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ABSTRACT

Landmines continue to pose an ongoing threat in various regions around the world, with countless buried
landmines affecting numerous human lives. The detonation of these landmines results in thousands of casualties
reported worldwide annually. Therefore, there is a pressing need to employ diverse landmine detection techniques
for their removal. One effective approach for landmine detection is UAV (Unmanned Aerial Vehicle) based
Airborne Magnetometry, which identifies magnetic anomalies in the local terrestrial magnetic field. It can generate
a contour plot or heat map that visually represents the magnetic field strength. Despite the effectiveness of this
approach, landmine removal remains a challenging and resource-intensive task, fraught with risks. Edge computing,
on the other hand, can play a crucial role in critical drone monitoring applications like landmine detection.
By processing data locally on a nearby edge server, edge computing can reduce communication latency and
bandwidth requirements, allowing real-time analysis of magnetic field data. It enables faster decision-making
and more efficient landmine detection, potentially saving lives and minimizing the risks involved in the process.
Furthermore, edge computing can provide enhanced security and privacy by keeping sensitive data close to the
source, reducing the chances of data exposure during transmission. This paper introduces the MAGnetometry
Imaging based Classification System (MAGICS), a fully automated UAV-based system designed for landmine and
buried object detection and localization. We have developed an efficient deep learning-based strategy for automatic
image classification using magnetometry dataset traces. By simulating the proposal in various network scenarios,
we have successfully detected landmine signatures present in the magnetometry images. The trained models exhibit
significant performance improvements, achieving a maximum mean average precision value of 97.8%.
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1 Introduction

A landmine can be defined as an explosive device that detonates from approach, contact, or just
the presence of a vehicle or an individual. It is a self-contained munition that can be deployed at the
surface and sub-surface levels [1]. Landmines are considered indiscriminate weapons, as anyone who
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triggers the mine becomes its victim. Depending on the intention of the landmine planter, some mined
areas can be marked, whereas an alternative technique is to rely on surprise. Military establishments
can use it to secure disputed borders and restrict enemy movement at times of war. In such cases,
using landmines creates tactical barriers and denies access to critical locations. The extent regions
of minefields are marked, and the deployment locations are also recorded carefully. However, like
any other weapon, mines can also be used with malicious intent. In such scenarios, the landmine
deployment can be utterly random without following the marking and mapping procedure. Once
deployed, the landmines can lie dormant for a very long time until triggered or removed.

Based on the target, landmines can be categorized as Antipersonnel Landmines and Antitank
Landmines [2]. The Antipersonnel Landmines are used against enemy personnel. These are designed to
explode from a person’s presence, proximity, or contact. It also includes Improvised Explosive Devices
(IEDs) with those same victim-activated characteristics. Moreover, improvised landmines have been
extensively used in recent years, primarily by non-state armed groups [3]. Antipersonnel mines can
be further categorized as blast landmines and fragmentation landmines. When triggered, the blast
landmines create a heavy explosion, while the fragmentation landmines release fragments through
the air. The Antivehicle or Antitank landmines are more powerful and contain more explosives than
antipersonnel mines. These mines are triggered by heavy-load targets like artillery tanks and other
enemy vehicles.

1.1 Risk Involved with Landmines
Landmines can significantly impact the daily lives of people in mine-affected communities.

Landmines were used extensively in World War Two (WWII) [1]. Still, in post-World War II conflicts,
they have also been used to render land useless to enemy civilian populations. The influence of
landmines outlasts the war as they can remain dormant until triggered for decades. It poses a
severe threat to future generations even after the conflict ends. Antipersonnel mines are estimated to
contaminate about sixty states and other areas as of 2019. According to the report, children accounted
for 43% of all civilian casualties in 2019. The total number of casualties per year due to landmines or
Explosive Remnant of War (ERW) during 1999–2021, as recorded in Landmine Monitor Report [3],
has been displayed in Fig. 1.

Figure 1: Annual casualties due to landmines/ERW between 1999 and 2021 [3]
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Due to the risk involved and the adverse effects caused by landmines, the case for a landmine-
free world has become more assertive in recent years. Still, millions of landmines are present in
different parts of the world. Removal of the buried landmines is a very challenging task and involves
a considerable amount of risk. As a result, various efforts are ongoing to develop new or improve
existing technologies that can help to detect and clear landmines.

1.2 Landmine Detection
Demining or mine clearance is the process of removing landmines from a particular area. It

involves carefully surveying the target area using various types of sensing devices that detect the
presence of landmines. The manual removal of landmines using metal detectors is the most commonly
used method of landmine detection. However, there is a risk of accidentally triggering some landmines
in the process. Also, manual demining consumes significant time and effort to survey the desired area.
Therefore, a lot of research is going on to mitigate these problems. With technological advancements,
the size of the sensors used has been reduced significantly. It helps in mounting the sensors over some
carrier vehicles that can be used to survey the target area. Some specialized sensor designs are even
developed so that the sensing device can be mounted over an Unmanned Aerial Vehicle (UAV) or drone
that can help to get the aerial survey of the desired location [4]. It helps to carry out the remote survey
much faster while ensuring safety. The sensing technologies used for the detection of landmines include
Metal Detector, Ground Penetration Radar (GPR) [5], Thermal or Infrared Images [6], Multispectral
and Hyperspectral Images [7], and Magnetometer [8].

This study focuses on employing magnetic field data from a specific region to detect landmines.
Magnetometers are specialized instruments that measure various aspects of the magnetic field,
including its intensity, magnetic dipole moment, direction, strength, or relative changes at specific
locations. Magnetometers have been used for geophysical surveys in various applications like mineral
exploration [9]. In geophysical surveys, a magnetometer serves to detect alterations or anomalies in
the Earth’s magnetic field. Specific magnetometer designs have been engineered to be compatible with
UAVs, enabling aerial platforms to be equipped with this technology [10]. It can be effectively utilized
for remote geomagnetic surveys.

Similarly, a geomagnetic survey can sense the magnetic anomaly or distortion caused by landmines
in a particular region. The data gathered by the magnetometer is typically collected in the form of
magnetic intensity readings at various locations. The collected data can be processed and analyzed
using various Artificial Intelligence (AI) techniques to locate the target landmine signature. Some
deep learning models have shown remarkable performance in various image processing applications.
In this paper, different Convolutional Neural Network (CNN) based models have been explored to
detect landmine signatures present in magnetometry images.

1.3 Deep Learning
Deep learning is a sub-branch of machine learning that enables a model or algorithm to make

predictions, do classifications, or make certain decisions based on data without explicitly programming
the same [11]. The benefits of deep learning include automated feature extraction from the raw
data. It significantly reduces the effort required to extract the essential features present in the data
that are important for decision-making. Automatic feature extraction is achieved using multiple
interconnected layers where low-level features are extracted at lower layers while higher-level features
are extracted at deeper ones.
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The deep learning models are derived from Artificial Neural Networks (ANN), but their archi-
tecture contains intense interconnected layers that enable them to extract very complex features from
the data. At each layer, multiple processing units called neurons are connected to the other layers.
Each neuron performs some computations on the neuron input, and an activation function is used to
generate the final neuron output. The deep neural network consists of multiple layers where each layer
can have numerous neurons connected to the neurons of the other layers in different configurations.
Specific parameters control the computation at each neuron. The overall network is trained to learn
the parameter values that best fit the data. It is done using back-propagation, in which the net loss
is used to update the network parameters. The network training is repeated at certain times on the
dataset, continuously updating network parameters to minimize network loss.

The researchers from the deep learning community have proposed different network architectures
for different domains, resulting in the formation of various popular deep learning models like
Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Generative Adversarial
Network (GAN), Deep Belief Network (DBN), etc. [12]. The CNN is an algorithmic model based on
deep learning. It has shown remarkable progress in various Computer Vision (CV) related tasks such
as image classification, image recognition, object detection, image captioning, etc. [13]. Like any other
deep learning algorithm, the objective of CNN is to learn some critical features from the input data that
can be in the form of images. In CNN models, three layers are present: Convolutional Layers, Pooling
Layers, and Fully Connected layers. The convolutional layers use a kernel or filter of a particular
dimension. It is convolved through the input image that transforms the input image and generates
feature maps. The pooling layers reduce the spatial dimensions of the input matrix by selecting only
the required features. It generates a reduced representation that requires a manageable number of
parameters while retaining essential features for computing output. A CNN model can generate the
final feature map using various convolutional and pooling layers. It can then be flattened and fed to
the fully connected layers to generate the final output. Like any other deep learning model, this output
is compared with the expected result to compute loss. The loss is back-propagated to update different
model parameters.

The work conducted in this paper aims to explore the use of CNN-based deep learning models
to automate landmine detection in magnetometry images. In magnetometry images, the image matrix
represents the magnetic map of a particular area. It is obtained from the measurements captured by the
magnetometer during the survey. From such images, the CNN-based model can be trained to detect
the magnetic signatures of the landmines that represent the magnetic anomalies caused by them. The
detected signatures can be easily mapped to the geographical coordinates. It can be helpful for the
removal of detected landmines.

1.4 MAGICS for Automating Landmine Detection
The MAGnetometry Imaging based Classification System (MAGICS) for landmine and buried

object detection and localization is a system consisting of a multiplicity of components to achieve full
automation of the process of detection of buried objects based on robotic airborne magnetic sensing.
In this system, Fig. 2, the default operational scenario is perceived as follows:

1. Operator enters the mission’s parameters via a GUI. The inputs include the coordinates of the
search area, the search strategy, and options.

2. The system calculates the optimal trajectory to carry on the search.

3. The airborne magnetometer scans the area.
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4. The collected data are preprocessed to produce the heatmap image to be uploaded to the
system.

5. The deep learning model will classify and localize the landmine magnetic signatures and present
the results via the GUI.

Figure 2: The default scenario of MAGICS, which plans the mission, classifies and localizes the
landmines and reports on results

Here are some factors that highlight the differences and potential advantages of MAGICS:

• Remote Sensing: It utilizes UAV-based airborne magnetometry, enabling remote sensing and
surveying of minefields from a safe distance.

• Deep Learning-Based Detection: MAGICS employs deep learning models for landmine detec-
tion in magnetometry images. Traditional methods often rely on manual data analysis, which
can be time-consuming and less accurate.

• Automation: It is a fully automated system designed to detect and localize landmines
autonomously. Traditional methods may require extensive manual labor and expertise.

• Edge Computing: The incorporation of edge computing in MAGICS allows for real-time
analysis of magnetic field data, reducing the need for extensive post-processing and enabling
faster decision-making in the field.

The proposed work brings several significant contributions to the field of landmine detection:

• Developing an autonomous landmine detection framework that integrates magnetometry and
deep learning.

• Using a simulated dataset with diverse target signatures to obtain a more robust and versatile
landmine detection system.

• Utilizing the transfer learning technique to adapt pre-trained models for landmine detection.

In summary, the proposed work contributes to improving the efficiency and accuracy of landmine
detection through the integration of magnetometry and deep learning, along with the utilization of a
comprehensive simulated dataset. The rest of the paper is structured as follows: Section 1.5 briefly
reviews the existing work related to landmine detection. Section 2 discusses the work carried out
for landmine detection, involving the detection models and the dataset used. Section 3 evaluates the
results obtained based on various parameters. Section 4 concludes the overall work with some future
directions.
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1.5 Related Work
Various researchers have considered the use of magnetic surveys in various geographical appli-

cations. The same has been explored for detecting buried landmines using magnetometer-based
imaging. Zhang et al. [14] have considered the detection of sub-surface, Unexplored Ordnance (UXO)
using magnetometer and Electromagnetic Induction (EMI) sensors. The likelihood ratio test and
Support Vector Machine (SVM) have been used for classifying the target. The work in [15] has
utilized a fluxgate sensor array to detect underground explosives based on captured magnetic field
measurements. The authors used the K-Nearest Neighbour method to classify explosive and non-
explosive materials. Yilmaz et al. have proposed a classification method for passive mine detection
based on magnetic survey [16]. The proposed method is based on the magnetic anomaly, measurement
height, and soil type.

With sensor design and operation advances, some magnetometers can be mounted over UAVs or
drones to carry out magnetic surveys [17]. Yoo et al. [18] have used a magnetometer mounted over a
drone to detect the landmines. The detection has been made based on the magnetic anomaly captured
in the magnetometry image. Mu et al. [8] have also used UAV-based magnetic surveys to detect near-
surface targets automatically. The authors have used a Deep Convolutional Neural Network (DCNN)-
based model for target detection in the captured data. In [19], the authors improved the work done
in [18] and carried out a drone-based magnetometer survey for mine detection in the demilitarized
zone. The low pass filtering has been used to eliminate magnetic swing noise due to pendulum motion.
The moving average method has been utilized to eliminate the changes related to the magnetometer
heading. The authors have carried out the magnetic exploration in an actual mine removal area.

Ibraheem et al. [20] have presented a phase-based filter that can be used with magnetic field data
to find buried UXO accurately. The study in [21] introduced a dual-mode landmine detection system
that combines spectroscopic metal detection with GPR. The proposed system employed feature-level
sensor fusion based on key features extracted from both sensors. It enhances operator feedback and
automates the location of buried, visually obscured objects, including landmines. The work in [22]
has explored the application of deep learning and UAVs for the automated detection of scatterable
antipersonnel landmines. It leverages multispectral and thermal datasets collected by an automated
UAV survey system. The work in [23] was also focused on using a thermal imaging dataset collected
using UAVs for landmine detection. It has employed a Multilayer Perceptron (MLP) model to detect
the presence of landmines in thermal images collected at varying heights. The work in [24] also
tackled the critical issue of UXO detection in conflict-affected regions using thermal imaging and
deep learning. The dataset of thermal images containing UXO belonging to different classes has been
formulated and utilized for detection. The study in [25] has also proposed a joint detection system
that combines a time-domain electromagnetic detection system (TDEM-Cart) and a multi-rotor UAV-
based magnetic system (UAVMAG). The cooperative processing of the fused data from both systems
has been used to give more accurate positioning results and information, which helps find and tell
apart the UXO. The fusion network based on auto-encoder has been formulated in [26] to fuse the
visible and infrared images to improve the detection of different types of landmines.

Previous research has explored the utilization of various methods for landmine detection. How-
ever, the prior studies often rely on limited field data and involve a relatively small number of
targets for detection. In contrast, the proposed work aims to leverage magnetometry data and deep
learning models for landmine detection. The approach utilizes a simulated dataset that encompasses
many diverse targets to be detected. It provides the ability to test and train detection models
under more extensive and varied conditions, thereby enhancing the robustness and effectiveness of
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landmine detection systems. Deep learning models have become beneficial technologies with extensive
applications across several areas. In the Internet of Things (IoT) context, deep learning plays a vital role
in enhancing services and system management [27]. It also helps to effectively identify anomalies and
extract essential features in time-series Internet of Things (IoT) data [28]. Utilizing CNN-based deep
learning methods to analyze and interpret magnetic field data enhances the accuracy and reliability
of landmine signature identification. The models can learn complex patterns and characteristics from
the data, enabling them to detect small magnetic anomalies linked to landmines effectively.

2 Landmine Detection Using Magnetometry Images

The work carried out in this paper focuses on the application of deep learning models for
automating the process of landmine detection. It is similar to the object detection task where, based
on an input image, the goal is to detect various objects present in it. In this study, transfer learning is
adapted to enhance the landmine detection process using magnetometry images. Transfer learning is
a technique where knowledge gained from one task was applied to a different but related task [29]. As
part of our study, we used transfer learning to improve the ability to find landmines in magnetometry
images by adapting existing deep learning models. It involves the selection of efficient detection models
and retraining and fine-tuning them on the simulated dataset. The input and output layers of the
models are customized to suit the requirements of the dataset. During fine-tuning, the internal layers
of the model are adjusted to learn the features and patterns in the magnetometry images. It involves
training the models on the simulated dataset to improve the ability to detect landmine signatures
effectively. With this, the models adjust the internal parameters to develop a deep understanding of the
unique features and patterns found in magnetometry images, which are those that indicate the presence
of landmine traces. In landmine detection, the input is the magnetometry image, and the landmine
signatures are the objects the model must detect. For this reason, various CNN-based single-stage
object detectors have been used to detect the landmine signatures in magnetometry images.

2.1 Landmine Signature Detection Models
Various CNN-based single-stage object detection models have been selected and trained on the

magnetometry image dataset. The objective is to leverage the existing state-of-the-art models for
automating the landmine detection process. The general architecture followed by the single-stage
object detectors contains the backbone, middle, and head networks. The backbone is responsible for
generating the feature map from the input. The middle network, sometimes called the neck, performs
the multi-scale feature fusion over the feature map generated by the backbone. The head generates the
final outputs, including the bounding box and class predictions for different objects in an image [30].
The single-stage detectors predict a large number of bounding boxes for each image. The predictions
are filtered out using Non-Max Suppression (NMS). It considers the highly overlapping boxes and
keeps only the bounding box having the highest confidence value of containing the object while
suppressing the rest. It eliminates the redundant predictions and outputs a single box for each object.

The models used for landmine detection are Retinanet, YOLOv5, and EfficientDet-D0. All the
models are single-stage detectors that have shown promising results for object detection. The models
have been customized and trained to detect landmine signatures present in magnetometry images.

2.1.1 RetinaNet

RetinaNet is a single-stage CNN-based model proposed by Lin et al. [31] for object detection.
The architecture of RetinaNet has been depicted in Fig. 3. It uses some of the existing convolutional
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networks like ResNet [32] as the backbone for feature extraction. The Feature Pyramid Network
(FPN) [33] has been adopted on top of the backbone network for multi-scale feature fusion in a top-
down pathway. The head contains two subnetworks: the Classification subnetwork and the Regression
subnetwork. The classification subnetwork determines the presence of the object and its classification
for each spatial location. On the other hand, the regression subnetwork fits the bounding box values
for each object in the image.

Figure 3: General architecture of RetinaNet

RetinaNet is a one-stage detector model that makes it faster and simpler to detect the objects
present in an image. The authors have proposed a novel loss function called Focal Loss, an extension of
the cross-entropy function. Using a simple cross-entropy loss function for single-stage detectors suffers
from the class imbalance problem. The problem is addressed by novel focal loss used in RetinaNet.
It is formed using additional parameters in the cross-entropy loss equation to down-weigh the loss
associated with well-classified examples.

FL(pt) = −α(1 − pt)
γ log(pt) (1)

In Eq. (1), FL is the focal loss calculated for a particular class probability, pt. α is the weighing
factor and γ is the modulating factor. For RetinaNet, the authors have used the γ value of 2 and α

value of 0.25.

2.1.2 YOLOv5

YOLO stands for You Only Look Once [34]. It represents a family of object detection models that
also follows single-stage detection. The YOLO model uses a single network for both classification and
regression tasks. Redmon et al. proposed the first YOLO model in 2016 [34]. Since then, various other
versions of the YOLO model have been formed by incorporating the essential changes and improving
the overall model performance. In our work, the YOLOv5 model has been used for landmine detection.
Various improvements in YOLOv5 have enabled it to achieve better detection results on the standard
object detection Pascal VOC dataset [35] and Microsoft COCO dataset [36].

The general architecture of YOLOv5 has been drawn in Fig. 4. In YOLOv5 Cross Stage Partial
Network (CSPNet) [37] has been used as the backbone network, and Path Aggregation Network
(PANet) [38] has been used as the neck network. PANet contains an extra bottom-up path aggregation
network on top of FPN. The head of the YOLOv5 generates multi-scale feature maps to handle
different object sizes, enabling it to detect small, medium, and large objects more efficiently. Another
aspect that makes YOLOv5 different is the use of novel mosaic data augmentation [39]. It includes
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generating an augmented image from some random crop of four different images. It enhances
the detection of small-scale objects in the image. The loss function of YOLOv5 is composed of
classification loss, box loss or regression loss, and objectness or confidence loss.

Figure 4: General architecture of YOLOv5

YOLOv5 contains a set of models generated on different scales. The scale represents the model size
or depth and, thus, the number of parameters a particular configuration uses. The larger models have
better accuracy but require more time to train and infer from the images. We have utilized YOLOv5s
and YOLOv5x models to detect landmine signatures in our work.

2.1.3 EfficientDet

Google Research, Brain team has developed the EfficientDet model [40]. EfficientDet has shown
remarkable performance for object detection on the Pascal VOC and Microsoft COCO datasets.

Fig. 5 displays the overall architecture of EfficientDet. The authors have used EfficientNet [41]
as the backbone, while a novel weighted Bi-directional Feature Pyramid Network (Bi-FPN) has been
used for feature fusion. Several optimizations have been proposed in the cross-stage network used in
bi-FPN. It includes removing the node with only one input edge, adding extra connections between
the same level input and output, and repeating the bidirectional feature fusion layer multiple times. It
enables the model to form more high-level feature fusion. The head contains dedicated convolutional
network layers for class and box prediction. Like RetinaNet, it also uses the focal loss function,
but different parameter values have been used. The authors have considered the γ value of 1.5 and
α value of 0.25 for EfficientDet. The novel compound scaling method has generated a family of
models of different sizes. The approach jointly scales up all the network dimensions: width, depth,
and resolution. The scaling is controlled by a simple compound coefficient, φ. In our work, we have
used the Efficient-D0 model. The D0 represents the 0 value of φ. It is the smallest among all the
models in the EfficientDet family. The use of compound scaling simplifies the task of scaling up all
the dimensions of the backbone, feature fusion, and head network.

2.2 Dataset Used
In the context of landmines, magnetic signatures are representations of how these buried objects

affect the Earth’s magnetic field. Landmines often contain materials that disturb the surrounding
magnetic field. This disturbance results in magnetic anomalies or irregularities in the magnetic field
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intensity. Various studies have revealed the presence of positive anomalies due to buried objects like
UXO [8,20,25]. The magnetic field generated by an object is strongest in its close proximity and
gradually weakens with increasing distance. It is a fundamental characteristic of magnetometry and
plays a pivotal role in shaping the magnetic signature of landmines. In our simulated dataset, the
effect is produced by modeling the magnetic signature as a positive circular anomaly. The magnetic
field intensity is highest at the center of this anomaly, where the magnetic target (in this case, the
landmine) is located. It gradually decreases as we move away from the center or target location.
Extensive field studies and research in the area of magnetic inspection have consistently revealed the
presence of magnetic anomalies that closely resemble circular patterns for buried objects like UXOs or
landmines. Similar patterns can be observed in the real-time magnetic map obtained by the SENSYS
magnetometer in field inspection using MagDroneR4 as shown in Fig. 6 [42]. The sample illustrated
in the figure is excerpted from a study that utilized the MagDroneR4 UAV-magnetometer in an area
containing various types of UXOs. Therefore, the choice to replicate it in the simulated dataset is based
on empirical evidence and to ensure that the data closely aligns with real-world scenarios. Through
this approach, we have aimed to capture the essence of magnetic signatures of landmines, thereby
enhancing the authenticity and utility of our simulated dataset for training and testing landmine
detection models.

Figure 5: General architecture of EfficientDet

While real-world data is invaluable, simulated data is crucial in advancing the development and
evaluation of deep learning models for landmine detection. Acquiring real magnetometry images
recorded over landmine fields using UAV platforms presents considerable logistical and resource
challenges. These challenges include safety concerns, access limitations, and the costs associated with
field surveys. Simulated data, in this context, offers a practical and accessible means to conduct
extensive testing and research. The simulated dataset used in our study is thoughtfully created to
encompass various scenarios. It includes multiple targets, variations in anomalies, and different
background conditions. The controlled nature also helps to experiment with various parameters
and conditions. It is instrumental in systematic testing and fine-tuning. The availability of a large
and diverse dataset has been instrumental in training and validating the deep learning models. It
has provided the foundation for model development, enhancing detection accuracy and assessing
the models’ generalizability across various scenarios. The diversity is a pivotal strength, providing a
controlled yet comprehensive testbed for evaluating the deep learning models. The study can bridge
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the gap between developing deep learning models and their deployment in actual UAV-based magnetic
surveys.

Figure 6: Cropped section of a magnetic map from a surveyed region using the MagDroneR4 UAV-
Magnetometer [42]

There is also a lack of a publically available dataset of magnetometry landmine images. For
this reason, we have used the simulated magnetometry images to train and evaluate various deep
learning models. The multiple steps involved in generating simulated magnetometry images have been
depicted in Fig. 7. We initiate the generation process for each image in our dataset by creating a
background matrix of random numerical values that defines the background magnetic field intensity
readings in nanoteslas (nT). These values are initially generated as a matrix, simulating the magnetic
field’s characteristics within the surveyed area. To enhance the realism, we applied a mean filter over
the matrix. It emulates the natural variations and fluctuations typically observed in magnetic field
data. Some random magnetic signatures are added at arbitrary locations to introduce the presence of
landmine signatures. These signature values are superimposed onto the background magnetic intensity
values, mimicking the magnetic anomalies caused by buried landmines. The resulting matrix effectively
represented the magnetic field intensity values obtained from a survey of a specific area using a
magnetometer. The process helps to create magnetometry images that closely resemble the real-world
conditions encountered during landmine detection missions.

The mean value has been subtracted from all the matrix elements to normalize the data and
highlight variations. It effectively produces a matrix illustrating the deviation or variation in the
captured magnetic field intensity values from the background. The processed matrix is further trans-
formed into a contour plot or colormap image. It provides a graphical representation of the magnetic
field intensity variations, making it easier to visualize the spatial distribution of magnetic anomalies,
including potential landmine locations, within the surveyed area. We have employed bounding boxes
to precisely locate and annotate the regions associated with each signature (representing potential
landmine positions). These bounding boxes enclose the target landmines within the contour plot
image. The bounding box coordinates are further processed to ensure consistency and standardization.
It involves dividing the box values by the dimensions of the matrix, ensuring that the annotations are
relative to the size of the image matrix.

The simulation process is implemented using Python, involving the conversion of matrix values
into custom-contour plot images. It resulted in the generation of an extensive dataset comprising
1000 simulated images split into a training set of 802 random images and a validation set consisting
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of the remaining 198. Notably, the precise locations of landmine signatures within each image are
appropriately recorded to facilitate the generation of annotations vital for training the landmine
detection models. The aim is to train the models to identify all landmine signatures within an image.
The detection task is complicated by the miniature size of landmines that generates relatively subtle
magnetic anomalies compared to larger objects. Furthermore, the potential overlap of anomalies
from closely situated landmines in a minefield is thoughtfully considered in creating the signature
map. While real-time magnetometer data often contains noise, the simulated image dataset operated
under the assumption that the images represented pre-processed, noise-free data. This assumption
streamlined model training, focusing on the core task of landmine signature detection.

Generation of random
background matrix using

contour plots

Mean Filter to smoothen the
matrix

Select random coordinates with
inter-coordinate distance greater

than minimum threshold 

Placement of landmine
signatures at the selected

coordinates

Mean Filter to smoothen the
effect of signatures

Generate the final intensity
variation matrix by subtracting

the mean value

Generate the colormap image
from the matrix

Record the coordinates and
bounding box of each signature 

Rescale the values according to
the matrix size 

Save the final annotations of all
the signatures

Figure 7: Steps involved in the generation of simulated Magnetometry colormap image

Fig. 8 represents a sample magnetometry image generated using custom colormap and its detected
signatures using a trained model. The image generated from the simulated matrix contains mean
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deducted values representing the magnetic intensity variation at a particular region. The landmine
signatures used in our approach are represented as concentric circular regions of varying shape and
size. The magnetic intensity is highest at the center and decreases outward. The variation accounts
for the fact that different types of landmines may generate magnetic anomalies of different shapes
and sizes, depending on their design and orientation. The simplified model serves as a proxy for
magnetic anomalies caused by buried landmines. Also landmines are typically smaller in size compared
to UXOs and often found in higher densities within a minefield. Consequently, we incorporated
magnetic signatures of smaller dimensions with increased density in the simulated dataset to accurately
represent real-world conditions. The signatures are superimposed at random locations on the random
background matrix to produce the final magnetic map of the minefield. In practical landmine detection
scenarios, it’s common to encounter areas with multiple landmines buried at different depths and
orientations, resulting in a diverse range of magnetic signatures. We can train the detection models
to recognize and differentiate multiple landmines by incorporating variation into the simulated data.
It enhances the realism of the training data and contributes to more effective model training and
evaluation.

Figure 8: Magnetometry image sample from the simulated dataset and the detection results

While the simulated dataset captures certain aspects of real-world magnetic signatures produced
by landmines, it is important to acknowledge the differences. Magnetic anomalies observed in real-
world scenarios exhibit variations in their shape, size, and intensity, which can be attributed to many
factors, including the type of landmine, its depth, the composition of the soil, and the sensitivity of
the magnetometer. The synthetic dataset exhibits some level of symmetry in the magnetic signatures,
perhaps limiting its ability to accurately capture the variety and asymmetry commonly observed in real
landmine signals. Precise parameters govern the production of synthetic signatures to create idealized
representations that may not fully replicate the spontaneous variations observed in real environments.
The signatures do not incorporate the presence of noise or interference commonly observed in actual
magnetic field data collected from magnetometry surveys conducted in regions affected by landmines.

The dataset for this study is collected through a simulation process designed to mimic real-world
magnetometry data acquisition. The steps taken or factors considered to ensure its accuracy and
reliability are as follows:

• Simulation Setup: The dataset is generated using a simulation setup that aims to replicate the
conditions of a real magnetometry survey. It includes factors such as the magnetic signatures
of landmines and their expected impact on the magnetic field.
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• Controlling Variables: During the simulation, various parameters and variables are controlled
to ensure consistency and accuracy. It includes the size, shape, and location of the landmine
signatures and the magnetic field properties.

• Annotations: To evaluate the performance of detection models, annotations are generated for
each synthetic image. These annotations include the precise locations and characteristics of the
landmine signatures.

• Data Augmentation: Data augmentation techniques have been applied to increase the dataset’s
diversity and improve model generalization. These techniques could include variations in
rotation, scaling, or other transformations.

3 Results and Evaluation

Since deep learning models require a high amount of computation, the implementation of different
models has been carried out using a GPU machine.

3.1 Experimental Setup
The training and evaluation of all the detection models have been carried out using Google

Colaboratory [43]. It is a platform provided by Google to run Python code online in the form of a
notebook. The execution of the code written in a notebook takes place on Google’s cloud servers. It
helps to leverage Google’s powerful hardware resources, including GPUs and TPUs. In our work, we
have used the GPU run-time provided by the platform to implement different CNN-based models for
landmine detection using magnetometry images.

We have utilized three different deep learning models: YOLOv5, RetinaNet, and EfficientDet.
Each model underwent extensive training to adapt to the task of landmine detection. YOLOv5 was
trained for 300 epochs, RetinaNet for 100 epochs, and EfficientDet for 200 epochs. The extensive
training duration allowed the models to learn intricate features and patterns present in the magnetic
images, enhancing their detection capabilities. The training process has been initilaized with an initial
learning rate of 1e-5. The learning rate schedule and optimization techniques are fine-tuned during
training to strike a balance between rapid convergence and avoiding local minima. To enhance the
robustness, we have applied data augmentation techniques, including random rotations, flips, and
scaling, to the training images. The augmentations helped the models generalize better to different
orientations and scales of landmines. We closely monitored the model’s performance on the validation
set throughout the training process to prevent overfitting. We employed the metric mean Average
Precision (mAP) to assess the models’ precision-recall trade-offs and detection accuracy.

3.2 Evaluation Metric
The Microsoft COCO object detection criterion has been used to evaluate the landmine signature

detection results obtained from different models. It considers the mean Average Precision (mAP) as
the metric for performance evaluation. The mAP value represents the area under the Precision-Recall
curve (P-R curve) obtained for all the classes over some Intersection over Union (IOU) threshold. The
IOU value represents the ratio of the intersection region and the union region of the true and predicted
bounding boxes. It is the percentage overlap between the predicted and true bounding boxes. For a
perfect fit, the IOU value will be 1. IOU value is used as a threshold or confidence value in object
detection models to calculate true positives. It helps in the determination of the mAP metric that
considers both precision and recall estimates.
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Eq. (2) represents the general equation for calculating Average Precision (AP). Here, P is the
Precision computed as a function of R, i.e., Recall. The integral gives the area under the P-R curve.

AP =
∫ 1

0

P(R) dR (2)

For discrete recall intervals, the Eq. (2) can be written as:

AP = 1
n

∑
i

P(Ri) (3)

In Eq. (3), Ri represents the Recall intervals for which the Precision values have been considered,
and n is the total number of recall intervals. Since multiple classes exist, the final mAP metric is
computed as the average of the AP values for all categories.

mAP = 1
m

m∑
i=1

APi (4)

The mAP values used for evaluating the performance of different models are mAP at 0.5 and mAP
at 0.5:0.95. The first metric represents the mAP value at the IOU threshold value of 0.5. In contrast,
the second metric is computed as the average of mAP values at 10 IOU threshold intervals in the range
of 0.5 to 0.95. The second metric forms a more general representation of model performance due to
the consideration of a wide range of confidence scores.

3.3 Results Obtained for Different Models
Table 1 gives an overview of key configurations for different models that have been trained for

landmine detection. The training time per step for YOLOv5s is minimum, while EfficientDet-D0
has the minimum number of parameters. YOLOv5x is the largest model, while the training time for
RetinaNet is maximum. The EfficientDet and RetinaNet models take a minimum input size 512 by
automatically re-scaling the image. It increases the training time required for these models compared
to YOLO models that can be trained directly using 224 image size. All the YOLO models have been
trained for 300 epochs, RetinaNet for 100 epochs, and EfficientDet for 200 epochs. Within these
epochs, it has been observed that the respective models have reached a point beyond which there was
no further improvement in performance. Fig. 9 depicts the obtained mAP values after each iteration
for YOLOv5 models. The overall loss concerning training epochs for YOLOv5s and YOLOv5x has
been depicted in Fig. 10 while Fig. 11 shows the validation loss. Similarly, Fig. 12 presents the loss for
EfficientDet-D0, and Fig. 13 presents the loss for RetinaNet.

Table 1: Different models used for landmine detection

Model Backbone Neck Number of parameters Training time per
step (s)

RetinaNet ResNet50 FPN 36 M 4
YOLOv5s CSPNet PANet 7 M 0.21
YOLOv5x CSPNet PANet 87 M 1.48
EfficienDet-D0 Bi-FPN EfficientNet 3.9 M 0.80
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Figure 9: Mean Average Precision (mAP) at 0.5:0.95 for different YOLOv5 models

Figure 10: Total training loss for different YOLOv5 models

Figure 11: Total validation loss for different YOLOv5 models
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Figure 12: Total training and validation loss for EfficientDet-D0

Figure 13: Total training and validation loss for RetinaNet

Table 2 depicts the performance of various models after training and the inference time require-
ments for different models. Based on the mAP evaluation metric at 0.5:0.95 threshold, it can be
observed that out of all the models, EfficientDet-D0 produced the best results with the mAP value of
0.978. The performance has been obtained by increasing the learning rate to the initial value after 100
epochs. It can lead to a sudden increase in loss but helps the model to reach global optima. YOLOv5x
trained with Adam optimization also has a close mAP value of 0.9764. The YOLO models use the
learning rate schedule that first decreases and then increases the learning rate, which helps escape
local optima. The mAP value for RetinaNet is 0.9622, while for YOLOv5s, it is 0.9345 when trained
using Adam optimization.

Although YOLO models have been trained using an original image size of 224, for comparison,
inference time for the input image of size 512 has also been considered. It has been evaluated that for
input size 512, the inference time is approximately 0.024 s for YOLOv5s and 0.14 s for YOLOv5x.
Based on the same, the inference time for YOLOv5s is minimum, followed by EfficientDet-D0, then
YOLOV5x, and lastly, RetinaNet. Although the accuracy of YOLOv5s is the lowest among all the
models, its small size and minimum detection time make it suitable for time-critical applications.
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Table 2: Performance of different models

Model Optimizer mAP at 0.5 mAP at 0.5:0.95 Detection time per
image (s)

RetinaNet Adam 0.9998 0.9622 0.21
YOLOv5s SGD 0.9991 0.8800 0.0146
YOLOv5x SGD 0.9986 0.9449 0.044
YOLOv5s Adam 0.995 0.9345 0.0146
YOLOv5x Adam 0.995 0.9764 0.044
EfficienDet-D0 Adam 0.990 0.978 0.0552

The use of Adam optimizer over Stochastic Gradient Descent (SGD) significantly improves the
performance of the detection model. It can be observed from the YOLO models’ performances that
have been trained using both optimizers. EfficientDet-D0 is the model that utilized the minimum
number of parameters and achieved maximum performance.

There is a trade-off between the precision of landmine detection and the time needed for training
and detection. It needs to be considered while creating effective solutions for practical applications in
the real world. As the size and complexity of the detection model grow, the associated parameters also
increase, impacting the model’s performance. Larger and more complex models have a better capacity
to acquire intricate patterns and features within the data. Our investigations have also indicated that
increasing the model size enhances accuracy in detecting landmine signatures, as illustrated in Table 2.
However, the improvement in accuracy is accompanied by an increase in the duration of training. As
the complexity of the model increases, the training procedure requires more computational resources
and time to optimize a greater number of parameters efficiently. The computational complexity
can affect the detection speed during the deployment of trained models for real-time detection. In
situations where precision is crucial, opting for a larger model can be considered to maximize accuracy.
On the other hand, when timely detection is critical, a smaller, more efficient model can be selected to
maintain an acceptable level of accuracy while speeding up detection.

3.4 Challenges
There are certain limitations to the performance of MAGICS:

• Generalization to Real-World Data: While the simulated dataset provides a valuable resource for
training and testing the MAGICS, it is important to acknowledge that simulated data may not
capture all the complexities and variations in real-world scenarios. Therefore, further validation
of real data collected by UAVs over actual minefields is essential.

• Terrain and Environmental Variability: Real-world environments can include various terrains,
vegetation types, and environmental conditions. The performance of the proposed system may
vary depending on factors such as soil composition, vegetation density, and weather conditions.

• Deployment Challenges: Implementing MAGICS in operational settings may require consid-
erations for hardware deployment, power supply, and connectivity. These practical challenges
need to be addressed for successful real-world applications.

• Scalability: Large-scale operations generate vast amounts of data. Efficient data collection,
storage, transmission, and analysis become critical. It requires robust data management systems
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and high-performance computing infrastructure. Also, coordinating logistics and resources in
remote or conflict-affected regions can be complex.

4 Conclusion and Future Work

The active use of landmines and existing landmines poses considerable risk, affecting countless
lives. Landmine detection needs continuous research and improvements to incorporate various
artificial intelligence techniques to automate the process. The MAGICS has been proposed as an
automated framework to deal with such a problem. The work done in this paper focused on applying
deep learning models for the detection of landmines using magnetometry images. For this, various
CNN-based models have been trained using a simulated magnetometer-based image dataset. The
results obtained from the introduced models confirm their use for automating landmine detection from
magnetometer-captured images. The models have shown satisfactory results with the best performance
of EfficientDet-D0 while minimum time requirement by YOLOv5s. Deep learning can significantly
automate the landmine detection process and reduce the time and effort required. Moreover, deep
learning models can enhance the detection since they can detect those signatures that sometimes are
not easy to interpret. It can significantly improve the overall accuracy of landmine detection.

The work done in the paper can be extended by considering some real-time magnetometry images.
Then, different deep learning models can be trained using such images in the presence of extreme noise
conditions due to sensing. The tuning of various hyper-parameters involved in deep learning models
and applying different model configurations can be further explored to improve performance.
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