transactions. To secure user transactions, Möser et al. [6]
have attempted to create a blacklisting policy for dangerous addresses in Bitcoin to enable transaction
recipients to identify low-reputation addresses to avoid risk as much as possible, but the technique relies
too heavily on transparent and authoritative tagging data, which may be accompanied by implications
such as disinformation, information explosion and difficulty in recovering reputation, and it is difficult
to implement in the anonymous Bitcoin network of flood propagation. Therefore, it is advisable to
use the behavioural features of the target address to complete the identification of its possible identity
prior to the transaction in order to avoid transaction risks and help the blockchain ecosystem grow in
a healthy way.

Figure 2: The types and risk levels of cryptocurrency services (Source: Blockchain.info)

The rest of the paper is structured as follows. Section 2 will briefly introduce the work related
to address clustering and address classification in Bitcoin, as well as the innovation points of this
paper. Section 3 will introduce the general steps and specifics of the model. Section 4 will describe the
experimental process of this paper, organize and evaluate the experimental results, and Section 5 will
conclude the whole paper.

http://blockchain.info
https://www.blockchain.com/explorer


786 CMES, 2024, vol.139, no.1

2 Related Work

This section first introduces the fundamentals of trading, then leads to related work on address
clustering and address classification, pointing out the problems with existing research as well as stating
the motivation and innovation of this paper’s proposal.

2.1 Trading Fundamentals
Bitcoin is a decentralised cryptocurrency that works in a P2P (peer-to-peer) network [1]. Fig. 3

shows two examples of Bitcoin transactions. As shown in Fig. 3, Bitcoins are transferred between
Bitcoin addresses via a message format called a transaction. For the second Bitcoin transaction shown
in this figure, the sender and receiver of Bitcoins are identified as the input and output, respectively.
The private and public keys are generated by a pair of elliptic curve encryption algorithms, but it is
not possible to work backwards through the public key to get the private key. The purpose of the
public key is to encrypt a message using one’s own private key when dealing with the other side, who
then decrypts it using their own public key to obtain the original message, this process is commonly
known as a signature. As the public key is too long to use in a transaction, an algorithmic encryption
of the public key hash is performed to generate the address. When a user creates a transaction to send
a certain number of Bitcoins to a specific Bitcoin address, a message signature that can be calculated
from their paired private keys is required. In Bitcoin, the private key signature is used to verify that
the identity of the person sending the message is the person transferring the money in the transaction,
and the message is confirmed if the message is decrypted.

The transaction is sent to the P2P network and checked for validity, e.g., whether the input to the
transaction has not been previously spent and the additional signature is verified by the participating
nodes. When a transaction is determined to be valid, it will be agreed by every participant in Bitcoin
via flood propagation and stored permanently in the Bitcoin blockchain. In Bitcoin, a set of approved
transactions is stored in a block in the form of a Merkle tree, and newly created blocks are periodically
distributed among all nodes of the P2P network. However, due to its decentralised nature, Bitcoin lacks
a trusted body to manage blocks. If a block is abandoned, the bitcoins already spent may be reused,
resulting in what is known as “double spend”. In fact, Bitcoin avoids double spending by rewarding
bitcoins to rational nodes as an incentive. In Bitcoin, blocks are created by solving an intractable but
easily checked computational puzzle. More specifically, nodes commonly referred to as miners need
to lower a specified target value in the result of a (SHA-256) hash as well as the set of references to the
previous block and unapproved transactions. The first miner to identify such a random number can
acquire newly minted Bitcoins through a so-called coinbase transaction, shown in the first transaction
in Fig. 4, and all transaction fees are included in the block. This leads to a growing chain of blocks so
called the blockchain, as the previous block is needed to create the next block. It is worth noting that
valid transactions agreed by the nodes as part of the block creation process are also stored permanently
in the block and are not modified in any way.

Due to its credible advantages, blockchain has a wide range of applications in many areas,
especially in data storage. For example, Tian et al. [7] proposed a secure digital evidence framework
based on block-chain (Block-DEF) with a loosely coupled structure that allows evidence and eviden-
tiary information to be maintained separately, alleviating the tension between evidence traceability
and privacy. Wang et al. [8] addressed the serious centralization problem in DNS architecture and
management by improving the consensus algorithm in blockchain to implement a blockchain-based
DNS storage and retrieval system with fast consensus and low traffic. Su et al. [9] implemented a
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decentralized name resolution system for IoT based on blockchain architecture to ensure that IoT
names cannot be maliciously tampered with.

Figure 3: Details of an example transaction Figure 4: An example of address clustering

2.2 Bitcoin Address Clustering
In the Bitcoin system, any entity can manage more than one Bitcoin address. The de-

anonymization of addresses is a key issue in analyzing addresses and a focus on the detection of
illegal activities such as anti-money laundering. This technology not only helps with the task of
illegal entity detection, but also with the tracking of accomplice addresses of certain illegal addresses.
Several deanonymization techniques, often called address clustering algorithms, have emerged.
Androulaki et al. [10] showed that despite not knowing the true identity of the owner: there are
two heuristics to associate a Bitcoin address with its owner, the Multi−input transactions heuristic and
the “shadow” addresses heuristic, respectively. The first heuristic states that all transaction addresses
in a transaction belong to the same user entity. The second heuristic is that only when the output
address is two if one of the addresses appears in the blockchain for the first time, it is a change address
automatically generated by the system for the user and therefore belongs to the same entity as all the
input addresses. Fig. 4 shows an example of address clustering, where transaction B and transaction
C correspond to the “shadow” addresses heuristic and the Multi−input transactions heuristic,
respectively.

Initially, these two address clustering methods were able to cope with most bitcoin address analysis
efforts, but the consequent creation of coin mixer has somewhat impacted this approach [11]. The main
idea of the mixed coin service is that multiple users transfer coins to the same transaction at the same
time, rendering the multi-input heuristic rule ineffective. Some research on anti-mixed coins has also
been carried out, Wu et al. [12] analyzed mixed coin transactions in Bitcoin, and they found that there
are two main types of mixed coin transactions, exchange, and obfuscation, and designed heuristic rules
to detect mixed coin transactions. In summary, the main limitation in identifying the controlling entity
behind Bitcoin addresses is that they do not involve any identifying information linking them to the
owner, and even if multiple addresses were known to be controlled by one person or one entity, it
would still be unable to determine their true identity. Nevertheless, address clustering techniques can
often bring a different analysis from a more macro perspective, e.g., Meiklejohn et al. [13] studied the
usage of Bitcoin transactions through address clustering-based transaction graph analysis, and they
showed that different clustered entities correspond to various services such as mining pools, wallets,
exchanges, gambling, and money laundering, among others. For the identification work of multiple
services of Bitcoin addresses, obtaining some feature information of the entity where the address is
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located helps to enrich the features of the address and thus improve the classification. As the “shadow”
addresses heuristic is more likely to compose too large clusters and suffer cluster crashes. In this paper
we only use the Multi−input transactions heuristic for address clustering to obtain the entity where
the address is located and other addresses of that entity.

2.3 Address Service Classification
Learning behavioural features on Bitcoin addresses to train machine learning models and identify

the security factor of the target address before the transaction is completed is a reliable solution
to avoid risk and secure transactions. Several studies have been conducted on the service category
identification problem, which can be broadly divided into two directions, classification of addresses
and classification of entities (using heuristic clustering), respectively. They usually start with feature
extraction of the dataset addresses or entities, and subsequently, put the features and labeled data into
the classifier for model training and result validation. For example, Akcora et al. [14] proposed a novel
and effective prediction framework for ransom transactions that can automatically predict emerging
ransom transactions in a limited amount of relevant historical transaction data. Jourdan et al. [15]
defined some new features related to the characteristics of entities on the Bitcoin blockchain and
studied their efficacy in practice. Toyoda et al. [16] summarized the historical transactions of addresses
and computed the features to train the model from both address and entity perspectives, concluding
that the classification results were better with entities as samples, possibly due to the greater random-
ness of selecting individual addresses, which made the classification results lower. Unlike Toyoda’s
extracting features separately for addresses and entities, Zola et al. [17] used cascaded machine learning
to characterize entities, and they used the classification results of addresses within entities to vote and
enriched the features of entities with the voting results as new features so that the classification results
of entities followed the results of most of the addresses within them to achieve good classification
results. Kanemura et al. [18] proposed a voting-based approach to identify addresses in darknet
marketplaces, where all addresses within an entity are classified as darknet addresses if the addresses
above a given threshold are detected to be consistent with darknet transactions, and experimental
results show that the voting-based approach outperforms the non-voting-based approach in all aspects.

There is indeed cross information between the address and the entity in which it is located. The
methods based on the idea of voting that have been studied do improve the results of classifying entities,
however, classifying all addresses within an entity is too computationally intensive. Also, transactions
are often sent to individual addresses rather than entities, and the analysis of individual addresses is
the main basis for prompting transactions to be completed. So we endeavoured to solve the following
question: Can the entity information of this address be used to correct the classification results of a
single address in order to improve the classification accuracy of a single address? A voting strategy
may not solve this problem because entities may participate in multiple services and it cannot simply
be determined that all addresses within an entity participate in the same service, and the voting policy
consumes a lot of computing resources. To solve the above problems, we were inspired by the article by
Gao et al. [19] which combines heterogeneous source information to correct the original classification
results. This paper proposes a consensus method for maximizing the consensus of address and entity
classification results. Firstly, we ensure high prediction accuracy by extracting a large number of
address features, secondly, we cluster highly similar entities using a small number of features of the
entity where the address is located so that entities exhibiting similarity appears in the same clusters,
and finally, we perform consensus on the classification results and clustering results at the output level
to counteract the randomness of individual address features and optimize the classification results of
individual addresses to improve the accuracy.
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2.4 Motivation and Contribution
Yang et al. [20] used a Gaussian distribution unsupervised clustering method to cluster Bitcoin

entities into six clusters, representing six groups of users exhibiting different features. It is not rigorous
to use unsupervised clustering alone to obtain class labels for addresses within clusters, but we can
gain some insight that entities within the same cluster do have similar features. The similarity of
entities in the same service is more obvious, and if using it as a constraint on the classification
results of individual addresses, individual addresses that do not match the service performance can
be corrected, thus improving the accuracy of the overall prediction. Note that we should still focus
on the classification results of individual addresses, and the entity label correction only serves as a
constraint. To implement the above ideas, the open and transparent nature of Bitcoin and the existing
mature machine learning methods can be of good help, however, two efforts remain to improve the
accuracy of the predictions as much as possible. (1) How to accurately describe the behavior patterns
of addresses through the transaction history of individual addresses? In this paper, based on previous
research, the historical transactions of Bitcoin addresses and the complex structure of the inter-address
transaction graph are described, and both explicit and implicit features are summarized, fully exploit
the features of addresses that contain specific semantics. (2) How to choose a machine learning model?
In this paper, we use the current best ensemble learning models Random Forest and Gradient Boosting
as the comparison models and use their outputs as the input for the consensus model. In contrast,
unsupervised clustering uses spectral clustering, as it is suitable for dealing with sparse data with low
dimensionality and a small number. The contribution of this paper can be summarized as follows:

1. In this paper, we summarize previous research and conduct comprehensive mining of features
based on a single address. 110 features are extracted in this paper, including explicit features
based on address transaction history and implicit features describing connections between
addresses.

2. In this paper, we propose a consensus scheme for correcting address supervised classification
results with entity unsupervised clustering results, which, to our knowledge, is the first scheme
to combine multivariate model joint prediction with the Bitcoin multi-class service detection
problem.

3. In this paper, the features mined are comprehensively analysed and the proposed method
is compared and analysed with advanced machine learning methods to demonstrate the
effectiveness of the solution.

3 Proposed Method

The address service identification approach proposed in this paper can be summarized in four
steps: 1) retrieving and preprocessing historical transactions of addresses, 2) feature extraction, 3)
training baseline models, and 4) consensus of results at the output level.

3.1 Transaction Retrieval and Pre-Processing
In this paper, we use the labeled address dataset [21] published in the article [16]. There are a total

of 26,309 addresses and labels, of which the labels are divided into seven categories, namely Exchange,
Faucet, Gambling, HYIP, Market, Mixer, and Mining Pool. The descriptions for the services are
shown in Table 1. We first retrieve the full history of transactions for the address and pre-process the
transaction information using sampling and exchange rate conversion. Sampling was used to retrieve
historical transactions because we found that some addresses had even more than 400,000 transactions,
which would be wasteful for analysing the behaviour of that address and would significantly increase
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the time for feature extraction, which is not conducive to training a timely and usable model, so we
randomly sampled no more than 500 transactions for each address. The conversion of the exchange
rate is mainly due to the high volatility of the BTC price, as shown in Fig. 1, the extracted features
related to the value will be unstable, thus having a negative impact on the classifier, so we use the API
provided by coindesk [22] to import the exchange rate of USD and Bitcoin to ensure the stability of
the value features.

Table 1: A list of the main services operated with Bitcoin

Service Description

Exchange/wallet Exchanging among fiat currencies and Bitcoin and manages users’ Bitcoin.
Faucet Offering free but small amount of Bitcoin in return for solving CAPTCHA, or

clicking advertisements.
Gambling Gambling games, e.g., dice and roulette.
HYIP Investment program that promises high interest return, e.g., 1% per day.
Marketplace Payment service, e.g., escrow, is offered in an online marketplace.
Mining pool Cooperative mining team that shares computational power to find blocks. If

one of the pool members finds a block, its minted Bitcoin is shared by them.
Mixer Laundering a several Bitcoin transactions to avoid Bitcoin flow tracking.

3.2 Feature Extraction
This paper mines address features from two perspectives, which can be broadly divided into

explicit features that summarize historical transactions and implicit features that describe relationships
between addresses. Among them, the explicit feature extraction method retrieves all historical trans-
actions of an address to get single features such as balance, lifetime, the total number of transactions,
etc. In addition, we also summarize the historical transactions of an address, bring together data such
as the amount of each transaction into a list, and obtain its statistical features such as maximum and
minimum values, mean value, variance, standard deviation, etc. In this paper, 92 explicit features are
extracted.

The implicit feature is then extracted based on [23], as shown in Fig. 5, where we make the
following definition. The black circle represents the address A to be analyzed. Taking a set of
transactions as an example, when A is used as the output of a transaction, all input addresses of that
transaction are called ancestor addresses of that address, i.e., the address connected by the blue line
in the figure. And so on, the addresses connected by yellow, green, and red are output sibling address,
input sibling address, and successor address, respectively. The figure describes only two transactions in
which the target address is involved, and we collect the neighbouring addresses of all its transactions
and compute 12 quantity-related features by means of a merge set operation on the neighbouring
addresses. The transaction patterns in Fig. 5 can then be summarised by means of Fig. 6, where the
number of occurrences of six transaction patterns can be computed in a 2-motifs graph. The final total
of 18 implied features is obtained. The descriptions of all extracted features are shown in Table 2. And
finally, a small number of computationally convenient entity features used to normalise the results were
extracted: number of addresses within an entity, entity lifetime, and number of entity transactions,
respectively.
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Figure 5: Diagram of the neighborhood address
in the Bitcoin directed hypergraph

Figure 6: Trading patterns in the 2-motifs
diagram

Table 2: The list of features extracted in this paper

Categories Description

Explicit
features

Unique
features

The unique features of the address. The (lifetime, number) of (spent,
received, all) transactions of the address, the address balance, the
percentage of the total amount of the different indices, for a total of
27 features.

Composite
features

Statistical features of the address transaction sequence. Statistical
features (maximum, minimum, mean, variance, standard deviation) of
(dollar amount, byte sizes of transactions, inter-transaction intervals,
block heights of the transactions, number of output/input transactions
when used as an input/output address, ratio of transaction costs
relative to the average transaction costs for the day) for (spend,
receive, all) transactions at the address, respectively, for a total of 13 ∗
5 = 65 features.

Implicit
features

Quantitative
features

A subgraph feature describing the neighbourhood relationship
between addresses. The number of (unique, duplicate, all) addresses of
(previous output, input, output, next input) addresses, i.e., (ancestor,
input sibling, output sibling, descendant) addresses, when the address
is involved in a transaction as an (input, output) address, respectively.
For a total of 12 features.

Pattern
features

α, α′, β, γ , L1, L2, respectively. For a total of 6 features.

3.3 Results Consensus Model
The inclusion of unsupervised clustering models in the classification combination can increase

the diversity of the models, thus improving the accuracy and robustness of the predictions [19]. This
paper considers the similarity of entity behaviors of the same services and proposes a scheme to
correct the supervised classification results of address with the unsupervised clustering results of the
entity. The method is a good remedy for the shortcomings of supervised or unsupervised learning
only. For supervised learning, since Bitcoin addresses are generated without cost, some addresses
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that are used only a few times do not match the features of their participating services and thus are
inevitably misclassified, while entities are representational as mappings of real participants that are
not easily generated or discarded. For unsupervised learning, clustering methods can only obtain the
indexes of clusters, not the labels directly, and it is too absolute to simply group the addresses within a
cluster into one category. However, the entities within the clusters obtained by unsupervised clustering
have some correlation, which can be exploited for joint prediction in combination with supervised
learning classifiers, and the entities are the ties that associate address objects of the same service.
The ensemble problem can be viewed as an optimization problem on a bipartite graph, where the
misclassified addresses in the entities are corrected by iterative propagation of probability estimates
between neighboring entities. Achieving this optimization problem requires two things: First, the labels
of the predictions should be consistent with the baseline of the supervised learning results as much as
possible, which can be achieved by penalizing deviations from the predictions provided by supervised
learning in an abstract bipartite graph optimization problem. Second, the unsupervised constraint
needs to be satisfied to the maximum extent possible, and stable entity features replace their internally
fluctuating address features for iterative propagation of probability estimates until they are stable and
finally, a smooth prediction result is obtained.

In this paper, we use the following identifiers to denote the important parameters in the algorithm,
the set of addresses to be predicted is X = x1, x2, . . . , xn, the addresses participate in c service
categories. A total of m models are involved in joint prediction, where r models are supervised models
that provide prediction data and the remaining m − r unsupervised models provide clustering ids
for the addresses. In a Bitcoin address multi-classification task, each model divides the data points
into groups, so there will be a total of v = m ∗ c groups. The supervised learning model divides the
addresses into s = r ∗ c groups with the same predictive labels, while the unsupervised model divides
the addresses into v − s groups with similar behavior. Note that the cluster id number z may not be
the same as the category z because cluster id only distinguishes between different clusters to provide
category constraints, and does not represent a specific service classification. In this paper, the n × m
matrix is denoted by Bn×m, and bij denotes the elements in row i and column j of the matrix. �bi· and �b·j
denote the vectors of the i − th row and j − th column, respectively. If xi is assigned to group gj by one
of the algorithms then aij = 1, otherwise 0. The matrix An×v formed by aij is called the affinity matrix.

Our goal is to compute the conditional probability uiz that each address node xi belongs to
category z and the conditional probability qjz that each group node gj belongs to category z. The
conditional probability matrix consisting of these two conditional probabilities is denoted as Un×c and
Qv×c, respectively. Since the first s groups are obtained from the supervised learning model and they
have some initial class label estimates, we use yjz = 1 to indicate that the group node gj belongs to
the class z and 0 otherwise, and the matrix consisting of yjz is denoted as Yv×c. Finally, the number of
categories assigned to each group is denoted as kj and kj = ∑c

z=1 yjz. Table 3 summarizes the important
notations.

Table 3: Description of symbols

Symbol Definition

1, ..., c Class indexes
1, ..., n Object indexes
1, ..., s Indexes of groups from supervised models

(Continued)
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Table 3 (continued)

Symbol Definition

s + 1, ..., v Indexes of groups from unsupervised models
An×v = [

aij

]
aij—indicator of object i in group j

Un×c = [uiz] uiz—probability of object i with respect to class z (i.e., uiz = P̂(y = z | xi))
Qv×c = [

qjz

]
qjz—probability of group j with respect to class z (i.e., qjz = P̂(y = z | gj))

Yv×c = [
yjz

]
yjz—indicator of group j predicted as class z

To reach a consensus among all models, an optimization problem is defined in a bipartite graph
with an objective function that penalizes deviations from the base classifier predictions and differences
in predicted class labels between nearby nodes. As Eq. (1) is shown, where |·| and || · || denote the L1
and L2 paradigms of the vector, respectively.

min
Q,U

ϕ(Q, U) = min
Q,U

(
n∑

i=1

v∑
j=1

aij|| �ui· − �qj·||2 + α

v∑
j=1

kj|| �qj· − �yj·||2

)
(1)

s.t. �ui· ≥ −→
0 ,

∣∣ �ui·
∣∣ = 1, i = 1 : n �qj· ≥ −→

0 ,
∣∣ �qj·

∣∣ = 1, j = 1 : v

The optimisation method consists of two parts: The first part of the formula is to ensure that if an
address object xi is assigned to the group gj by one of the classification algorithms, i.e., when aij = 1,
their conditional probability estimates must be close to each other. That is, the group conditional
probability of an address is similar to that of the entity to which it belongs, and this condition corrects
the classification results of supervised learning and reduces the number of misclassified addresses.
The second part is the constraint that the consensus class label estimate for the group gj should not
deviate significantly from its initial class label prediction yj. This means that the address-corrected
group conditional probabilities must not deviate too much from the initial predicted labels, so that only
a small number of obviously misclassified addresses are modified, which ensures that the algorithm is
dominated by the classification results. In this formula, α is the penalty for violating that constraint,
The group node gj participates in the constraint only if j = 1, . . . , s, because it is generated by the
classifier with kj = 1, and the group node generated by unsupervised clustering does not participate
in this constraint. Finally, �ui· and �qj· are probability vectors, so each component must be greater than
or equal to 0 and sum to 1.

This optimisation problem can be solved using coordinate descent. The basic idea is to transform
the optimisation problem of a multivariate function into an optimisation problem of multiple univari-
ate functions, so that each variable is solved individually for optimality, and iterations are repeated
until convergence to the optimal solution of the function. In Eq. (1), at the tth iteration, If the value
of U is fixed, the objective function is a summation of v quadratic components with respect to �qj·. It
is strictly convex and ∇ �qj·ϕ(Q, U (t−1)) = 0 gives the unique global minimum of the cost function with
respect to �qj·:

�q(t)
j· =

∑n

i=1 aij�u(t−1)

i· + αkj�yj·∑n

i=1 aij + αkj

. (2)
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Similarly, fixing Q, the unique global minimum with respect to �ui· is also obtained:

�u(t)
i· =

∑v

j=1 aij�q(t)
j·∑v

j=1 aij

. (3)

Algorithm 1: BGCM algorithm
Input: group-object affinity matrix A, initial labeling matrix Y; parameters α and ε

Output: consensus matrix U
1: Initialize U 0, U 1 randomly
2: Set step number t ← 1
3: while

∥∥Ut − Ut−1
∥∥ > ε do

4: Qt = (Dv + αKv)
−1

(
ATUt−1 + αKvY

)
5: Ut = D−1

n AQt

6: end while
7: return Ut

The updated formula for the matrix is shown in Algorithm 1. The algorithm demonstrates a
correction to the original probability estimation matrix (containing supervised learning results). The
block coordinate descent is used to solve this optimisation problem. The basic idea is to transform the
optimisation problem of a multivariate function into an optimisation problem of multiple univariate
functions so that each variable is solved individually for optimality, and iterations are repeated until
convergence to the optimal solution of the function.

In this algorithm, Dv = diag
{(∑n

i=1 aij

)}
v×v

and Dn = diag
{(∑n

j=1 aij

)}
n×n

act as the normalization
factor, which maps the matrix after generating a change to a standard range. Kv = diag

{(∑c

z=1 yjz

)}
v×v

indicates the existence of constraints on the group nodes, and parameter α can change the strength of
this constraint. And t denotes the number of iterations. In the tth iteration, the probability estimation
matrix of a group node (i.e., Q) combines the information of its neighbouring object nodes and its
initial value Y . And when updating the consensus result U , it propagates its updated probability
estimate back to its neighbouring object nodes. The results converge when

∥∥Ut − Ut−1
∥∥ ≤ ε, at which

point the loop ends. And
(
Q(t), U (t)

)
both converge to the stationary point of the optimization problem.

Reference [24] showed a simple example and intermediate results for matrix transformations.

4 Experiment and Evaluation

In this paper, we use Bitcoin-core [25] to obtain Bitcoin block information and use the Blocksci
library [26] to process and retrieve historical Bitcoin transactions. The experimental code is written
in python 3.7 and mainly uses the blocksci, pandas, numpy, and scikit-learn libraries. In this section,
we evaluate the feature contribution, model accuracy, resulting confusion matrix and distribution of
feature values across the service, respectively.

4.1 Comparison of Feature Extraction Methods
In this section, we experiment on the accuracy of the model under the use of two types of feature

extraction methods, we divide the tests into accuracy comparisons using only explicit features, using
only implicit features, and using all features. Random Forest was chosen as the machine learning
algorithm, and the number of estimators was set to 100. Due to the imbalance in the number of
addresses in the different categories in the dataset, we sampled the same number of addresses from
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each category in each of the following classification experiments, i.e., 100 addresses were extracted from
each category of data to form the dataset, so that the size of the dataset at each round of evaluation
was 700. Each round of experiments uses the triple cross validation method, i.e., 2/3 of the data is
used for training and 1/3 of the data is used for testing, and each round will produce three results.
The experimental results are highly correlated with the division of the dataset, and the larger the share
of the test set, the higher the accuracy. However, if the proportion of the training set is too large, it
will lose its reference value, so this experiment uses the triple cross validation method. The rest of the
experiments were carried out as described above.

To better show the difference, we repeated the accuracy assessment 100 times and plotted the
accuracy as a line graph and the final result is shown in Fig. 7. Since the sample set of addresses is
randomly sampled in each round, the accuracy rate fluctuates, and the average accuracy results are
0.754, 0.73, and 0.691 in that order. The high accuracy rate can be obtained with a small number of
features using only implicit features, which indicates that the inter-address transaction relationship is
an important factor. Fig. 8 shows the top 10 contributed features. As can be seen from this figure, the
address lifetime is the most contributed feature and implicit features also occupy an important place.

Figure 7: Comparison of prediction accuracy under different categories of features

Figure 8: Feature importance
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4.2 Model Accuracy Evaluation
In this experiment, BGCM is compared with the two best result algorithms, random forest and

gradient boosting, to test the accuracy improvement. The number of estimators in the compared
algorithms both set to 100, and the rest of the parameters are set to default values. These two results
are used as inputs for the first two supervised learning results in the BGCM algorithm, and the rest
of the unsupervised clustering inputs are generated by spectral clustering. The alpha parameter in the
BGCM algorithm is set to 3, and the number of iterations is 30. Table 4 shows the accuracy, recall,
and F1-score under different methods. Our method can obtain better classification results and can
successfully correct the few addresses that are misclassified because they do not match the service
features, thus improving the overall accuracy. In addition, our algorithm is somewhat pervasive and
can be applied to other anonymous transaction situations similar to Bitcoin.

Table 4: Performance comparison of different algorithms

Methods Precision Recall F1-score

Random forest 0.758 0.753 0.753
Gradient boosting 0.767 0.761 0.760
BGCM 0.774 0.773 0.774

4.3 Confusion Matrix
Table 5 shows only the confusion matrix of classification results based on the BGCM algorithm,

where each row of the table represents the actual service, while each column represents the predicted
service.

Table 5: Confusion matrix of the BGCM scheme

Exchange Faucet Gambling HYIP Market Mixer Mining pool

Exchange 0.63 0.04 0.12 0.05 0.07 0.01 0.07
Faucet 0.04 0.86 0.06 0.06 0.01 0.0 0.01
Gambling 0.11 0.03 0.58 0.07 0.04 0.0 0.03
HYIP 0.04 0.05 0.07 0.74 0.01 0.01 0.06
Market 0.11 0.02 0.09 0.02 0.84 0.02 0.02
Mixer 0.02 0.0 0.03 0.01 0.02 0.96 0.0
Mining pool 0.05 0.0 0.05 0.05 0.01 0.01 0.81

It is easy to see that exchanges and gambling have the lowest detection accuracy, which may be due
to the high number of addresses in the dataset for these two services, resulting in a wide distribution of
their features and uneven sampling. Furthermore, there are many similarities between the addresses
in these two categories, with 12% of exchange addresses being misclassified as gambling and 11% of
gambling addresses being misclassified as exchanges, an acceptable result as both services transact with
a large number of users and with variable transaction values. To further distinguish between exchanges
and gambling services, more detailed features would need to be extracted. Nevertheless, our method
still shows some improvement in classification effectiveness.
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4.4 Distribution of Feature Values Across Services
To more visually see how these features differ by service, we selected the top six contributed

features to plot their distribution by service using a box plot. The box plot is a good way to see the
distribution of features by service. The top and bottom of the box and the horizontal lines inside
the box represent the interquartile range. Two lines are drawn vertically from the top and bottom
of the box, with the edges of the lines and black dots indicating unusual outliers. Thus, if the box is
‘squashed’ or if the box is short in length, it means that the feature values of the service are relatively
specific, while if the box is large, it means that the feature values of the service are widely distributed
and there is no clear pattern. The box plot reflects the distribution of features in a single dimension.

Fig. 9 shows a box plot of the most contributed features by service, with the red line representing
the 50th percentile, the green triangle representing the mean, and the black origin representing the
outliers. Fig. 9a shows the lifetime box plot distribution of addresses by different services. It is obvious
that exchanges, gambling, marketplaces and faucets have longer address lifetime, especially exchanges,
as exchange addresses provide trading services for a long time. Conversely, HYIP, mixer and mining
pool addresses have a shorter lifetime. In the case of HYIP addresses, which are inherently risky and
illegal to trade, most addresses within the IQR follow the use-and-discard principle of using one-time
addresses for scams to reduce the risk of being traced, and it is evident that entities offering such
services are very cautious. Although HYIP addresses mostly have a short lifetime, a certain amount
of time exists as entities need time to crowdfund. In contrast, a coin mixer address is a true one-
time use address, which is related to the nature of the coin mixing service. To add a greater degree of
confusion, coin mixer services typically use many temporary addresses that are only used for a single
transaction and which are not directly linked to the user’s real identity or other transaction addresses.
By using one-time addresses, coin mixers break the correlation between the original address and the
final destination address. This makes transactions more difficult to trace and increases the privacy
and anonymity of the user’s transactions. The distribution of address lifetime for the “mining pool
service” is rather peculiar, with the average of the mining pool address lifecycle being at the top of the
box, i.e., most addresses have a short lifecycle, but a few “old miners” with a long lifecycle pull up the
average. Our guess is that the pool model is now the mainstay of mining due to the increased difficulty
of mining. The pools recruit miners on a temporary basis and reward them based on the power they
contribute, so the majority of miners are now temporary miners with a short lifetime. But most of the
old miners are still fighting on.

Fig. 9b reflects the distribution of the number of repeat successors across the different services.
The meaning of this feature is that when the address is being used as a sending address, the number of
times the address is repeated in the received address for all transactions. An interesting phenomenon
emerges from the graph, where there is a large number of repeated successors to the faucet address. We
suspect that in order to receive this modest reward, the participants actively participate and accumulate
more. In contrast, coin mixers hardly ever have repeated transaction addresses for the purpose of user
privacy protection. Differences in features between services can distinguish well between the services
offered by addresses, and these features are often not directly related to the value of money, which
requires mining deeper features of the relationship between addresses. This paper provides a clearer
picture of the nature of each service by analysing the distribution of features by service.
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Figure 9: Boxplots of contributed features by services

5 Conclusion

In this paper, we propose a new approach to improve the prediction accuracy of Bitcoin address
service classes by combining the features of addresses and the features of the entities they are located in
to identify address services. Identifying address involved services has many benefits, such as dangerous
transaction prevention and statistical analysis of Bitcoin services. Specifically, we show how a multi-
model maximization consensus mechanism can be combined with Bitcoin addresses and entities to
obtain better classification performance. With the tri-fold crossvalidation method, we can obtain a
global average accuracy of 77.4%. In addition, up to 110 features with specific semantics are extracted,
and the experimental results show that, in addition to addressing lifetime and transaction interval, the
implicit features describing the transaction relationship between addresses are better for distinguishing
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different services. We select the features with the highest contribution and interpret and analyse the
experimental results by combining their semantic information and their distribution by services. We
believe that analysing the features of each Bitcoin service can help us better understand the trends
of Bitcoin changes. In future work, we would like to focus our work on studying the detection
of suspicious addresses using unsupervised learning algorithms, because in real life, most Bitcoin
addresses or transactions are made by normal users and it is difficult to obtain labels, using supervised
learning algorithms tends to generate a large number of false positive addresses, so our idea is to use
outlier detection algorithms to filter out a large number of normal nodes, and further perform outlier
nodes for fraud category detection to minimize the number of misclassified users. Nevertheless, in this
paper, we were able to classify the seven classes of addresses that have been tagged for services with
high accuracy, and we believe that this research can help investigate crimes and assist law enforcement
agencies in detecting illegal activities in the Bitcoin network.
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