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ABSTRACT

In the fiber winding process, strong disturbance, uncertainty, strong coupling, and fiber friction complicate the
winding constant tension control. In order to effectively reduce the influence of these problems on the tension
output, this paper proposed a tension fluctuation rejection strategy based on feedforward compensation. In
addition to the bias harmonic curve of the unknown state, the tension fluctuation also contains the influence
of bounded noise. A tension fluctuation observer (TFO) is designed to cancel the uncertain periodic signal, in
which the frequency generator is used to estimate the critical parameter information. Then, the fluctuation signal is
reconstructed by a third-order auxiliary filter. The estimated signal feedforward compensates for the actual tension
fluctuation. Furthermore, a time-varying parameters fractional-order PID controller (TPFOPID) is realized to
attenuate the bounded noise in the fluctuation. Finally, TPFOPID is enhanced by TFO and applied to control a
tension control system considering multi-source disturbances. The stability of the method is analyzed by using the
Lyapunov theorem. Finally, numerical simulations verify that the proposed scheme improves the tracking ability
and robustness of the system in response to tension fluctuations.
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Constant tension control; anti-fluctuation strategy; tension fluctuation observer; time-varying parameters
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1 Introduction

In the fiber winding process, one of the most critical factors affecting the winding quality is the
adjustment of fiber tension [1]. The guide wire device in the winding machine drives the fiber to wind
along the surface of the wound part according to a particular trajectory, in which the fiber ensures
the stability of the winding tension under the action of the adjusting device [2,3]. Suppose there is
no appropriate controller to control the tension. In that case, the fiber may be unable to retract and
release the yarn in time, resulting in fiber tension fluctuation and output tension instability, which
in turn affects the performance of the winding product. In order to overcome the above difficulties,
the traditional fiber winding machine adjustment device [4] is usually used to adjust the fiber tension,
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such as swing rod, mechanical spring and lag brake. However, when the winding speed is accelerated,
the regulating device cannot respond quickly and cannot ensure that the winding tension is constant
near the set value. At this time, fiber jitter and tension fluctuation will be caused. In order to solve
the above problems, this paper is devoted to using the active tension control method to analyze
the tension variation law and the composition of the fluctuation, primarily focusing on the tension
estimation combined with the observer and the control of the tension system by the fractional-order
PID controller to improve the performance of the fiber winding machine.

Researchers have conducted many investigations on constant tension control [5,6]. Chen et al.
[7] proposed a nonlinear model predictive control method to eliminate tension disturbance and
improve tension control accuracy. Chen et al. [8] designed a robust linear parameter varying model
predictive control scheme to improve the tension tracking performance. Imamura et al. [9] used system
identification to model the winding tension and designed a 2-DOF PID controller based on a genetic
algorithm to realize the real-time control of winding tension. In addition, many modern control
methods have been introduced into tension control, including PID control [10], fuzzy control [11], and
fractional order control [12]. Among them, the fractional-order PID controller has been successfully
applied in the stable control of tension with its excellent control performance [13]. Meng designed a
control strategy based on fractional-order PID to achieve the control goal of constant tension in the
winding system [14]. However, the control parameters of the PID controller are independent of each
other and lack the ability to coordinate control [15]. In order to eliminate the shortcomings of the PID
controller, scientists have carried out further research. Zeng et al. [16] proposed a parameter coupling
strategy and established the relationship between the control parameters of the proportional, integral,
and differential links in the integer-order PID controller. This provides a new idea for the tuning of
fractional-order PID controller parameters.

However, the framework of existing control methods cannot effectively suppress tension fluc-
tuation by using the main characteristics of tension fluctuation, which is conservative. Because of
multi-factor disturbance for speed in the winding process (the non-circularity, coulomb friction, and
vibration of the guide roller) and strong coupling effect between fiber speed and tension, resulting
in periodic tension fluctuation [17]. In order to achieve a satisfactory control effect, the rejection
of periodic signals should be considered in the design of signal control schemes. In most studies,
various methods have proved effective for uncertain periodic systems [18–20]. In [21], the adaptive
frequency estimation scheme combined with the fractional-order controller to suppress the offset
sinusoidal disturbance of the unknown parameter state and an adaptive orthogonal signal generator
based on the third-order generalized integrator to estimate the disturbance. However, in the adaptive
algorithm, the control and observation parameters are solved separately, which leads to a significant
increase in the calculation of the parameters and affects the convergence speed of the estimation. In
addition, the disturbance observer (DOBC) [22,23] realizes the compensation and rejection of periodic
fluctuations [24,25] by estimating the critical fluctuation frequency information [26,27]. In [28], a two-
layer observer is proposed to reconstruct the unknown frequency disturbance, which can eliminate
the parameter uncertainty condition on the system uncertainty. However, the tension system always
encounters disturbances with different characteristics [29], such as friction and noise. Due to the lack
of robust control, the performance of disturbance compensation may deteriorate.

In order to reduce the tension fluctuation of fiber winding, the purpose of this technical
description is to propose a tension fluctuation rejection strategy based on feedforward compensation.
A composite control scheme of tension fluctuation observer and time-varying parameter fractional
PID controller is developed using DOBC [30] control structure and PID parameters coupling [31]
control rules. It solves the tension fluctuation control problem of the winding system with an unknown
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state periodic signal and bounded noise. In the design process of the proposed tension fluctuation
observer, the tension periodic signal is regarded as an exogenous system [32]. Considering the friction
between the fiber and the device, the uncertain periodic signal is a bias harmonic. The fluctuation
characteristics are excited by designing the nominal model and the inverse filter of the controlled
system. Then, the frequency generator is designed to estimate the critical frequency parameter
information of the bias harmonic periodic signal, and a third-order auxiliary filter is constructed to
give the equivalent form of the uncertain bias harmonic compensation signal. Finally, the tension
signal is reconstructed in the fluctuation reconstructor, and the actual system is compensated. The
asymptotic convergence and uniform ultimate boundedness of the reconstructed tension fluctuation
under a multi-factor disturbance environment are analyzed by using the Lyapunov theorem. The
coupling between harmonic parameters and the solution of complex differential equations can be
avoided. Combined with the designed time-varying fractional-order PID controller, the bounded noise
in tension fluctuation is attenuated. The simulation data show that when the winding speed disturbs
the system, the proposed control strategy can control the tension fluctuation deviation in a small range.
It is verified that the proposed scheme improves the tracking ability and robustness of the system in
response to tension fluctuation.

The structure of this paper is as follows: Section 2 gives a description of the tension fluctuation
problem. In Section 3, a tension fluctuation observer is designed for biased harmonic signals, and the
stability of the composite system is analyzed. Section 4 gives the design of a time-varying parameter
fractional-order PID controller. In Section 5, various simulation examples are given to illustrate the
effectiveness. Section 6 gives the conclusion of this paper and the future research work.

The main contributions and innovations of this paper can be summarized as follows:

(1) The tension fluctuation generated by the actual tension system is analyzed, and the compen-
sation signal of the uncertain disturbance is reconstructed by its characteristics. The equivalent form
of the tension fluctuation of the uncertain bias harmonic compensation signal is given.

(2) A third-order auxiliary filter is constructed. The disturbance signal with unknown frequency is
introduced, and the relationship between the disturbance frequency and the compensation coefficient
is given. A tension fluctuation observer (TFO) is proposed to realize the accuracy and robustness of
tension fluctuation estimation.

(3) By introducing the dynamic parameters into the fractional order PID controller, a time-varying
parameters fractional-order PID controller (TPFOPID) is established, which can realize the efficient
control of the tension system with complex disturbance.

(4) The proposed TFO observer and TPFOPID controller are independent of each other and
remove the necessity of estimating the system state to complete the control target, making the system
stability easier to analyze.

2 Problem Formulation

In this section, we consider the control model of fiber winding tension regulator. Additionally,
based on actual tension data, the main types of disturbances causing tension fluctuations were
identified. This serves to further inform the design of control strategies.

2.1 Tension Control Model
According to Xu et al. [33], the kinematics control model of tension adjusting rod can be

expressed as:
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RJ
··
θ + (

Rβ + KeKf

) ·
θ = Kf Kb (u + d) (1)

where R is the equivalent resistance, J is the equivalent rotational inertia, β is the equivalent friction
coefficient, Ke is the electromotive force coefficient, Kf is the motor torque coefficient, Kb is the
pendulum coefficient, θ is the angle of the swing rod, u is the control input, d is the disturbance signal.

The transfer function for the tension regulating device can be expressed as:

Gk (s) = Kf

RJs + Rβ + KeKf

· Kb

s
(2)

Define the state vector x = [
x1 x2

]T = [
θ w

]T
.

The state space control model describing the motion of the winding tension regulating device can
be expressed as:{ ·

x (t) = Ax (t) + C (u + d∗ + �d)

y = Fx (t)
(3)

A =
[

0 1

0 −a1

a2

]
, C =

[
0
b0

]
, F =

[
1
a2

0
]

(4)

a2 = RJ, a1 = Rβ + KeKf , b0 = Kf Kb. (5)

In the research problem shown in Fig. 1, the movement of the fiber driven by the guide tube during
winding is a repetitive process in the form of harmonics, and there is friction between the fiber and the
device. Due to the strong coupling relationship between the winding speed and the winding tension,
the tension fluctuation of the fiber is present in the form of a biased harmonic signal.

Figure 1: A multi-bundle fiber winding device with tension adjustment

2.2 Tension Fluctuation Description
We consider the tension experimental data from the actual winding system and fit the equivalent

tension output curve that characterizes the tension fluctuation, as shown in Fig. 2.
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Figure 2: The actual measured curve and simulation fitting curve of wire tension

The composite disturbance causing tension fluctuation through fitting and comparison analysis
has the following characteristics: random noise, unknown frequency simple harmonic wave distur-
bance, and bias disturbance. In order to facilitate the verification of the performance of the controller
and observer proposed in this paper, in the following research, these disturbance factors are reasonably
amplified and described. Therefore, the tension fluctuation d (t) in our system can be described as:

d (t) = d∗ (t) + �d (t) = ψ0 + ψ sin (ωct + φ) + �d (t) (6)

where, ψ is the amplitude of the bias harmonic signal, ωc is the fluctuation frequency, φ is the phase,
ψ0 is the offset, and the bias harmonic signal is in the parameter unknown state.

�d (t) = η (x, t) satisfies:

�d (t) = ‖η (x, t)‖ ≤ κ (7)

The bias harmonic signal can be equivalent to a third-order external system, d∗ (t) can be
formulated by external linear system [34]:{ ·

ω (t) = Mω (t)
d (t) = Qω (t)

(8)

where ω (t) ∈ R3×1, Q ∈ R1×3, M ∈ R3×3, and M, Q can be expressed as:

M =
⎡⎣0 1 0

0 0 1
0 −
 0

⎤⎦ , Q = [
1 0 0

]
(9)

Most of the current work needs to estimate the system state and signal parameters information
in Eq. (8) simultaneously, which will increase the operation and reduce the convergence speed of
the estimation. On the contrary, in the proposed tension fluctuation observation structure, the
reconstruction d∗ (t) only needs to estimate one parameter, which also dramatically improves the
compensation efficiency of the system disturbance.

3 Design of Fluctuation Reconstructor

This section describes the nominal model of the controlled system for cases where the frequency
deviation harmonic signal is unknown. An inverse filter is then designed to stimulate signal features,
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and a frequency generator is used to estimate tension fluctuation frequency. Further, the fluctuation
signal is reconstructed using a third-order auxiliary filter based on the estimated frequency informa-
tion. Finally, feedforward compensation is implemented for practical. Fig. 3 gives the overall structure
of proposed method. The design of the TPFOPID controller is described in the next section.

Figure 3: The proposed control architecture block diagram

The tension fluctuation observer consists of three parts: inverse filter, third-order auxiliary filter
and frequency generator. The control input is defined as u = uTP − d̂∗, where uTP is the output of
the TPFOPID controller and d̂∗ is the estimated bias harmonic signal;

∼
y is the difference between the

controlled system tension output y and the nominal model output yn. r is system reference input.

We can get the error equation transfer function from d to
∼
y:

Gd
∼
y (s) =

∼
y
d

= Gk (s)
1 + L0 · Gk (s)

= b0

a2s2 + a1s + b0 · L0

(10)

(1) Compared with other disturbance rejection methods, it only needs to use the disturbance
characteristics without estimating the disturbance state, which avoids the conservatism of the design.

(2) The tension fluctuation observer can be well combined with the designed time-varying
parameter fractional order PID controller to control the controlled system, which can realize the
independence of the observer and the controller.

(3) It can be applied to fractional order control systems to solve the problem of disturbance
estimation and compensation in such nonlinear systems. At the same time, the rejection of a class
of biased sinusoidal disturbances with unknown frequencies in the tension system is realized, and the
large-scale asymptotic stability of the system is analyzed by using uniform ultimate boundedness.

3.1 Reconstruction Signal
The inverse filter is designed to excite the tension fluctuation characteristics. The equivalent input

tension compensation form is derived by introducing the reconstructed fluctuation signal.

The inverse filter is constructed by using G−1
0 (s) and n first-order inertial links in series. The inverse

filter can be described as:
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H (s) = a2s2 + a1s + a0 + b0 · L0

b0 · ∏n

i=1 (s + mi)
(11)

where n is the minimum integer order such that the H (s) function holds.

According to Eq. (11), ηi(s), (1 ≤ i ≤ n) are defined as:

η1 (s) = η2 (s)
s + m1

, ηi (s) = ηi+1 (s)
s + mi

, ηn (s) = d (s)
s + mn

(12)

From Eq. (12), we can obtain the relationship in time domain:
·
η1 (t) = −m1η1 (t) + η2 (t)
·
ηi (t) = −miηi (t) + ηi+1 (t)
·
ηn (t) = −mnηn (t) + d (t) (13)

where 1 ≤ i ≤ n, ηi (t) are the inverse Laplace transform of ηi (s). mi is the undetermined parameter
to be designed; ηi(t), (1 ≤ i ≤ n) is a set of cascade relationship of unmeasurable signal. ηn (t) will
converge to the harmonic signal gradually with frequency ωc. For simplicity, it can be expressed as:

ηi (t) = d∗
i (t) + �di (t) + εi (t) (14)

The noise signal �di (t) (1 ≤ i ≤ n) is equivalent bounded disturbance. According to Fig. 2 and
Eq. (12), we can see that �di (1 ≤ i ≤ n) and �d satisfy the relationship of Eq. (15):

�di (s) = �di+1 (s)
s + mi

, (i = 1, 2, . . . , n − 1)

�dn (s) = �d (s)
s + mn

(15)

The decay term obeys
·
εn (t) = −mnεn (t) (16)

According to the above analysis, the error signal
∼
y through the inverse filter contains signal

characteristics. Therefore, ηi, (2 ≤ i ≤ n) can be decomposed into bias harmonic signal, equivalent
bounded noise and decay term.

Similarly, we can see that η1 (t) also tracks the bias sine curve with frequency ωc. Next, a third-order
auxiliary filter is introduced to estimate the key parameter information 
 = ω2

c by using η1 (t).

3.2 Tension Fluctuation Observer Design
Under the framework of the tension fluctuation observer, the output signal of the inverse filter

η1 (t) is reconstructed n times to obtain the estimated value of the bias harmonic signal.

The structure of the third-order auxiliary filter is shown in Fig. 4. For the convenience of
analysis, d̂∗

i+1 (1 ≤ i ≤ n) in Fig. 4 is defined as the estimated value of the bias harmonic reconstruction
signal, d̂∗

n+1 is the estimated value of the input tension fluctuation, g2i, g1i (1 ≤ i ≤ n) is an optional
positive scalar, Ki1Ki2Ki3 (1 ≤ i ≤ n) is the undetermined coefficient, μi1(s), μi2(s), μi3 (s) (1 ≤ i ≤ n) is
the internal signal of the tension fluctuation observer, which can be described as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μi1 (s) = 1
s2 + g2is + g1i

ηi (s)

μi2 (s) = s
s2 + g2is + g1i

ηi (s)

μi3 (s) = s2

s2 + g2is + g1i

ηi (s)

(17)

Figure 4: Third-order auxiliary filter structure diagram

From Eq. (17):
··
μi1 (t) = −g2i

·
μi1 (t) − g1iμi1 (t) + ηi (t)

··
μi2 (t) = −g2i

·
μi2 (t) − g1iμi2 (t) + ·

ηi (t)
··
μi3 (t) = −g2i

·
μi3 (t) − g1iμi3 (t) + ··

ηi (t)
·
μi1 (t) = μi2 (t)
·
μi2 (t) = μi3 (t) (18)

where μi1(t), μi2(t), μi3 (t) are Laplace transformed into μi1(s), μi2(s), μi3 (s). Combined with Eq. (13),
we can get:
·
μi3 (t) = ··

μi2 (t)

= −g2i

·
μi2 (t) − g1iμi2 (t) + ·

ηi (t)

= −g2i

(
−g2i

·
μi1 (t) − g1iμi1 (t) + ηi (t)

)
− g1iμi2 (t) + ·

ηi (t)

= g1ig2iμi1 (t) + (
g2

2i − g1i

)
μi2 (t) − g2iηi (t) + ·

ηi (t)

= g1ig2iμi1 (t) + (
g2

2i − g1i

)
μi2 (t) − g2iηi (t) − miηi (t) + ηi+1 (t)

= g1ig2iμi1 (t) + (
g2

2i − g1i

)
μi2 (t) − (g2i + mi)

( ··
μi1 (t) + g2i

·
μi1 (t) + giμi1 (t)

)
+ ηi+1 (t)

= −mig1iμi1 (t) − (g1i + mig2i) μi2 (t) − (mi + g2i) μi3 (t) + ηi+1 (t) (19)

Theorem 1. If there exists dynamics μi1(t), μi2(t), μi3 (t) (1 ≤ i ≤ n) satisfying Eq. (19). The bias
harmonic reconstruction signal d∗

i+1 (t) (1 ≤ i ≤ n − 1) can be described as:

d∗
i+1 (t) = ζ T

i μi (t) + ζ T
i δi (t) (20)
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ζ1 =
⎡⎣K11

K12

K13

⎤⎦ =
⎡⎣ m1g1

g1 + m1g2 − 


m1 + g2

⎤⎦ , μi (t) =
⎡⎣μi1 (t)

μi2 (t)
μi3 (t)

⎤⎦ (21)

And 
 = ω2, and δi (t) (1 ≤ i ≤ n) obeys
·
δi (t) = Biδi (t) − D (εi+1 + �di+1) (22)

Bi =
⎡⎣ 0 1 0

0 0 1
−m1g1 −g1 − m1g2 −m1 − g2

⎤⎦ , D =
⎡⎣0

0
1

⎤⎦ (23)

Proof. According to Theorem 1 in [28], there exists vector
∨
μi (t) ∈ R3×1 satisfying:

·∨
μ (t) = B

∨
μ (t) + Dd∗ (t) (24)

The bias harmonic signal d∗
i+1 (t) can be denoted as:

d∗
i+1 (t) = ζ T

i

∨
μi (t) + ζ T

i

∨
δi (t) (25)

where
∨
δ (t) satisfies:

·∨
δ (t) = B

∨
δ (t) (26)

Thus, the bias harmonic reconstruction signal is expressed as follows:

d∗
i+1 (t) = ∨

μ (t)T
ζ + ζ T

∨
δ (t)

=
( ∨
μ (t) − μ (t) + μ (t)

)T

ζ + ζ T
∨
δ (t)

= μ (t)T
ζ + ζ T

∨
δ (t) + ζ T

( ∨
μ (t) − μ (t)

)
(27)

where,

μ (t) = [
μi1 (t) μi2 (t) μi3 (t)

]T
(28)

According to Eqs. (14), (18), (19), (24) and (26) it follows that:⎧⎪⎪⎨⎪⎪⎩
·∨
μ (t) − ·

μ (t) = B
( ∨
μ (t) − μ (t)

)
− Dεi+1 − D�di+1

·∨
μ (t) − ·

μ (t) +
·∨
δ (t) = B

(
∨
μ (t) − μ (t) + ∨

δ (t)
)

− Dεi+1 − D�di+1

(29)

Combining with Eqs. (23) and (28), it can be seen that Eq. (27) upholds by introducing δ (t) =
∨
μ (t) − μ (t) + ∨

δ (t) into Eq. (20).

3.3 Tension Fluctuation Information Estimation
This section constructed a frequency generator to track the unknown constant scalar 
 and

estimate the frequency of the biased harmonic signal. Combining Eqs. (14), (18), (19) and (20), we
have:
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⎧⎪⎨⎪⎩
·
μ11 (t) = μ12 (t)
·
μ12 (t) = μ13 (t)
·
μ13 (t) = −
μ12 (t) + ζ T

1 δ1 (t) + �d2 (t) + ε2 (t)
(30)

Theorem 2. The reconstruction signal d∗
i+1 (t) is obtained according to 
 . Correspondingly,

consider the designed observer:⎧⎨⎩
∧

 (t) = z (t) + p (t)
·
z (t) = −αμ11 (t) μ2

12 (t)
∧

 (t) + αμ2

12 (t) μ13 (t) + αμ11 (t) μ2
13 (t)

p (t) = −αμ11 (t) μ12 (t) μ13 (t)
(31)

where α > 0, is a given constant value.

From Eqs. (30) and (31), the estimation error:
·∼


 (t) = −αμ11 (t) μ2
12 (t) 
̃ (t) + αμ11 (t) μ2

12 (t)
(
ζ T

i δi (t) + �dn (t) + εn (t)
)

We could see that if there is no bounded noise �d (t), the estimation error 
̃ (t) is asymptotically
stable. So μ11(t), μ12(t), μ13 (t) are essentially stable and converges to a bias harmonic curve with
frequency 
 .

According to Eq. (20), the estimation forms of reconstruction signal
∧

d∗
n (t) can be given by:

∧
d∗

n (t) = μ(n−1)1 (t) mg1 + μ(n−1)2 (t) (g1 + mg2 − 
) + μ(n−1)3 (t) (m + g2) (32)

After obtaining the estimated reconstruction signal
∧

d∗
i+1 (t), with Eqs. (13) and (14) obtained the

estimated reconstruction d∗ (t) is carried out and described in the next section.

3.4 Fluctuation Reconstructor and Stability
In the existing methods of signal estimation, due to the uncertain tension fluctuation characteris-

tics, the equivalent state of d∗ (t) needs to be constructed. However, this could be simplified in proposed
method of this paper.

As shown in Fig. 3, the tension fluctuation reconstructor provides an alternative form of equiva-
lent input signal based on reconstructed tension fluctuation. From the Eqs. (13), (14), (15) and (16),
we can see

d∗ (t) = ·
ηn (t) + mnηn (t)

= mn

(
d∗

n (t) + �dn (t) + εn (t)
) +

·
d∗

n (t) + �
·
dn (t) + ·

εn (t)

= mnd∗
n (t) +

·
d∗

n (t) (33)

The next task of the tension fluctuation observer is to use the estimator d∗
n (t) instead of d∗ (t).

From Eqs. (18), (19) and (20), we can directly derive the derivative of d∗
n (t) as:

·
d∗

n (t) = ζ TMμ (t) + ζ T
·
δ (t) + ·

εn (t)

= ζ TMμ (t) + ζ TBδ (t) − mnεn (t) (34)
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Furthermore, the input signal d∗ (t) can be redescribed as:

d∗ (t) = ·
ηn (t) + mnηn (t)

= ζ T
n Mμn (t) + ζ T

n Bδ (t) − mnεn (t) + mnd∗
n (t) (35)

We obtain the alternative form of d∗ (t), which depends on the unknown parameters. Applying
Eqs. (32) to (35), we can reconstruct the compensation signal of tension fluctuation, as shown in
Theorem 3.

Theorem 3. Applying the estimation rate of 
 , for parameters γ1,2 > 0 and α > 0, if there exists P >

0, ρ0 > 0 satisfying the following inequality, the estimation error of the bias harmonic reconstruction
signal is uniformly bounded:

Γ =
⎡⎣−2α αζ

T
α

αζ γ2

(
BTP + PB

) −γ2PD
α −γ2DTPT −2m2γ1

⎤⎦ < 0 (36)

where ζ is upper bound of ζ , then reconstruct input signal d∗ (t) as:
∧

d∗
n+1 (t) = mnmn−1g1μ(n−1)1 (t) + mn

(
g1 + mn−1g2 − ∧


 (t)
)

μ(n−1)2 (t) + mn (g2 + mn−1) μ(n−1)3 (t)

+ mn−1g1μ(n−1)2 (t) +
(

g1 + mn−1g2 − ∧

 (t)

)
μ(n−1)3 (t) − ∧


 (t) (g2 + mn−1) μ(n−1)2 (t) (37)

Further, when time t → +∞, the error dynamic d∗ (t) −
∧

d∗
n+1 (t) converges to zero.

Proof. Denoting bias harmonic signal estimation error:

d̃∗ (t) = d∗ (t) −
∧

d∗
n+1 (t)

= −mn
̃ (t) μ(n−1)2 (t) − 
̃ (t) μ(n−1)3 (t) − (g2 + mn−1) 
̃ (t) μ(n−1)2 (t)

+ ζ TBδ (t) − mnεn (t) + ζ Tδ (t) (38)

From Eqs. (31) and (32), we can get:
·∧


 (t) = αμ11 (t) μ2
12 (t) 
̃ (t) − αμ11 (t) μ2

12 (t)
(
ζ T

i δi (t) + �dn (t) + εn (t)
)

(39)

then the estimation error:
·∼


 (t) = −αμ11 (t) μ2
12 (t) 
̃ (t) + αμ11 (t) μ2

12 (t)
(
ζ T

i δi (t) + �dn (t) + εn (t)
)

(40)

Define the following Lyapunov function:

V (t) = 
̃ T (t) 
̃ (t) + γ1ε
T
n (t) εn (t) + γ2δ

T (t) Pδ (t) (41)
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where, P, γ1,2 > 0, ρ0 > 0, then from Eqs. (16), (22) and (40):
·

V (t) = −2α
∥∥μ0.5

11 (t) μ12 (t) 
̃ (t)
∥∥2 + 2αεn (t) μ11 (t) μ2

12 (t) 
̃ (t)

+ 2αδT (t) ζμ11 (t) μ2
12 (t) 
̃ (t) + γ2δ

T (t)
(
BTP + PB

)
δ (t)

− 2γ2δ
T (t) PDεn (t) − 2m2γ1 ‖εn (t)‖2 − γ2Δdi+1DTPδ (t)

− γ2δ
T (t) PDΔdi+1

=
⎡⎣μ0.5

11 (t) μ12 (t) 
̃ (t)
δ (t)
εn (t)

⎤⎦T

Γ

⎡⎣μ0.5
11 (t) μ12 (t) 
̃ (t)

δ (t)
εn (t)

⎤⎦ − 2γ2δ
T (t) PDΔdi+1

≤ −ρ0

∥∥∥∥∥∥
μ0.5

11 (t) μ12 (t) 
̃ (t)
δ (t)
εn (t)

∥∥∥∥∥∥
2

+ 2γ2μ
∥∥δTPD

∥∥ (42)

where, Γ =
⎡⎣−2α αζ T α

αζ γ2

(
BTP + PB

) −γ2PD
α −γ2DTPT −2m2γ1

⎤⎦ < 0,
γ2

ρ0

≤ 1
μ

· ‖εn‖
‖P‖ · ‖D‖

In consideration that ζ is upper bound of ζ , Γ < 0 can be guaranteed by Eq. (36). The above

analysis can prove that 
̃ (t), εn (t) and δ (t) are bounded, and we can test that
··

V (t) is also bounded.

According to the Eq. (38), d̃∗ (t) can converge to zero, which shows that Theorem 4 is supported.

With the above design, the influence of the unknown frequency bias harmonic curve d∗ (t) can be
directly eliminated, and the attenuation of the remaining bounded disturbance �d (t) can be realized
by the controller design in the next section.

For the uncertainty of the biased harmonic signal, we derive the derivative of 
 is bounded to
prove that our method is effective. It is easy to see from the simulation that the frequency information
has good estimation ability. According to Eq. (42), it can be obtained that the uniform ultimate
boundedness of the biased harmonic signal d̃∗ (t) can be guaranteed under the condition of Eq. (36).
At the same time, we give the relationship between parameters α, m1, m2, g1, and the convergence
performance of the 
̃ , d̃∗. By reasonably selecting α and B, it can avoid the initial value of the frequency
parameter estimation value being too large to obtain faster convergence.

4 Design of the Proposed TPFOPID Controller

Given the above observer design, the new controller will be further introduced. In this section, an
improved fraction-order PID controller is incorporated into the framework of tension fluctuation
observer. A time-varying parameters fractional-order PID controller (TPFOPID) is realized to
improve the system control performance and attenuate the bounded noise.

4.1 TPFOPID Controller Design
The control strategy is defined as:

uTP (t) = Kp · e1 (t) + Ki · D−λe0 (t) + Kd · Dμe2 (t) (43)
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TPFOPID reference the parameter self-coupling control strategy method [31], the parametersKp,
Ki and Kd can be defined as:⎧⎪⎨⎪⎩

Kp = ∨
a · f 2 (t)

Ki =
∨
b · f 3 (t)

Kd = ∨
c · f (t)

(44)

where
∨
a,

∨
b,

∨
c are adjustable parameters,

∨
b ∈ [0, 1] ,

∨
a ∈ [1, 10] ,

∨
c ∈ [1, 100].

According to [16], an adaptive regulator f (t) is defined:

f (t) = τ · (
1 − e−t

)
(45)

The parameter τ is determined by the time characteristics of the controlled system. The general
value range is 1 < τ < 100, and the faster the system responds, the value is larger. By assigning
the gain parameters to time-varying characteristics, the system can have a large setting margin to
achieve large-scale stability. However, when the adaptive regulator in the variable parameters is too
large, it is greatly affected by the proportional integral control force. While improving the response
speed and anti-disturbance ability of the system, it will also cause overshoot, which makes the tension
system vibrate obviously and not conducive to the operation of the actual actuator. When the adaptive
regulator is too small, it will affect the response speed and anti-disturbance ability of the system,
resulting in unstable tension output.

Theorem 4. When the adjustable parameters in the system controller satisfy
∨
a

∨
c − a2

∨
b > 0, the

closed-loop system is robustly stable in a large range.

Proof. When the saturation of the controller integrator is limited, 0 <
∨
b ≤ 1 can be set, and the

control law is:

uTP (t) = ∨
a · f 2 (t) · e1 (t) +

∨
b · f 3 (t) · e0 (t) + ∨

c · f (t) · e2 (t) (46)

e1 (t) is the error of system input and output, e0 (t) is the error integral, e2 (t) is the error differential.

For the tension control system Eq. (3):⎧⎪⎪⎨⎪⎪⎩
·

x1 = x2

·
x2 = −a0

a2

x1 − a1

a2

x2 + 1
a2

(
u + d̃∗ + Δd

)
y = b0x1

(47)

The controlled error system can be established by bringing Eqs. (46) into (47):⎧⎪⎪⎨⎪⎪⎩
·

e0 = e1
·

e1 = e2

·
e2 = a1

a2

·
y + a0

a2

y − 1
a2

(
∨
a · f 2 (t) · e1 +

∨
b · f 3 (t) · e0 + ∨

c · f (t) · e2

) (48)

The Laplace change of Eq. (48) can be obtained:

E (s) = a1s2 + a0s

a2s3 + ∨
c · f (t) · s2 + ∨

a · f 2 (t) · s +
∨
b · f 3 (t)

Y (s) (49)
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The characteristic polynomial of the transfer function of the closed-loop system under the error
state can be defined as follows:

A (s) = a2s3 + ∨
c · f (t) · s2 + ∨

a · f 2 (t) · s +
∨
b · f 3 (t) (50)

If to ensure that A (s) is a Hurwitz polynomial if and only if the first column elements of the Routh
matrix of A (s) are all positive definite, and the first column elements are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A1 = a2

A2 = ∨
cf (t)

A3 =
∨
cf (t) × ∨

af 2 (t) − a2 ×
∨
bf 3 (t)

∨
cf (t)

= 1
∨
c

(
∨
a

∨
c − a2

∨
b
)

f 2 (t)

A4 =
∨
bf 3 (t)

(51)

It can be seen that the necessary and sufficient condition for the Eq. (50) to be a Hurwitz
polynomial. The coefficients of the closed-loop characteristic equation of the system are positive, and
the relationship in Eq. (52) is satisfied.

a2 > 0,
∨
a

∨
c − a2

∨
b > 0 (52)

When the integral control force is under the condition of 0 <
∨
b ≤ 1 limiting, the necessary

and sufficient conditions of Hurwitz can be satisfied, which ensures that the poles of the system
characteristic polynomial are in the left half plane of the S domain. The closed-loop system is robust
and stable in a wide range under the controller. The designed TPFOPID controller aims to improve
the system’s convergence and tracking performance and can effectively reduce the bounded noise in
the tension fluctuation signal.

4.2 Noisy Scenario
It can be seen from the previous derivation that the tension fluctuation observer effectively

compensates and rejects the harmonic disturbance in the tension system, and the variance of the
feedback σ 2

yTHOb and the feedforward σ 2
yTHOf obtained under ideal conditions approaches zero. However,

the actual non-optimal environment additional output variance σ 2
y0

.

The output variance of the actual tension system:

σ 2
y = σ 2

yTHOb + σ 2
yTHOf + σ 2

y0
+ σ 2

Δd (53)

We consider the scenario where random noise disturbance destroys the system. It is assumed that
the bounded noise in the system obeys the Gaussian distribution and satisfies �d ∼ N (0, ρ2). yd

represents the output under noise disturbance, the actual system output y = yd − �d. yyTP denotes the
output of the controller. The residual noise of the controller after noise attenuation, that is, the error
χ between yyTP and y, can be expressed as: χ = yyTP − y.

∧
y represents the predicted output after passing through the tension system. It is assumed that the

error between the predicted output
∧
y based on the tension system and the actual output y of the system

obeys �dc ∼ N (0, ρ1). And y = ∧
y − �dc.
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The likelihood functions of y based on
∧
y and yd are:

L
(

y|∧
y
)

= 1√
2πρ1

exp
[
− 1

2ρ2
1

(∧
y − y

)2
]

(54)

L (y|yd) = 1√
2πρ2

exp
[
− 1

2ρ2
2

(yd − y)
2

]
(55)

Using the Bayes formula, the posterior distribution of y is expressed as:

p
(

y|∧
y, yd

)
∝ L

(
y|∧

y
)

L (y|yd) p (y) = 1√
2πρ1ρ2

exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣(yd − y)
2

ρ2
2

+
(∧

y − y
)2

ρ2
1

⎤⎥⎦
⎫⎪⎬⎪⎭ (56)

Finally, we use the maximum likelihood method to obtain the estimated value of the system
output:

yyTP = ∧
y + (

1 + ρ2
2ρ

−2
1

)−1
(

yd − ∧
y
)

(57)

From Eq. (56), we obtain:

E
(
χ 2

) = (
ρ−2

1 + ρ−2
2

)−1
< min

(
ρ2

1 , ρ2
2

)
(58)

The output variance under the controller:

σ 2
yTP = σ 2

yTHOb + σ 2
yTHOf + σ 2

y0
+ σ 2

χ
(59)

According to Eq. (58), σ 2
χ

< σ 2
Δd, so we get σ 2

yTP < σ 2
y . Further analysis shows that the TPFOPIFD

controller reduces the output variance of the tension system and attenuates the bounded noise signal
to a certain extent. We know that random noise can not be completely eliminated, and the degree of
noise attenuation is the need for further improvement in our future work.

5 Numerical Simulation

Ultimately, various simulations are carried out to prove the effectiveness of the proposed algo-
rithm. The simulation is carried out on the MATLAB platform using SIMULINK and S function
editor.

5.1 Simulation for Tension Fluctuation
To verify the effectiveness of proposed method to deal with tension fluctuation, simulation

considering different control target angles. The tension control system of Eq. (53) is taken as:

RJ
··
θ + (

Rβ + KeKf

) ·
θ = Kf Kb (u + d) (60)

where J = 0.00105, Kb = 8.33, Kf = 1.43, Ke = 0.8256, β = 0.207, R = 11.95. The Eq. (53) is
converted into the second-order system form of Eq. (1), and the coefficient matrix is obtained:

A =
[

0 1
0 −291

]
, C =

[
0

949.34

]
, F = [

1 0
]

(61)

According to Eq. (10), the gain L0 = 19.18.
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The transfer function from d to ỹ is:

Gd
∼
y (s) = Gk (s)

1 + H · Gk (s)
= 949.34

s2 + 291s + 18227
(62)

Therefore, according to Eq. (11), the low-pass filter can be designed as follows:

H (s) = s2 + 291s + 18227
949.34 · (s + m1) (s + m2)

(63)

Case 1: d (t) = d∗ (t) = 200 + 100 sin
(

10t − π

4

)
Next, the disturbance observer parameters are selected as: m1 = m2 = 10, g11 = g12 = g1 = 100,

g21 = g22 = g2 = 20, α = 5000; Considering the low-frequency disturbance rejection, the parameters
in the matrix in Eq. (23) are selected as:

B =
⎡⎣ 0 1 0

0 0 1
−1000 −300 −30

⎤⎦ (64)

Case 1 uses the traditional PID controller as the nominal controller, and its parameters are:[
Kp Ki Kd

] = [
5 9 0.1

]
.

Fig. 5 shows the estimation performance using the proposed observer. The estimation error and
disturbance error of � can converge to zero and the error is very small.

Figure 5: System performance using proposed algorithm
(

d∗ (t) = 200 + 100 sin
(

10t − π

4

))
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Case 2: d (t) = d∗ (t) = 500 + 1000 sin
(

20t − π

4

)
+ Δd

The random noise disturbance Δd amplitude is 100, and then the disturbance observer parameters
are selected as: m1 = m2 = 10, g11 = g12 = g1 = 100, g21 = g22 = g2 = 20, α = 50000

Considering the high-frequency disturbance rejection, the parameters in the matrix B in Eq. (23)
are selected as:

B =
⎡⎣ 0 1 0

0 0 1
−1000 −300 −30

⎤⎦ (65)

Case 2 uses the TPFOPID controller as the nominal controller, and its parameters are:
∨
a = 0.6,

∨
b =

1,
∨
c = 2.

uTP (s) = Kp + Ki

s1.1
+ Kds0.2 (66)⎧⎪⎨⎪⎩

Kp = 1.1 · (30 · (1 − e−t))
2

Ki = 0.9 · (30 · (1 − e−t))
3

Kd = 2 · (30 · (1 − e−t))

(67)

Fig. 6 shows the control performance using the proposed scheme. The estimation error and
disturbance error of � can converge at 2 s, and the estimation error is less than 60.

Figure 6: (Continued)
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Figure 6: System performance using proposed algorithm
(

d (t) = 500 + 1000 sin
(

20t − π

4

)
+ Δd

)
In Fig. 6b, there are some fluctuations in the error value, which is caused by bounded noise, so the

fluctuation will show irregularity and small error. The previous stability analysis has shown that under
the influence of bounded noise, the observer is uniformly ultimately bounded when estimating the
characteristic parameters of the unknown state, which satisfies the large-scale asymptotic convergence
and stability. Therefore, computer simulation shows that the robustness to unexpected noise Δd is safe,
which also confirms this conclusion.

5.2 Simulation for Control Performance Comparison
A comparative simulation of the disturbance estimation error is conducted in order to show the

properties of the proposed tension fluctuation observer. In [35], the control parameters need to be
solved first, and then the observation parameters are solved to balance the filtering performance and
dynamic performance, but this also affects the estimation convergence speed, as shown in Fig. 7.

Figure 7: Comparison of the estimation error

In the actual winding process, according to the process requirements, the winding tension required
for different winding segments is different, and in the continuous winding process, the change of the
target tension is instantaneous. In order to intuitively highlight the control effect of the proposed
method, we tested the traditional PID controller [10], fuzzy controller [36] and ADRC controller [37]
in tension fluctuation control, as shown in Fig. 8. Input signals, sampled with a period of Ts = 10−6s, is
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affected by the composite disturbance effect received: bias harmonic signal 200 + 1000 sin
(

10t − π

4

)
and bounded noise with mean value of 10 and standard deviation of 0.1. And the system has tension
mutation behavior at 10 s and 20 s.

Figure 8: Control performance comparison under tension fluctuation

The first red line represents a typical PID controller. This approach has a simple structure, but the
system’s recovery capability is lagging, and the stability and robustness of the system are inadequate.

The second orange line represents the active disturbance rejection technique, which is highly
adaptive to complex perturbations and can ensure a certain robustness and anti-disturbance ability.
However, when the target value of the system changes abruptly, the controller has a long adjustment
time, which is easy to cause process errors.

The third cyan line represents a fuzzy controller, which can deal with the nonlinear and time-
varying problems in the tension system and can significantly suppress tension fluctuations. However,
the complexity and calculation of fuzzy reasoning are enormous, and the control accuracy still needs
to be improved.

The TFO + TPFOPID control method proposed in this paper is shown in the blue line. Compared
with other methods, this method can effectively reject and attenuate the bias harmonic signals and
noise in the multi-source tension fluctuation, ensuring lower tension fluctuation rate and better
robustness.

However, it should be noted that the control force of the TPFOPID needs to be improved by
adjustable parameters. The frequency estimation speed of the TFO is related to the constant value α.
The tuning must be carefully done in order to balance the relationship between the estimated response
and the filtering action.

6 Conclusion

This paper studies the constant tension output control in the fiber winding process, and a tension
fluctuation rejection strategy based on feedforward compensation is proposed. A compound control
method combining TFO and TPFOPID is designed. The TFO is devised as a frequency generator
and a third-order auxiliary filter to estimate and feedforward compensate the unknown state periodic
signal in the tension fluctuation. Based on the time-varying parameter coupling theory, a TPFOPID
controller is designed to attenuate noise disturbance and improve system robustness. Finally, its
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stability is proved by the Lyapunov stability theory. Numerical simulation verifies the effectiveness of
the proposed method in constant tension control. In the following work, we will implant the proposed
method into the platform to further study its effectiveness.

The content of this paper provides a theoretical basis for future research and exploration in
practice, but the following discussion still needs to be made. The tension fluctuation generated by
the fiber winding process is a complex signal formed by uncertain perturbations of the external
environment and internal model. The control scheme proposed in this paper is based on analyzing the
actual winding tension data, fitting the tension fluctuation curve, and extracting the components of
the perturbation signal. The constant tension control objective is realized by designing TFO observer
and TPFOPID controller. However, the complexity of constant tension control in natural systems
mainly stems from the diversity and difficulty in characterizing the disturbance components. During
the realization of the proposed control scheme, it may face the problems of inaccurate fitting of
different signals, the rejection of the actual disturbance signals still with errors, and the challenges of
compatibility and reliability of the proposed control strategy in practical control system applications.

In the actual implementation stage, some problems still need to be considered: for example, the
mechanical structure defects of the existing equipment and the low sensitivity of the sensors make
it challenging to realize high-precision control; the existing technology and energy power make it
impossible for the mechanical devices to respond quickly in real-time. Finally, our work provides a
control scheme and theoretical basis for solving the tension fluctuation suppression problem in natural
winding systems. The next step can be combined with DSPACE and other tools to build a semi-physical
simulation platform, which can help us to realize the proposed control scheme in the actual winding
equipment.
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