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ABSTRACT

This article reviews the theory of fairness in AI–from machine learning to federated learning, where the constraints
on precision AI fairness and perspective solutions are also discussed. For a reliable and quantitative evaluation of
AI fairness, many associated concepts have been proposed, formulated and classified. However, the inexplicability
of machine learning systems makes it almost impossible to include all necessary details in the modelling stage to
ensure fairness. The privacy worries induce the data unfairness and hence, the biases in the datasets for evaluating
AI fairness are unavoidable. The imbalance between algorithms’ utility and humanization has further reinforced
such worries. Even for federated learning systems, these constraints on precision AI fairness still exist. A perspective
solution is to reconcile the federated learning processes and reduce biases and imbalances accordingly.
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1 Introduction

With the development of AI, it has entered almost all spheres of our lives everywhere and the
fairness of such algorithms and applications has drawn attention from many applications [1–5].
Methodologies for such studies and applications in design and other areas have been well-studied
[6–10]. AI technologies not only help us to obtain more accurate predictions in advertising, credit
approval, employment, education, and criminal justice but also help us to make decisions in these
areas with important influence. Conceptual studies related to fairness have been reported in several
papers [11–13]. Some tools and a few more applications have also been reported [14–17]. AI has been
applied to many fields, such as deciding who can get scholarships, mortgages, and economic capital.
Risk factor studies capturing fairness concepts and the underlying challenges have also been reported
[18–21]. Ethical and societal issues with applications have also drawn attention from researchers [22–
25]. Since AI has become increasingly influential in all aspects of our daily lives, it is very important
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to consider whether AI will adversely impact vulnerable groups when making intelligent decisions,
especially those with big influences [26–28]. Alternatively, as an important tool to assist people in
decision-making, AI must undoubtedly ensure fairness and inclusiveness [29–32].

But until now, the theory of precision AI fairness is still poorly understood [33–37]. It is very
difficult to define such fairness. Metrics to compute fairness, some relevant tools, and applications
have been well covered in the literature [38–41]. Application to learning algorithms has also been
well-studied [42–45]. Approaching precision AI fairness is much more complex than simply finding
technical solutions because we have to ensure that the output is independent of sensitive parameters
(such as gender, race, religious belief, disability, etc.) for specific tasks that might be affected by social
discrimination [46–50]. We must acknowledge that no perfect machine learning algorithms exist, even
for federated learning systems. Challenges faced in quantifying fairness have been discussed in several
studies [51–54]. The concept of conditional fairness and methods to mitigate unwanted bias have been
well-addressed [55–58]. Some constraints on precision AI fairness still exist [59,60]. It is quite necessary
to analyze the major constraints of AI fairness further, illustrate why it is a critical issue, and discuss
potential solutions.

Objectives of this article are 1) to present a systematic review and discussion on the theory of
fairness in AI, 2) to find the major constraints on precision fairness, and 3) to analyze the potential
solutions for this problem. The organization of the whole paper is as follows. In Section 2, the theory
of fairness in AI is presented, including the formulation, classification and evaluation of AI fairness.
The major constraints on precision fairness are discussed in Section 3, and the potential solutions for
this problem are analyzed in Section 4.

2 Theory of Fairness in AI
2.1 Formulation of AI Fairness

Various norms of fairness have been introduced to assess the extent to which AI algorithms are
unfair [56]. Such an evaluation has become a topic of academic and broader interest for decades [5,18].
It was concluded that maximizing accuracy and fairness simultaneously is impossible [38]. AI Fairness
can be formulated in terms of probability or statistics. Let X be the other observable attributes of
any individual and U be the set of relevant latent attributes which are not observed. We symbolize
the outcome to be predicted as Y, which itself might be contaminated with historical biases. Let y be
predicted decisions with a category ∈ {0, 1} and a predictor Ŷ . For the convenience of formulation, let L
be associated with legitimate factors and A be the set of protected attributes of an individual, variables
that must not be discriminated. When an AI system gives similar predictions to similar individuals, it
is called “Fairness Through awareness”.

That is, a fair AI task should have a similar outcome between two individuals in terms of a
similarity metric with inverse distance [10]. Let i and j be two individuals represented by vectors of
attribute values vi and vj. The similarity distance between individuals of i and j is represented by d (vi,

vj). Let M (vi) represent the probability distribution over the outcomes of the prediction. For example,
if the output is binary (0 or 1), M (vi) could be [0.3; 0.7], implying that P (Ŷ = 0) = 0.3 and P (Ŷ = 1)
= 0.7 for individual i. Assume that DS is a distance metric between probability distributions. For any
pair of individuals i and j, if DS(M(vi), M(vj)) ≤ d(vi, vj), the system is fair as long as any protected
attributes A are not explicitly used in the decision-making process (X(y=0) = X(y=1) ∧ A(y=0) �= A(y=1) ⇒
ŷ(y=0) = ŷ(y=1)). In other words, an algorithm is fair if protected attributes are not expressly considered
when making decisions [23].
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Another formulation is known as “Counterfactual Fairness”. The predictor Ŷ is said to be
counterfactually fair if under any context X = x and A = a, P (ŶA←−a (U) = y|X = x, A = a) = P
(ŶA←−a′ (U) = y|X = x, A = a), (for all y and for any value a′ attainable by A). According to the
definition of counterfactual fairness, a decision is fair if it is the same, whether made in the real world
or in a counterfactual world in which the individual belongs to a different demographic group [29].
For a set of legitimate factors L, predictor Ŷ satisfies conditional statistical parity if P (Ŷ |L = 1, A
= 0) = P (Ŷ |L = 1, A = 1). This means that people, either protected or unprotected (female or male)
groups, should be equally likely to have a positive outcome, given a set of legitimate factors [47]. A
predictor Ŷ satisfies equalized odds with respect to protected attribute A and outcome Y, if Ŷ and
A are independent conditional on Y. P (Ŷ = 1|A = 0, Y = y) = P(Ŷ = 1|A = 1,Y = y), y ∈ {0,1}.
In other words, for both protected and unprotected (male and female) groups, the probability of a
positive outcome for a person in the positive class should be equal to that for a person in the negative
class. A predictor Ŷ satisfies demographic parity if P (Ŷ|A = 0) = P (Ŷ |A = 1). Whether a person is in
the protected group or not, the chances of a positive outcome should be the same. A binary predictor
Ŷ satisfies equal opportunity with respect to A and Y if P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1,
Y = 1). This means that both unprotected (female and male) and protected (female and male) group
members should have the same probability of being assigned to a positive outcome [33].

2.2 Classification and Evaluation
Based on the above formulation of AI Fairness, such fairness can be classified into different types:

1) Individual Fairness. An algorithm would be optimised for an individual, and fairness criteria could
be met by ensuring that the algorithm treats people with similar characteristics in the same way. If an
individual can be described mathematically by a set of parameters in a multidimensional space, then all
individuals in the same parametric space will be treated similarly and will receive similar predictions
from a machine learning algorithm. This is known as individual fairness, and it is also a measure
of consistency [43]. In other words, they make similar predictions for similar people [29]. 2) Group
Fairness. Different groups should be treated equally, but sensitive attributes and outcomes are used as
measuring features [10]. For example, the authors [20] analysed Berkeley’s alleged sex bias in graduate
admission and found that data showed a higher rate of admission for male applicants overall, but the
result differed when department choice was taken into account. Traditional notions of group fairness
fail to judge fairness because they do not account for department choice. Fairness notions based on
causality emerge as a result of this [20,56]. 3) Subgroup Fairness. The goal of subgroup fairness is
to combine the best characteristics of group and individual fairness. It is distinguishable from these
concepts, but it makes use of them to achieve better results. It chooses a group fairness constraint, such
as equalizing false positives, and tests whether it holds true across a large number of subgroups [30].
Many real-world examples of the associated unfairness can be found in the previous studies [4,36,39].

Let P be the total number of positives in the dataset and N be the total number of negatives in the
dataset. These types of AI fairness can be evaluated with some general metrics. For the convenience of
subsequent statements, we abbreviate True Positive as TP (predicted positive and it is true) and True
Negative as TN (predicted negative and it is true). For the Type 1 Error-predicted positive and it is
false, we abbreviate False Positive as FP. For the Type 1 Error-predicted negative, and it is false, we
abbreviate False negative as FN. Then, the accuracy of AI algorithms is calculated based on how many
from the dataset have been predicted correctly, and it should be as high as possible.

Mathematically, the total number of two correct predictions (TP + TN) divided by the total
number of datasets (P + N) represents accuracy [22], while the precision is estimated based on
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TP/(TP+FP). A Statistical Parity Difference (SPD) is the difference between the unprivileged and
privileged groups in terms of the likelihood of favourable outcomes. This can be computed from both
the input dataset and the dataset output by a classifier (predicted dataset). A value of 0 means that
both groups benefit equally; a value less than 0 means that the privileged group benefits more, and a
value greater than 0 means that the unprivileged group benefits more. Hence, SPD = Pr(Y = 1|D =
unprivileged) − Pr(Y = 1|D = privileged), as shown in Fig. 1.

Figure 1: Confusion matrix in the classification of AI fairness

Based on the above definitions and theoretical analyses, the precision AI fairness can be evaluated
by the following indexes.

1) Disparate Impact (DI):

DI = Pr (Y = 1|D = unprivileged)

Pr (Y = 1|D = privileged)

A value of one means that both groups benefit. Equally, a value less than one means that the
privileged group benefits more, and a value greater than one means that the unprivileged group benefits
more [39].

2) Average Odds Difference (ADE):

ADE = 1
2

[(FPRD=unprivileged − FPRD=privileged) + (TPRD=unprivileged − TPRD=privileged))]

where FPR-False Positive Rate = FP
N

and TPR-True Positive Rate = TP
N

.

This is the average of the differences in false positive and true positive rates between underprivi-
leged and privileged groups. Because this is a classification metric method, it must be computed using
a classifier’s input and output datasets. A zero value means that both groups benefit equally; a value
less than zero means that the privileged group benefits more, and a value greater than zero means that
the unprivileged group benefits more [39].

3) Equal Opportunity Difference (EOD):

EOD = TPRD=unprivileged − TPRD=privileged
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This is the difference between unprivileged and privileged groups in terms of true positive rates.
Because this is a method in the classification metric class, it must be computed using the input and
output datasets to a classifier. A zero value means that both groups benefit equally; a value less than
zero means that the privileged group benefits more, and a value greater than zero means that the
unprivileged group benefits more [39].

4) Generalized Entropy Index (GEI):
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where b–parameter over which to calculate the entropy index; α–the weight given to distances between
values at different parts of the distribution is adjusted by this parameter. A value of 0 is equivalent to
the mean log deviation, 1 is the Theil index, and 2 is half the squared coefficient of variation.

The generalised entropy index assesses inequality across a population. It is a consistent measure
of individual and group fairness [54].

5) Consistency Score (CS):

CS = 1 − 1
n

n∑
i=1

|ŷi − 1
n_neighbors

∑
jεN

n_neighbors(xi)

ŷi|

where x–sample features; y–sample targets and n_neighbors–number of neighbors for the KNN (K-
Nearest Neighbors) computation. This is an individual fairness metric that measures how similar labels
are in similar cases [43].

There are many other metrics available for individual, group, and subgroup fairness measures,
such as the Theil index (the generalized entropy index with α = 1), the coefficient of variation (two
times the square root of the GEI with α = 2), etc.

3 Constraints on Precision Fairness
3.1 Inexplicability of AI Algorithms

To some extent, it is very difficult to construct responsible and ethical AI systems. Unnavigable
biases exist everywhere due to the inexplicability of AI algorithms. They can affect AI systems at almost
every stage. Even if the deviation caused by training data can be eliminated, it cannot be ensured that
the model user’s data can accurately represent the real world, which may lead to poor performance in
the real world. In order to speed up or improve the explicability of training processes, we even need to
introduce human bias [14,43,44].

Scientists attempted to explain how AI models predict, how AI models are queried, how the real
data are collected for a particular prediction or series of predictions, and how AI mechanisms can be
presented to humans in an understandable way. However, the AI model is usually a black box. We
have no right to access or understand information about the underlying model. We can only use the
input and output of the model to generate an explanation. Thus, we cannot see the details of the work
inside the model. We try to design a simpler white-box model so that we can access the underlying
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model, so it is easier to provide information about the exact reason for making a specific prediction.
But the price is that we cannot capture the complexity of the relationship in the data. We must face
the tradeoff between interpretability and model performance.

AI explicability depends on the type of data you are exploring. In the process of exploration, we
can learn which features are more important to the model than other features and which factors play
a role in specific predictions. But this is not the whole story of AI fairness. In order to ensure such
fairness, we need to delete all sensitive attributes in the design of the AI model. However, sensitive
features may be critical to the explicability of the AI model. In addition, sensitive features for AI
may be hidden in other attributes, and the combination of non-sensitive features needs to be used to
determine the value of sensitive features [7,40], which imposes new biases in applications [2,36]. This
offers a baseline for computing AI fairness [20,39].

3.2 Unavoidable Biases in the Datasets
Since AI algorithms learn from the data input to the machine, fairness cannot be ensured if the

data is biased. On the one hand, every user wants the algorithm to be fair to himself and his group, but
on the other hand, for the sake of privacy, many users are unwilling to share their personal data and
sensitive information with the algorithm designer. It is very difficult to establish trust between users
and AI researchers. On the premise that privacy/security is not involved, the whole society should give
AI researchers as much support as possible to achieve AI fairness [23].

The real-world datasets for fairness are still very limited, including the COMPAS Dataset [53,57],
UCI Adult Dataset [27,32], German Credit Dataset [8,46], Recidivism in Juvenile Justice Dataset [53],
Communities and Crime Dataset [46,51], Diabetes dataset [3], Student Performance Dataset [12,26],
OULAD Dataset [41], Diversity in Faces Dataset [31,34], Pilot Parliaments Benchmark Dataset [19],
Dutch census dataset [1], Bank Marketing Dataset [13,27]. The algorithm designer must be clear about
his own values and consider the information needs and expectations of all individual or group users.
Only such a virtuous circle can minimize the deviation in data collection and effectively promote the
realization of AI fairness.

It should be our obligation and responsibility to promote the development of AI towards fairness.
AI fairness has been linked to everyone’s daily life. Human beings use AI to decide how to interact
with others, thus making all parties better. This may be a problem in a broader sense. But to achieve
the fairness of the algorithm, we must go beyond the technical level and rely on social forces. This may
represent a higher level of civilization. When all mankind cooperates for a higher level of civilization,
AI can better serve mankind and help us in all aspects of life. The fairness of AI systems should not be
determined only by data engineers and scientists. Governments, companies and institutions also need
to consider the views of stakeholders and end users, including whether users feel that they are being
treated by AI fairness and what is the public’s expectation of AI fairness [52], as shown in Fig. 2.

Particularly, because AI systems learn from historical data, which encodes historical biases [21].
Evaluation models of product aggregation can lead to product aggregation bias [22,23]. Social bias
could be caused by statistically biased algorithms or by other objective factors [23–25]. More details
of measurement bias, evaluation bias, content production bias, emergent bias, ranking bias and
population bias, behavioral bias, temporal bias, linking bias, and presentation bias can be found
in associated publications [2]. There are several other categories of biases. Biases in engineering AI
applications will bring high costs. We can partly reduce some biases in image and signal processing
algorithms by analyzing the processing algorithm and improving data analysis and feature extraction
[11]. Some biases can be recognized though the use of custom normalization restrictions or cost
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functions that determine the relative cost of making an incorrect decision, where the bias can be
minimized by adversarial learning algorithms or resolved at the output stage by adjusting the labeling
of specific outputs [15]. Open-source tools are also helpful for mitigating biases, such as What-if,
AI Fairness 360, Local Interpretable Model-Agnostic Explanations, FairML, Aequitas, Fair learn
[17,37,39,48], etc.

Figure 2: Block diagram of bias definitions in the data, algorithm, and user interaction processes
(Feedback loops are placed on the arrows that are most appropriate for them) [35]

3.3 Imbalance of AI Utility with Humanization
We are in an era of rapid development, and we need to use AI to achieve optimal resource

allocation and work management process decision-making, but from the perspective of humanity, we
need some buffer because whether the AI system is fair depends on the end user. Whether the system
has advanced technology is not so important. People will judge its fairness mainly according to their
own views on the algorithm used to solve problems and whether the results conform to their own
values. Algorithm designers must consider the balance of AI utility with humanization.

We need to consider and pay attention to the inclusiveness of the algorithm for minorities. In other
words, minority data should be taken into consideration rather than regarded as abnormal data. In
this sense, what people ultimately judge is the fairness of algorithm designers. Because the fairness of
AI is more complex than simply finding technical solutions, the development of algorithms also needs
more humanized methods. We must seek a balance between the pursuit of utility and human care
so that its fairness can be recognized and accepted. We should not simply look for fairness through
optimized and reasonable AI algorithms.

Only in this way can we expect that AI can perceive itself and ensure fairness in the future. Without
considering the above balance relationship, the algorithm cannot be responsible for calculating results.
At present, the development direction of AI is still dominated by human beings, and algorithm
designers are considered to have the ability to be responsible for AI decision-making and AI use.
Therefore, to establish a fair AI system, algorithm designers will be more scrutinized, and whether the
AI system they develop can be trusted will also be affected by this.

4 Summary and Discussion

With the wide application of AI algorithm in various sectors of society, the fairness of the
algorithm is receiving more and more attention. Research on algorithm fairness will promote AI
applications to be inclusive and unbiased. Due to data bias, algorithm defects, and even human bias,
existing AI algorithms generally have “discriminatory phenomena” that have unfair effects on certain
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specific populations. In the past few years, the industry has been gradually exploring some targeted
solutions, including building more fair data sets, introducing fairness constraint losses in algorithm
training, and improving the interpretability of machine learning algorithms. However, to ensure a fair
and ethical result, we not only need to face the challenges from data science but also need the people
who set up AI learning procedures to have great responsibility and tenacious faith to set up the fairest
procedures.

Fairness is the subjective practice of using AI without bias or discrimination, especially related to
human beings. But the reality is that AI fairness is a very difficult field. It requires algorithm designers
to define a fair appearance for each use case. However, it is difficult to define an international label to
balance group equity and individual equity. When trying to explain all or part of the machine learning
model, we will find that the model contains bias. The existence of such bias may mean that the AI model
is unfair. We can explain how or why the model makes such unfair predictions. However, this bias is
from social cognition against specific groups, individuals, or characteristics, which has many forms
and cannot be accurately reflected by simple white box models, which further limits the explicability
of AI systems.

Hence, we must try our best to reduce biases in the datasets for evaluating AI fairness and do
well in keeping the balance of AI utility with humanization [59,60]. In most cases, AI technology
developers have no subjective will to cause bias. However, there are also some prejudices due to the
tendency of decision-making because the algorithm designer may choose shortcuts based on efficiency
considerations and may also be affected by the values of his circle. This will lead to deviations in the
development and design of AI systems [1–4]. We hope to design an efficient AI system with fairness but
inadvertently introduce bias into the system. It is necessary to build an AI fairness ecosystem. People
pay too much attention to the privacy information involved in biometric identification but ignore that
AI system fairness is also a component of social security and has been applied to intelligent decision-
making in many security fields [10,11]. The social welfare brought by AI fairness will benefit the whole
society [9].

In order to ensure that vulnerable and ordinary groups can enjoy the benefits of AI fairly, AI
data sets should be diverse and require the active participation of the whole society to ensure that the
algorithm design and data sets are unbiased. Federated learning may present some potential solutions
[59]. However, the current federated learning processes cannot overcome the above constraints in AI
fairness. Due to the self-interest of participating clients, there are potential differences in computing
communication resources, data, and other factors between them [59,60]. It is crucial to maximize
clients’ motivation, allocate rewards reasonably, and promote the enthusiasm of federated participants
by reconciling the current federated learning processes [60]. Research on AI interpretability also plays
an important role in eliminating bias, and fortunately, the interpretability of AI is not a completely
unsolvable black box; it has been developing with the practical application of AI [61]. One constructive
example of the inexplicability of AI is to explore the working principle of the classification model.
Human intervention can be added to the model when designing the portrait classification application
[62]. Then, the classifier is prohibited from using skin color as the classification basis, thus avoiding the
problem of racial discrimination [61,63]. This may bring new insights into the precision of AI fairness
and, in turn, can be considered as a new approach to reconciling with the current federated learning
processes.
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5 Concluding Remarks and Outstanding Questions

AI fairness is beyond the “Theory of Everything”, but ethics is endowed by human beings. We can
only evaluate whether the solutions recommended by AI are fair in a specific social context. Therefore,
algorithm designers also need those who understand social norms and have high moral values. Based
on the consideration of the principle of AI fairness in this paper, it is necessary to divide the risk of
AI fairness into multiple levels. The top level belongs to the AI system with the most prejudice, which
needs to be completely or partially prohibited. The bottom layer is the AI system with no or only
minimal bias, which has no special regulatory requirements. In order to ensure that the AI system
serves mankind more efficiently, the public needs to participate and make more efforts to actively
participate in the construction of the AI fairness evaluation data set. Finally, the theoretical research
on AI fairness also needs further breakthroughs. Only by improving the interpretability of the AI
system can we gain AI fairness at the minimum cost.

The outstanding questions for the subsequent studies include:

1) How can we find a more effective way to promote the theoretical research of AI fairness and
help improve its interpretability and credibility?

2) How do we ensure the availability of AI fairness data and the availability of public data from
the computing power layer to the algorithm layer?

3) How does integrating the data layer, application layer and solutions constitute a virtuous circle
to help the AI system get better developed and applied?

4) Since the fairness of AI and AI applications will be affected by space-time factors, how to form
global fairness and ensure its long-term effectiveness?

5) How do our governments and laws serve the special requirements for algorithm design,
computing power, architecture and data support?

6) AI fairness is a profound philosophical problem. We hope to find a fair design pattern that
integrates the data layer, application layer and user interaction. Fortunately, there have been some
studies to solve the problem of unfairness in terms of data and algorithm, respectively. But how to
integrate these existing methods into a virtuous circle is still an open problem. We expect subsequent
studies by other researchers to supplement relevant analyses.
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