
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.044697

ARTICLE

Complex Decision Modeling Framework with Fairly Operators and
Quaternion Numbers under Intuitionistic Fuzzy Rough Context

Nadeem Salamat1, Muhammad Kamran1,2,*, Shahzaib Ashraf1, Manal Elzain Mohammed Abdulla3,
Rashad Ismail3 and Mohammed M. Al-Shamiri3

1Institute of Mathematics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
2Department of Mathematics, Thal University Bhakkar, Punjab, 30000, Pakistan
3Department of Mathematics, Faculty of Science and Arts, King Khalid University, Muhayl Assir, 61913, Saudi Arabia

*Corresponding Author: Muhammad Kamran. Email: kamrankfueit@gmail.com

Received: 06 August 2023 Accepted: 09 November 2023 Published: 29 January 2024

ABSTRACT

The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty
while maintaining a balance between high accuracy, accessibility, and cost-effectiveness. This paper investigates
the potential applications of intuitionistic fuzzy sets (IFS) with rough sets in the context of sparse data. When it
comes to capture uncertain information emanating from both upper and lower approximations, these intuitionistic
fuzzy rough numbers (IFRNs) are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets, respectively.
We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their
underlying properties. We present numerous impartial laws that incorporate the idea of proportionate dispersion
in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these
principles. These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation
operator (IFRWFA) and intuitionistic fuzzy rough ordered weighted fairly aggregation operator (IFRFOWA).
These operators successfully adjust to membership and non-membership categories with fairness and subtlety.
We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multi-
attribute decision-making field. We use the intuitionistic fuzzy rough environment’s architecture to create a novel
strategy in situation involving several decision-makers and non-weighted data. Additionally, we developed a novel
technique by combining the IFSs with quaternion numbers. We establish a unique connection between alternatives
and qualities by using intuitionistic fuzzy quaternion numbers (IFQNs). With the help of this framework, we
can simulate uncertainty in real-world situations and address a number of decision-making problems. Using the
examples we have released, we offer a sophisticated and systematically constructed illustrative scenario that is
intricately woven with the complexity of medical evaluation in order to thoroughly assess the relevance and efficacy
of the suggested methodology.
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1 Introduction

The main notion of the multi-attribute decision-making (MADM) method, which is a modified
form of the simple decision-making scenario, is a fantastic and dominant strategy for illuminating the
valuable opinion from a collection of preferences. We analyze or encounter several decision-making
issues in daily life, and one of the most important things we can do is acquire knowledge of how
to make good, excellent, or outstanding decisions [1,2]. Typically, the expert presents conventional
knowledge without assessing its level of ambiguity and uncertainty. While a logical method uses data
and facts to reach conclusions that are in line with science. Although emotional intelligence is an
excellent technique to make choices, it frequently functions best when the option is straightforward,
private, or urgent [3,4]. A more formal, systematic approach that involves both intuition and logical
reasoning is fuzzy set theory, which is often required for more complex judgments. The theory of fuzzy
set (FS) processing was introduced by Zadeh [5] in 1965 as a solution to such issues. For resolving
difficult and ambiguous information in many real-life scenarios, fuzzy information is one of the most
useful and realistic variations of classical data. Each component of a set is given a membership degree
(MD) in the real standard [0 1]. Atanassov [6] presented intuitionistic fuzzy set (IFS), which expands on
the concept of fuzzy sets and manages some key fuzzy data in multi-criteria decision making (MCDM)
[7,8]. For each part of a set, IFS determines the levels of MD and NMD. Pawlak was the one who first
put forth the idea of rough set (RS) theory [9,10]. An expansion of crisp set theory for the study
of intelligent systems with imperfect, ambiguous, or insufficient knowledge is RS theory [11,12]. RS
theory has drawn a lot of attention and enthusiasm from scholars over the past few years. There are
many concepts that integrate the idea of RSs, including fuzzy rough sets (FRSs) [13], generalised fuzzy
rough sets [14], ambiguous rough sets, rough grey sets, and intuitionistic fuzzy rough sets (IFRSs)
[15,16]. Recent studies have demonstrated how these theories may be brought together to create a
framework that is more adaptable and expressive for modeling and processing missing information in
data systems. In the meantime, fuzzy sets have been expanded in an appealing way by intuitionistic
fuzzy sets, which give them additional properties to reflect uncertainty (on top of vagueness) [17].
Similar to rough set theory, fuzzy set theory deals with the issue of handling incomplete knowledge.
Regrettably, the multiple adhoc definitions of the term ”intuitionistic fuzzy rough set” that have since
been proposed are a far cry from the original goals of rough set theory [18].

Researchers have also developed a number of novel theory that focuses on IFSs, including simi-
larity measures and aggregation operators (AOs). On the basis of IFSs, many authors [19] developed
multiple geometric AOs. Additionally, Naz et al. [20] introduced several average AOs built on IFSs.
Double domination on intuitionistic fuzzy (IF) graphs was first proposed by Nagoorgani et al. [21].
Xu was the pioneer in introducing weighted arithmetic (WA) operators based on intuitionistic fuzzy
numbers (IFNs) [22]. Subsequently, Xu and Yager [23,24] proposed the extended Bonferroni mean
(BM) operators and weighted geometric (WG) operators, both based on IFNs. Qin and Liu [25]
developed the weighted Maclaurin symmetric mean operator using IFNs. Additionally, Liu and Liu
[26] presented partitioned BM operators for intuitionistic uncertain language variables. Furthermore,
the extended MADM (Multiple Attribute Decision Making) method has been extensively discussed
with detailed illustrations of useful approaches such as the TOPSIS method for IFNs [27,28], the
triangular intuitionistic fuzzy-TODIM method [29,30], and the intuitionistic fuzzy PROMETHE II
method [31]. However, the restriction that the sum of membership degree (MD) and non-membership
degree (NMD) cannot exceed one limit of the applicability of IFS (Intuitionistic Fuzzy Sets). Decision-
makers and experts prefer more complex decision-making situations, making this condition less valid.
Due to its effectiveness as a general formal framework, IFS has received significant attention from
academics. Nguyen et al. [32] developed the exponentially similarity matrix for Pythagorean fuzzy sets
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(PFSs) and demonstrated their application in pattern identification and decision-making. However,
PFSs can only be implemented when the sum of the squares representing MD and NMD falls within
the range [0,1]. To address this challenge, it becomes necessary to define information expression
differently when the sum falls outside this range.

Smarandache first proposed the neutrosophic set (NS), an analytical framework and quantitative
tool for comprehending the origin, nature, and extent of neutralities [33]. It is a spiritual practice that
focuses on neutralities’ origins, nature, and scope as well as how they interact with other ideational
spectrums. The NS generalizes the ideas behind the classical set, fuzzy set, interval valued fuzzy set,
interval-valued IFS, paraconsistent set, dialetheist set, paradoxist set, and tautological set. A NS
is characterized by a truth membership function, indeterminacy membership function, and falsity
membership function where all functions are real standard or nonstandard elements from [0−, 1+] .
It will be difficult to apply NS in actual scientific and engineering contexts, despite the fact that it
philosophically generalizes the ideas of FS, IFS, and all existing structures. This idea is crucial in
many situations, such as information fusion, which integrates data from several sensors. In recent years,
engineering and other industries have mainly used neutrosophic sets to make decisions. A single-valued
neutrosophic set (SVNS), which can deal with inaccurate, ambiguous, and incompatible data issues,
was proposed by Wang et al. [34]. An SVNS, on the other hand, is an NS that enables us to depict
ambiguity, imprecision, incompleteness, and inconsistent behavior in the real world [35]. Contrarily,
SVNSs can be used in technical and scientific applications since SVNS theory is effective at modeling
ambiguous, imperfect, and inconsistent data [36–38]. The SVNS can easily capture the ambiguous
nature of subjective assessments, making it excellent for gathering vague, ambiguous, and inconsistent
data in multi criteria decision-making analysis [39]. All the above sets can handle the uncertainty in
real world issues but any set cannot treat the membership and non membership equally.

Previous AOs [40–44] have been proposed to handle MADM problems under fuzzy environments,
but few have addressed the unbiased treatment of MD and NMD. Consolidated values reported in
the literature [45–48] cannot be differentiated when a decision-maker compares both MD and NMD,
indicating favoritism in the verdict. Therefore, new neutral procedures for IFRSs (Intuitionistic Fuzzy
Rough Sets) are required to ensure equal treatment of information about members and non-members.
Through the idea of ”intuitionistic” membership functions, IFRN expands the traditional fuzzy-rough
framework. The IFRN contains two membership functions, one for a level of belongingness and a
separate function for the degree of non-belongingness, in contrast to standard fuzzy sets. A more
accurate portrayal of the ambiguity in real-world data is made possible by this dual perspective. To
achieve this, the concept of proportional distribution rules of MD and NMD is used to establish
two neutral or fair operations, enabling the evaluation of MD and NMD with true satisfaction in
the decision-making process. A thorough understanding of the human decision-making process is
essential to build a realistic model. This calls for the incorporation of fairness operators and a hybrid
idea, such as intuitionistic fuzzy rough set, into the decision-making paradigm. Normally, decision-
making involves weighing a range of options and standards. By placing a strong emphasis on the
relationship between these options and the specified criteria, we provide a fresh strategy in this work.
We use the quaternion function, that’s a key component of our technique, to clarify and codify the
relationship between options and criteria. This novel strategy provides a more organized and thorough
framework for decision-making, improving our capacity to make wise and effective decisions. Complex
numbers and non-commutative four-dimensional algebra are both generalized by quaternion numbers.
The concept of quaternion numbers and its applications to rotations were first published in 1840 by
Olinde Rodrigues et al. [49]. However, an Irish mathematician by the name of Sir William Rowan
Hamilton [50] independently made the discovery in 1843 and utilized it to research three-dimensional
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mechanics. A quaternion can be used to store each rotation in a 4-D coordinate system. The union
of three complex components and one real element is known as a quaternion. It also applies to a lot
more than just rotations. Rotations are better performed with quaternions than Euler angles, and the
gamble lock problem is resolved. In computer animation, quaternions are frequently used to represent
changes in the orientation of graphical elements. They offer a creative fix for issues like convenient
interpolation, gimbal lock, and instability that plagued early animated systems. In order to express
4-dimensional complex information, we apply the intuitionistic fuzzy information to establish the
relationship between intuitionistic fuzzy numbers and quaternion numbers. To assess the applicability
of the suggested strategy, an example of a medical diagnosis based on the suggested representations is
given. We can establish a connection between attributes and alternatives through this relationship.

Following the discussion above, we described the objectives of this study as follows:

• Although IFS and RS are merged, IFRS anticipates giving decision-makers additional space.

• IFS lacks the positive and negative approximation spaces that IFRS utilizes.

• The advance requirement that the sum (MD, NMD) must belong to [0, 1] is used by IFRS.

• To establish a few new neutral or fair functions that handle membership and non-membership
functions equally using the connectivity coefficient.

• Understanding the characteristics of weighted aggregation operators like intuitionistic fuzzy
rough fairly weighted aggregation (IFRFWA) and intuitionistic fuzzy rough fairly ordered
weighted aggregation (IFRFOWA). The level of expertise with evaluated substances that
IFRFWA and IFRFOWA AOs can incorporate for first evaluation is a quality that is lacking
in IFWA and IFWG aggregation operators.

• To design a decision-making process that uses the weighted aggregation operators stated above
to address multi-attribute decision-making issues with IFR data.

• We also use intuitionistic fuzzy data to determine how quaternion numbers and intuitionistic
fuzzy numbers relate to one another.

• An example of a medical diagnosis based on the suggested representations is provided to
demonstrate the strategy’s usefulness. Through this relationship, we can construct a link
between attributes and possibilities.

According to the following, this paper is structured:

Section 2 focuses exclusively on the evaluation of a few preliminary documents. In Section 3, we
describe the operators of the IF context and elucidate their fundamental characteristics. Section 4
provides a definition of the IFRFWA and IFRFOWA operators. Section 5 is intended to facilitate
multi-attribute group decision-making (MAGDM). In accordance with the suggested methodology,
which depicts the rating values of options on the characteristic in terms of IFR numbers, the best/most
acceptable option is determined by ranking the alternatives based on their IFR score values. A case
study with numerical examples for decision making is explained in Section 6. Relationship Model
between Alternatives and Attributes is given in Section 7. In Section 8, Discussion and Comparison
Analysis and positive aspects of the model are given. The conclusion can be found in Section 9.

2 Basic Concepts

We have discussed some of the key ideas related to IFSs in this section of the article. We will also
go over the fundamental concepts of FSs, IFSs, scoring functions (SFs), accuracy functions (AFs),
quaternion numbers (QNs), and IFQNs.
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Definition 2.1. (See [5]) A fuzzy set (FS) Z in δ is mathematically represented as:

Z = {〈�, TZ (�)〉 |� ∈ δ}, (1)

for each � ∈ δ, the MD TZ : δ → δ specifies the degree to which the element � ∈ Z, where TZ ∈ [0, 1] .

Definition 2.2. (See [6]) An intuitionistic fuzzy set (IFS) A in δ is mathematically represented as:

A = {〈�, T (�), F (�)〉 |� ∈ δ}, (2)

here � ∈ δ, T (�) is known as MD and F (�) is NMD for IFS A, where (T (�), F (�)) ∈ [0, 1], satisfying
0 ≤ (T (�) + F (�)) ≤ 1.

Definition 2.3. (See [51]) Assume that ξ is a (US) universal set and � is relation on ξ . A set valued
mapping is mathematically represented as:

�∗ : ξ → M(ξ) by �∗(ð) = {a ∈ ξ |(ð, a) ∈ �}, (3)

The element’s successor neighborhood with respect to the relation � is denoted by �∗(ð). The
pair (ξ , �) is commonly referred to as the “crisp space of resemblance”. For any set k ⊆ ξ , the lower
approximation (LA) and upper approximation (UA) with respect to the space of resemblance (ξ , �)

for this set are mathematically represented as follows:

�(k) = {ð ∈ ξ |�∗(ð) ⊆ k}; (4)

�(k) = {ð ∈ ξ |�∗(ð) ∩ k �= φ}. (5)

The pair
(�(k), �(k)

)
is called fuzzy RS where both �(k), �(k) : M(ξ) → M(ξ) are LA and UA

operators.

Definition 2.4. (See [52]) Assume that F =
{

(T, F),
(T, F)

}
is a IFRN. Then, SF and AF are

describe as:

Sc = 1
4

{
2 + T� + T� − F� − F�

}
, S ∈ [0, 1] (6)

Ac = 1
4

{
2 + T� + T� + F� + F�

}
, A ∈ [0, 1]. (7)

Definition 2.5. Assume R1 = 〈T1, F1〉 and R2 = 〈T2, F2〉 are two IFNs and ℵ, ℵ1, ℵ2 � 0 be the real
numbers, then we have,

• R1 ⊕ R2 = R2 ⊕ R1

• R1 ⊗ R2 = R2 ⊗ R1

• ℵ (R1 ⊕ R2) = (ℵR1) ⊕ (ℵR2)

• (R1 ⊗ R2)
ℵ = Rℵ

1 ⊗ Rℵ
2

• (ℵ1 + ℵ2) R1 = (ℵ1R1) ⊕ (ℵ2R2)

• Rℵ1+ℵ2
1 = Rℵ1

1 ⊗ Rℵ2
2

If TR1
= FR1

and TR2
= FR2

then, based on description, we have,

TR1⊕R2
�= FR1⊕R2

, TR1⊗R2
�= FR1⊗R2

, TℵR1
�= FℵR1

, TRℵ
1

�= FRℵ
1
.
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Consequently, none of the procedures

R1 ⊕ R2, R1 ⊗ R2, ℵR1, Rℵ
1

deemed to be impartial or equitable in reality. Therefore, developing some fair operations between
IFRNs must be the focus of our attention in the outset.

Example 1. For the Definition 2.5, we prove it by the following example. A generalization of
conventional fuzzy sets, intuitionistic fuzzy sets (IFS) involve both membership and non-membership
degrees. To merge two IFSs into only one IFS, utilize the bounded operations of an IFS.

Assume that R1 = {(0.7, 0.2)} and R2 = {(0.6, 0.3)} are two IFSs, then the proof of above results
are as following:

• R1 ⊕ R2 = {(0.7, 0.2)} ⊕ {(0.6, 0.3)} = {(0.82, 0.44)}
The bounded sum can be solved as, If R1 = 〈T1, F1〉 and R2 = 〈T2, F2〉 are two IFNs then
R1 ⊕ R2 = {(〈T1 + T2 − T1 ∗ T2〉, 〈F1 + F2 − F1 ∗ F2〉)}

• R2 ⊕ R1 = {(0.6, 0.3)} ⊕ {(0.7, 0.2)} = {(0.82, 0.44)}
Hence R1 ⊕ R2 = R2 ⊕ R1

• R1 ⊗ R2 = {(0.7, 0.2)} ⊗ {(0.6, 0.3)} = {(0.42, 0.44)}
The bounded product can be solved as, If R1 = 〈T1, F1〉 and R2 = 〈T2, F2〉 are two IFNs then
R1 ⊗ R2 = {(〈T1 ∗ T2〉, 〈F1 + F2 − F1 ∗ F2〉)}

• R2 ⊗ R1 = {(0.6, 0.3)} ⊗ {(0.7, 0.2)} = {(0.42, 0.44)}
Hence R1 ⊗ R2 = R2 ⊗ R1

• (R1 ⊗ R2)
ℵ = Rℵ

1 ⊗ Rℵ
2 Let us solve (R1 ⊗ R2)

ℵ, where ℵ is a positive integer and ⊗ denotes the
bounded product. This example will involve the constrained product operation and raising the
outcome to the power of 2 (ℵ = 2)

• R1 = {(0.8, 0.1)} and R1 = {(0.6, 0.3)} and ℵ = 2
Hence

R1 ⊗ R2 = {(0.48, 0.38)}

(R1 ⊗ R2)
ℵ = {(0.2304, 0.1444)}

and

Rℵ
1 ⊗ Rℵ

2 = {(0.2304, 0.1444)}
• It can compute (R1 ⊗ R2)

ℵ by repeating this procedure for any positive integer ℵ. Similarly,
other all results can be computed by the above process and all the results satisfied for IFNs.

Definition 2.6. (See [53]) Assume that, R is a Complex fuzzy set (CFS) over Z mathematically
represented as:

R = {(T, (R(T)ג : T ∈ Z}, (8)

Here R(T)ג is complex valued grade of MD of T in Z. By definition, the value R(T)ג may receive all
lie with in the unit circle in the complex plane, and are thus of the form �R(T).eĵ�R(T), where ĵ = √−1,
�R(T) and �R(T) ∈ [0, 1]

Definition 2.7. (See [54]) Assume that, � is a Complex intuitionistic fuzzy set (CIFS) over Z is
distinguished by a MD TZ (�) and NMD FZ (�), respectively, that assign a complex-valued grade to
both MD and NMD in Z. The values of TZ (�) and FZ (�) all lie with in the unit circle in the complex
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plane and are of the form TZ (�) = TZ (�)
eĵ�Z(�)

and FZ (�) = FZ (�)
eĵגZ(�)

, where TZ (�) andFZ (�) ∈
[0, 1] with ĵ = √−1 is denoted as:

� = {(�, TZ (�), FZ (�) : � ∈ Z}, (9)

Similarly, the pure complex NMD was added to the concept of complex fuzzy class to create the
concept of complex intuitionistic fuzzy class.

Definition 2.8. (See [49,50]) A quaternion q is a four dimensional complex number also called a
hyper complex number, introduced by Hamilton in 1843. Let â, b̂, ĉ, d̂ are real numbers and ı̂, ĵ , k̂ are
imaginary units then a quaternion is expressed as q̃ = â + b̂i + ĉj + d̂k. The imaginary units ı̂, ĵ , k̂ are
mutually orthogonal unit vectors. These imaginary units have the following properties:

• î2 = ĵ2 = k̂2 = ˆijk = −1

• îj = −ĵi = k̂, ˆjk = −k̂j = ı̂, k̂i = − ˆik = ĵ .

Definition 2.9. (See [49,50]) A fuzzy quaternion number is given by Q́ : B → [0, 1] such that

Q́(� + 	ı̂ + �ĵ + 
k̂) = min{ℵ(�), χ(	), F(�),Z(
)} (10)

for some (� , 	, �, 
) ∈ BQ and ℵ, χ , F,Z ∈ �F , here �F fuzzy quaternion numbers.

Definition 2.10. A intuitionistic fuzzy quaternion set (IFQS) is given by the complex function Z =
T + jF, where T, F : χ −→ [0, 1] are the function of MD and NMD, respectively and mathematically
represented as: as a set of ordered pairs, the IFS Ä can be represented as:

Z = {(�,Z) |� ∈ χ ,Z = T (�) + jF (�)}. (11)

In other hands, we can defined as:

Definition 2.11. Assume δ is a space. Zq is the IFQS on δ defined on the quaternion function
Q = � + ı̂T + ĵF + k̂, where ı̂, ĵ , k̂ are the complex roots, ı̂2 = ĵ 2 = k̂2 = −1. Here, � , T, F and 

are the functions of real MD, complex MD, real NMD and complex NMD, respectively. For all � ∈ δ,
the function � , T, F and  satisfy the following conditions:

�(�), T(�), F(�) and (�) ∈ [0, 1] ,{
�(�) + T(�) ≤ 1, F(�) + (�) ≤ 1,
�(�) + F(�) ≤ 1, T(�) + (�) ≤ 1.

}
mathematically represented as:

δ = (�(�) + ı̂T(�)
)+ ĵ
(
F(�) − ı̂(�)

)
, (12)

the values �(�), T(�), F(�) and (�) are known as degree of real membership, imaginary member-
ship, real non-membership and imaginary non-membership, respectively.

3 Devolpment Fairly Operators of IFR Context

In this part, we combined RSs with IFS to develop some aggregation operators and examine their
fundamental characteristics.
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Definition 3.1. Assume that
(

R1, R1

)
=
⎧⎨
⎩
(

TR1
, FR1

)
,(

TR1
, FR1

)
⎫⎬
⎭ and

(
R2, R2

)
=
⎧⎨
⎩
(

TR2
, FR2

)
,(

TR2
, FR2

)
⎫⎬
⎭ are

two IFRSs, and then we determine.

{(
R1 ⊕ R2

)
R1 ⊕ R2

}
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
TR1

TR2

TR1
TR2

+ FR1
FR2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠,

(
TR1

TR2

TR1
TR2

+ FR1
FR2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
FR1

FR2

TR1
TR2

+ FR1
FR2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠,

(
FR1

FR2

TR1
TR2

+ FR1
FR2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

{(ℵ ∗ R1

)
,(

ℵ ∗ R1

)} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ))
⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Fℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ))
⎛
⎝
⎛
⎝ F

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

It is simple to validate that

{ (
R1 ⊕ R2

)
,(

R1 ⊕ R2

) },

{ (ℵ ∗ R1

)
,(

ℵ ∗ R1

) } where ℵ > 0, are the IFRSs.

Theorem 3.1. Assume that
(

R1, R1

)
=
⎧⎨
⎩
(

TR1
, FR1

)
,(

TR1
, FR1

)
⎫⎬
⎭ and

(
R2, R2

)
=
⎧⎨
⎩
(

TR2
, FR2

)
,(

TR2
, FR2

)
⎫⎬
⎭ are the

IFRSs. If
(

TR1

TR1

)
=
(

FR1

FR1

)
,
(

TR2

TR2

)
=
(

FR2

FR2

)
, then,

1.
{(

TR1⊕R2

TR1⊕R2

)
=
(

FR1⊕R2

FR1⊕R2

)}

2.
{(

Tℵ∗R1

Tℵ∗R1

)
=
(

Fℵ∗R1

Fℵ∗R1

)}

Proof. As given
(

TR1

TR1

)
=
(

FR1

FR1

)
,
(

TR2

TR2

)
=
(

FR2

FR2

)
, then
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1.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
TR1⊕R2

FR1⊕R2

)
(

TR1⊕R2

FR1⊕R2

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝( TR1

TR2

TR1
TR2

+ FR1
FR2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠
⎞
⎠,

⎛
⎝( TR1

TR2

TR1
TR2

+ FR1
FR2

+ R1
R2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠
⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛
⎝( FR1

FR2

TR1
TR2

+ FR1
FR2

+ R1
R2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠
⎞
⎠,

⎛
⎝( FR1

FR2

TR1
TR2

+ FR1
FR2

+ R1
R2

)⎛⎝1 −
(

1 − TR1
− FR1

)
(

1 − TR2
− FR2

)
⎞
⎠
⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15)

= 1 (16)

consequently,

(
TR1⊕R2(
TR1⊕R2

) ) =
(

FR1⊕R2

FR1⊕R2

)
, if
(

TR1

TR1

)
=
(

FR1

FR1

)
, and
(

TR2

TR2

)
=
(

FR2

FR2

)

2.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Tℵ∗R1

Fℵ∗R1

)
(

Tℵ∗R1

Fℵ∗R1

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ))
⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

((
Fℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ))
⎛
⎝
⎛
⎝ F

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(17)

= 1 (18)

consequently,
{(

Tℵ∗R1

Tℵ∗R1

)
=
(

Fℵ∗R1

Fℵ∗R1

)}
.

if
(

TR1

TR1

)
=
(

FR1

FR1

)
, and
(

TR2

TR2

)
=
(

FR2

FR2

)

The processes revealed by this theorem
{(

R1 ⊕ R2

R1 ⊕ R2

)
,
( ℵ ∗ R1

ℵ ∗ R1

)}
, when MD and NMD are

originally equal, demonstrate to the DMs a fair or neutral nature. Because of this, we refer to the
activities ⊗̃, ∗ as fairly operations. This is why we call the operations fairly operations.



1902 CMES, 2024, vol.139, no.2

Theorem 3.2. consider
(

R1, R1

)
=
⎧⎨
⎩
(

TR1
, FR1

)
(

TR1
, FR1

)
⎫⎬
⎭ and

(
R2, R2

)
=
⎧⎨
⎩
(

TR2
, FR2

)
(

TR2
, FR2

)
⎫⎬
⎭ are the

IFRSs and If the numbers ℵ, ℵ1 and ℵ2 are any three real values, we have got,

1.
{(

R1 ⊕ R2

R1 ⊕ R2

)
=
(

R2 ⊕ R1

R2 ⊕ R1

)}

2.

{( ℵ ∗ (R1 ⊕ R2

)
ℵ ∗
(

R1 ⊕ R2

) ) =
( ℵ ∗ R1

ℵ ∗ R1

)
⊕
( ℵ ∗ R2

ℵ ∗ R2

)}

3.
{(

(ℵ1 + ℵ2) ∗ R1

(ℵ1 + ℵ2) ∗ R1

)
=
( ℵ1 ∗ R1

ℵ1 ∗ R1

)
⊕
( ℵ2 ∗ R1

ℵ2 ∗ R1

)}

1. This one is trivial.

2. ℵ ∗
{ (

R1 ⊕ R2

)(
R1 ⊕ R2

) }

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

((
TR1

TR2

TR1
TR2

+ FR1
FR2

)ℵ)
((

TR1
TR2

TR1
TR2

+ FR1
FR2

)ℵ

+
(

FR1
FR2

TR1
TR2

+ FR1
FR2

)ℵ)
⎞
⎟⎟⎟⎟⎟⎠

(
1 −
(

1 −
(

1 −
(

1 − TR1
− FR

) (
1 − TR2

− FR2

)))ℵ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

((
TR1

TR2

TR1
TR2

+ FR1
FR2

)ℵ)
((

TR1
TR2

TR1
TR2

+ FR1
FR2

)ℵ

+
(

FR1
FR2

TR1
TR2

+ FR1
FR2

)ℵ)
⎞
⎟⎟⎟⎟⎟⎠

(
1 −
(

1 −
(

1 −
(

1 − TR1
− FR1

) (
1 − TR2

− FR2

)))ℵ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

((
FR1

FR2

TR1
TR2

+ FR1
FR2

)ℵ)
((

TR1
TR2

TR1
TR2

+ FR1
FR2

)ℵ

+
(

FR1
FR2

TR1
TR2

+ FR1
FR2

)ℵ)
⎞
⎟⎟⎟⎟⎟⎠

(
1 −
(

1 −
(

1 −
(

1 − TR1
− FR1

) (
1 − TR2

− FR2

)))ℵ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

((
FR1

FR2

TR1
TR2

+ FR1
FR2

)ℵ)
((

TR1
TR2

TR1
TR2

+ FR1
FR2

)ℵ

+
(

FR1
FR2

TR1
TR2

+ FR1
FR2

)ℵ)
⎞
⎟⎟⎟⎟⎟⎠

(
1 −
(

1 −
(

1 −
(

1 − TR1
− FR1

) (
1 − TR2

− FR2

)))ℵ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ

R1
Tℵ

R2

Tℵ
R1

Tℵ
R2

+ Fℵ
R1

Fℵ
R2

)(
1 −
(

1 − TR1
− FR1

)ℵ (
1 − TR2

− FR2

)ℵ))
⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R2

T
ℵ
R1

T
ℵ
R2

+ F
ℵ
R1

F
ℵ
R2

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ (
1 − TR2

− FR2

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Fℵ

R1
Fℵ

R2

Tℵ
R1

Tℵ
R2

+ Fℵ
R1

Fℵ
R2

)(
1 −
(

1 − TR1
− FR1

)ℵ (
1 − TR2

− FR2

)ℵ))
⎛
⎝
⎛
⎝ F

ℵ
R1

F
ℵ
R2

T
ℵ
R1

T
ℵ
R2

+ F
ℵ
R1

F
ℵ
R2

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ (
1 − TR2

− FR2

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

and

⎧⎪⎪⎨
⎪⎪⎩

(ℵ ∗ R1

ℵ ∗ R1

)

⊕
(ℵ ∗ R2

ℵ ∗ R2

)
⎫⎪⎪⎬
⎪⎪⎭ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ))
⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Fℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ))
⎛
⎝
⎛
⎝ F

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊕

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ

R2

Tℵ
R2

+ Fℵ
R2

)(
1 −
(

1 − TR2
− FR2

)ℵ))
⎛
⎝
⎛
⎝ T

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠(1 −

(
1 − TR2

− FR2

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Fℵ

R2

Tℵ
R2

+ Fℵ
R2

)(
1 −
(

1 − TR2
− FR2

)ℵ))
⎛
⎝
⎛
⎝ F

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠(1 −

(
1 − TR2

− FR2

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

((
Tℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
Tℵ

R2

Tℵ
R2

+ Fℵ
R2

))
((

Tℵ
R1

Tℵ
R1

+ Fℵ
R1

)
,

(
Tℵ

R2

Tℵ
R2

+ Fℵ
R2

))
+
((

Fℵ
R1

Tℵ
R1

+ Fℵ
R1

)
,

(
Fℵ

R2

Tℵ
R2

+ Fℵ
R2

))
⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
(

1 −
(

1 −
(

1 −
(

1 − TR1
− FR1

)ℵ)))
(

1 −
(

1 −
(

1 −
(

1 − TR2
− FR2

)ℵ)))
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠
⎛
⎝ T

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠
⎞
⎠

⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠,

⎛
⎝ T

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠
⎞
⎠+
⎛
⎝
⎛
⎝ F

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠,

⎛
⎝ F

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
(

1 −
(

1 −
(

1 −
(

1 − TR1
− FR1

)ℵ)))
(

1 −
(

1 −
(

1 −
(

1 − TR2
− FR2

)ℵ)))
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

((
Fℵ

R1

Tℵ
R1

+ Fℵ
R1

)(
Fℵ

R2

Tℵ
R2

+ Fℵ
R2

))
(((

Tℵ
R1

Tℵ
R1

+ Fℵ
R1

)
,

(
Tℵ

R2

Tℵ
R2

+ Fℵ
R2

))
+
((

Fℵ
R1

Tℵ
R1

+ Fℵ
R1

)
,

(
Fℵ

R2

Tℵ
R2

+ Fℵ
R2

)))
⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
(

1 −
(

1 −
(

1 −
(

1 − TR1
− FR1

)ℵ)))
(

1 −
(

1 −
(

1 −
(

1 − TR2
− FR2

)ℵ)))
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝
⎛
⎝ F

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠
⎛
⎝ F

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠
⎞
⎠

⎛
⎝
⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠,

⎛
⎝ T

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠
⎞
⎠+
⎛
⎝
⎛
⎝ F

ℵ
R1

T
ℵ
R1

+ F
ℵ
R1

⎞
⎠,

⎛
⎝ F

ℵ
R2

T
ℵ
R2

+ F
ℵ
R2

⎞
⎠
⎞
⎠
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
(

1 −
(

1 −
(

1 −
(

1 − TR1
− FR1

)ℵ)))
(

1 −
(

1 −
(

1 −
(

1 − TR2
− FR2

)ℵ)))
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ

R1
Tℵ

R2

Tℵ
R1

Tℵ
R2

+ Fℵ
R1

Fℵ
R2

)(
1 −
(

1 − TR1
− FR1

)ℵ (
1 − TR2

− FR2

)ℵ))
⎛
⎝
⎛
⎝ T

ℵ
R1

T
ℵ
R2

T
ℵ
R1

T
ℵ
R2

+ F
ℵ
R1

F
ℵ
R2

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ (
1 − TR2

− FR2

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Fℵ

R1
Fℵ

R2

Tℵ
R1

Tℵ
R2

+ Fℵ
R1

Fℵ
R2

)(
1 −
(

1 − TR1
− FR1

)ℵ (
1 − TR2

− FR2

)ℵ))
⎛
⎝
⎛
⎝ F

ℵ
R1

F
ℵ
R2

T
ℵ
R1

T
ℵ
R2

+ F
ℵ
R1

F
ℵ
R2

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ (
1 − TR2

− FR2

)ℵ)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

Hence ℵ ∗
{ (

R1 ⊕ R2

)(
R1 ⊕ R2

) } =
{ (ℵ ∗ R1

)(
ℵ ∗ R1

) }⊕
{ (ℵ ∗ R2

)(
ℵ ∗ R2

) }.

3.{( ℵ1 ∗ R1

ℵ1 ∗ R1

)
⊕
( ℵ2 ∗ R1

ℵ2 ∗ R1

)}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

(
Tℵ1

R1

Tℵ1
R1

+ Fℵ
R1

)
(

1 −
(

1 − TR1
− FR1

)ℵ1
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

(
Tℵ1

R1

Tℵ1
R1

+ Fℵ
R1

)
(

1 −
(

1 − TR1
− FR1

)ℵ1
)
⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

(
Fℵ1

R1

Tℵ1
R1

+ Fℵ
R1

)
(

1 −
(

1 − TR1
− FR1

)ℵ1
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

(
Fℵ1

R1

Tℵ1
R1

+ Fℵ
R1

)
(

1 −
(

1 − TR1
− FR1

)ℵ1
)
⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊕

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

⎛
⎝ T

ℵ2

R1

T
ℵ2

R1
+ F

ℵ
R1

⎞
⎠

(
1 −
(

1 − TR1
− FR1

)ℵ2
)
⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

⎛
⎝ T

ℵ2

R1

T
ℵ2

R1
+ F

ℵ
R1

⎞
⎠

(
1 −
(

1 − TR1
− FR1

)ℵ2
)
⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

⎛
⎝ F

ℵ2

R1

T
ℵ2

R1
+ F

ℵ
R1

⎞
⎠

(
1 −
(

1 − TR1
− FR1

)ℵ2
)
⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

⎛
⎝ F

ℵ2

R1

T
ℵ2

R1
+ F

ℵ
R1

⎞
⎠

(
1 −
(

1 − TR1
− FR1

)ℵ2
)
⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ1+ℵ2

R1

Tℵ1+ℵ2
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ1+ℵ2
))

⎛
⎝
⎛
⎝ T

ℵ1+ℵ2

R1

T
ℵ1+ℵ2

R1
+ F

ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ1+ℵ2
)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Fℵ1+ℵ2

R1

Tℵ1+ℵ2
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ1+ℵ2
))

⎛
⎝
⎛
⎝ F

ℵ1+ℵ2

R1

T
ℵ1+ℵ2

R1
+ F

ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ1+ℵ2
)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

and

{(
(ℵ1 + ℵ2) ∗ R1

)(
(ℵ1 + ℵ2) ∗ R1

)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Tℵ1+ℵ2

R1

Tℵ1+ℵ2
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ1+ℵ2
))

⎛
⎝
⎛
⎝ T

ℵ1+ℵ2

R1

T
ℵ1+ℵ2

R1
+ F

ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ1+ℵ2
)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

((
Fℵ1+ℵ2

R1

Tℵ1+ℵ2
R1

+ Fℵ
R1

)(
1 −
(

1 − TR1
− FR1

)ℵ1+ℵ2
))

⎛
⎝
⎛
⎝ F

ℵ1+ℵ2

R1

T
ℵ1+ℵ2

R1
+ F

ℵ
R1

⎞
⎠(1 −

(
1 − TR1

− FR1

)ℵ1+ℵ2
)⎞⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

Hence,

{ (
(ℵ1 + ℵ2) ∗ R1

)
,(

(ℵ1 + ℵ2) ∗ R1

) } =
{( (ℵ1 ∗ R1

)
,(

ℵ1 ∗ R1

) )⊕
( (ℵ2 ∗ R1

)
,(

ℵ2 ∗ R1

) )}

4 Fairly Aggregation Operators for IFRNs

This part examines fairly AOs for IFRSs along with their characteristics.

4.1 Intuitionistic Fuzzy Rough Fairly Weighted Averaging (IFRFWA) Aggregation Operator

Definition 4.1. Assume that
(

Rh, Rh

)
=
{ (

Th, Fh

)(
Th, Fh

) } be the combination of IFRSs, and

IFRFWA: Fn → F , is a mapping. if

IFRFWA

{(
R1, R2, ....R

�

)(
R1, R2, ....R�

)} =
{(

� ν

1 ∗ R1 ⊕ � ν

2 ∗ R2 ⊕ ....., ⊕� ν

�
∗ R

�

)
,(

� ν

1 ∗ R1 ⊕ � ν

2 ∗ R2 ⊕ ....., ⊕� ν

�
∗ R�

)} (27)

then the mapping IFRFWA is called ”intuitionistic fuzzy rough fairly weighted averaging (IFRFWA)

operator”, here � ν

� is the weight vector or scaled vector (S-V) of R� with � ν

� � 0 and
∑�

�=1 � ν

� = 1.
Additionally, as demonstrated in the theorem further below, we can simply think of IFRFWA in terms
of reasonably operational laws.
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Theorem 4.1. Assume that
(

Rh, Rh

)
=
{ (

Th, Fh

)(
Th, Fh

) } be the combination of IFRNs, We may find

out IFRFWA by:

IFRFWA

{ (
R1, R2, ....R�

)(
R1, R2, ....R�

) }

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
⎛
⎝ ��

�=1

(
T�
)�ν

�

��
�=1

(
T�
)�ν

� + ��
�=1

(
F�
)�ν

�

⎞
⎠(1 − ��

�=1

(
1 − T� − F�

)�ν
�
)⎞⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
T�

)�ν
�

��
�=1

(
T�

)�ν
� + ��

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T� − F�

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
⎛
⎝ ��

�=1

(
F�
)�ν

�

��
�=1

(
T�
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where � ν

� is the SV of
(

R�, R�
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with � ν

� � 0 and
∑�

�=1 � ν

� = 1.

Proof. We will use mathematical induction to present this proof.
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Theorem is true at � = 1, so we now assume that it is true at � = ð, i.e.,
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Now we will proof at � = ð + 1.
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(
1 − T1 − F1

)�ν
�
)⎞⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ �ð

�=1

(
F�

)�ν
�

�ð
�=1

(
T�

)�ν
� + �ð

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠
(

1 − �ð
�=1

(
1 − T1 − F1

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(37)

The conclusion is valid for � = ð + 1. The conclusion is therefore true for all � according to the
concept of induction on ‘�’.



CMES, 2024, vol.139, no.2 1911

The following theorems list a few particular attributes that the proposed AO fulfills.

Theorem 4.2. Assume that
(

R�, R�

)
=
{ (

T�, F�
)
,(

T�, F�

) } be the combination of IFRNs and

(
R

�
, R�

)
=
{ (

T
�
, F

�

)
,(

T�, F�

) } be the IFRNs such that,
(

R�, R�

)
=
(

R
�
, R�

)
. Then

IFRFWA

{(
R1, R2, ....R

�

)
,(

R1, R2, ....R�

)} =
(

R
�
, R�

)
(38)

Proof. Given that
(

R�, R�

)
=
(

R
�
, R�

)
, by this, T� = T�, F� = F�:

IFRFWA

{ (
R1, R2, ....R�

)
,(

R1, R2, ....R�

) }

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
⎛
⎝ ��

�=1

(
T�
)�ν

�

��
�=1

(
T�
)�ν

� + ��
�=1

(
F�
)�ν

�

⎞
⎠(1 − ��

�=1

(
1 − T� − F�

)�ν
�
)⎞⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
T�

)�ν
�

��
�=1

(
T�

)�ν
� + ��

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T� − F�

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
⎛
⎝ ��

�=1

(
F�
)�ν

�

��
�=1

(
T�
)�ν

� + ��
�=1

(
F�
)�ν

�

⎞
⎠(1 − ��

�=1

(
1 − T� − F�

)�ν
�
)⎞⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
F�

)�ν
�

��
�=1

(
T�

)�ν
� + ��

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T� − F�

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
T

�

)�ν
�

��
�=1

(
T

�

)�ν
� + ��

�=1

(
F

�

)�ν
�

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

�
− F

��

)�ν
�
)⎞⎟⎟⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
T

�

)�ν
�

��
�=1

(
T

�

)�ν
� + ��

�=1

(
F

�

)�ν
�

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

�
− F

�
− 

�

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
F

�

)�ν
�

��
�=1

(
T

�

)�ν
� + ��

�=1

(
F

�

)�ν
�

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

�
− F

��

)�ν
�
)⎞⎟⎟⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
F

�

)�ν
�

��
�=1

(
T

�

)�ν
� + ��

�=1

(
F

�

)�ν
�

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

�
− F

�

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40)
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

(
T

�

)∑�
�=1 �ν

�

(
T

�

)∑�
�=1 �ν

� +
(

F
�

)∑�
�=1 �ν

�

⎞
⎟⎟⎟⎠
(

1 −
(

1 − T
�
− F

�

)∑�
�=1 �ν

�
)⎞⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

(
T

�

)∑�
�=1 �ν

�

(
T

�

)∑�
�=1 �ν

� +
(

F
�

)∑�
�=1 �ν

�

⎞
⎟⎟⎟⎠
(

1 −
(

1 − T
�
− F

�

)∑�
�=1 �ν

�
)⎞⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

(
F

�

)∑�
�=1 �ν

�

(
T

�

)∑�
�=1 �ν

� +
(

F
�

)∑�
�=1 �ν

�

⎞
⎟⎟⎟⎠
(

1 −
(

1 − T
�
− F

�

)∑�
�=1 �ν

�
)⎞⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

(
F

�

)∑�
�=1 �ν

�

(
T

�

)∑�
�=1 �ν

� +
(

F
�

)∑�
�=1 �ν

�

⎞
⎟⎟⎟⎠
(

1 −
(

1 − T
�
− F

�

)∑�
�=1 �ν

�
)⎞⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(41)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
⎛
⎝
(

T
�

)
(

T
�

)
+
(

F
�

)
⎞
⎠(1 −

(
1 − T

�
− F

�

))⎞⎠,

⎛
⎝
⎛
⎝
(

T
�

)
(

T
�

)
+
(

F
�

)
⎞
⎠(1 −

(
1 − T

�
− F

�

))⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
⎛
⎝
(

F
�

)
(

T
�

)
+
(

F
�

)
⎞
⎠(1 −

(
1 − T

�
− F

��

))⎞⎠,

⎛
⎝
⎛
⎝
(

F
�

)
(

T
�

)
+
(

F
�

)
⎞
⎠(1 −

(
1 − T

�
− F

�

))⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (42)

=
{(

T
�
, F

�

)
,(

T�, F�

)} =
(

R
�
, R�

)
(43)

Theorem 4.3. Let
(

R�, R�

)
=
{ (

T�, F�
)
,(

T�, F�

) } be the combination of IFRNs. Then

IFRFWA

{(
R1, R2, ....R�

)
,(

R1, R2, ....R�

)} =
{(

T�, F�
)(

T�, F�
)}, (44)
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we have{(
max�
{
T� + F�

}
� T� + F� � min�

{
T� + F�

})
,(

min�

{
T� + F�

}
� T� + F� � max�

{
T� + F�

})}

Proof. We begin with{(
max�
{
T� + F�

})
,(

min�

{
T� + F�

})} =
{(

1 − (1 − max�
{
T� + F�

}))
,(

1 −
(

1 − min�

{
T� + F�

}))} (45)

=

⎧⎪⎨
⎪⎩
(

1 − (1 − max�
{
T� + F�

})∑�
�=1 �ν

�
)

,(
1 −
(

1 − min�

{
T� + F�

})∑�
�=1 �ν

�
)
⎫⎪⎬
⎪⎭ (46)

=

⎧⎪⎨
⎪⎩
(

1 − ��
�=1

(
1 − max�

{
T� + F�

})�ν
�
)

,(
1 − ��

�=1

(
1 − min�

{
T� + F�

})�ν
�
)
⎫⎪⎬
⎪⎭ (47)

�

⎧⎪⎨
⎪⎩
(

1 − ��
�=1

(
1 − {T� + F�

})�ν
�
)

,(
1 − ��

�=1

(
1 −
{

T� + F�

})�ν
�
)
⎫⎪⎬
⎪⎭

�

⎧⎪⎨
⎪⎩
(

1 − ��
�=1

(
1 − min�

{
T� + F�

})�ν
�
)

,(
1 − ��

�=1

(
1 − max�

{
T� + F�

})�ν
�
)
⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩
(

1 − (1 − min�
{
T� + F�

})∑�
�=1 �ν

�
)

,(
1 −
(

1 − max�

{
T� + F�

})∑�
�=1 �ν

�
)
⎫⎪⎬
⎪⎭

=
{(

min
�

{
T� + F�

})
,
(

max
�

{
T� + F�

})}
By the above theorem, we obtained

T� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎝ ��

�=1

(
T�
)�ν

�

��
�=1

(
T�
)�ν

� + ��
�=1

(
F�
)�ν

�

⎞
⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ ��

�=1

(
T�

)�ν
�

��
�=1

(
T�

)�ν
� + ��

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(48)



1914 CMES, 2024, vol.139, no.2

F� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎝ ��

�=1

(
F�
)�ν

�

��
�=1

(
T�
)�ν

� + ��
�=1

(
F�
)�ν

�

⎞
⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ ��

�=1

(
F�

)�ν
�

��
�=1

(
T�

)�ν
� + ��

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(49)

This is how we learn{(
T� + F�

)(
T� + F�

)} =

⎧⎪⎨
⎪⎩
(

1 − ��
�=1

(
1 − T� − F�

)�ν
�
)

,(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)
⎫⎪⎬
⎪⎭ (50)

Consequently,{ ((
max�
{
T� + F�

})
�
(
T� + F�

)
�
(
min�
{
T� + F�

}))((
min�

{
T� + F�

})
�
(

T� + F�
)
�
(

max�

{
T� + F�

}))}

Theorem 4.4. Assume that
(

R�, R�

)
=
{ (

T�, F�
)
,(

T�, F�

) } and
(

R∗
�, R

∗
�

)
=
{ (

T∗
�, F∗

�
)
,(

T
∗
�, F

∗
�

) } are the

group of IFRNs, and additionally

IFRFWA

{(
R1, R2, ....R

�

)
,(

R1, R2, ....R�

)} =
(

R, R
)

=
{(

T, F
)
,(

T, F
)} (51)

and

IFRFWA

{(
R∗

1, R∗
2, ....R∗

�

)
,(

R
∗
1, R

∗
2, ....R

∗
�

)} =
(

R∗, R
∗) =
{(

T∗, F∗),(
T

∗
, F

∗)
}

(52)

Then, {(
T + F
)
,(

T + F
)} �

{(
T∗ + F∗),(
T

∗ + F
∗)
}

, if

{(
T� + F� + �

)
,(

T� + F� + �

)} �
{(

T∗
� + F∗

�
)
,(

T
∗
� + F

∗
�

)}
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Proof. By using the theorem on the two groups of IFRNs, namely,
(

R�, R�

)
=
{ (

T�, F�
)
,(

T�, F�

) }

and
(

R�∗ , R�∗
)

=
{ (

T∗
�, F∗

�
)
,(

T
∗
�, F

∗
�

) }, we obtained

T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎝ ��

�=1

(
T�
)�ν

�

��
�=1

(
T�
)�ν

� + ��
�=1

(
F�
)�ν

�

⎞
⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ ��

�=1

(
T�

)�ν
�

��
�=1

(
T�

)�ν
� + ��

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(53)

F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎝ ��

�=1

(
F�
)�ν

�

��
�=1

(
T�
)�ν

� + ��
�=1

(
F�
)�ν

�

⎞
⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�)
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ ��

�=1

(
F�

)�ν
�

��
�=1

(
T�

)�ν
� + ��

�=1

(
F�

)�ν
�

⎞
⎟⎟⎠

(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(54)

and

T∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎝ ��

�=1

(
T∗

�
)�ν

�

��
�=1

(
T∗

�
)�ν

� + ��
�=1

(
F∗

�
)�ν

�

⎞
⎠

(
1 − ��

�=1

(
1 − T∗

� − F∗
�
)�ν

�)
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ ��

�=1

(
T

∗
�

)�ν
�

��
�=1

(
T

∗
�

)�ν
� + ��

�=1

(
F

∗
�

)�ν
�

⎞
⎟⎟⎠

(
1 − ��

�=1

(
1 − T

∗
� − F

∗
�

)�ν
�
)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(55)

F∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝
⎛
⎝ ��

�=1

(
F∗

�
)�ν

�

��
�=1

(
T∗

�
)�ν

� + ��
�=1

(
F∗

�
)�ν

�

⎞
⎠

(
1 − ��

�=1

(
1 − T∗

� − F∗
�
)�ν

�
)
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ ��

�=1

(
F

∗
�

)�ν
�

��
�=1

(
T

∗
�

)�ν
� + ��

�=1

(
F

∗
�

)�ν
�

⎞
⎟⎟⎠

(
1 − ��

�=1

(
1 − T

∗
� − F

∗
�

)�ν
�
)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(56)

By this, if

{ (
T� + F�

)
,(

T� + F�

) } �
{ (

T∗
� − F∗

�
)
,(

T
∗
� − F

∗
�

) }, then,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
T + F
)
,(

T + F
)} =
⎛
⎜⎝
(

1 − ��
�=1

(
1 − T� − F�

)�ν
�
)

,(
1 − ��

�=1

(
1 − T� − F�

)�ν
�
)
⎞
⎟⎠

�

⎛
⎜⎝
(

1 − ��
�=1

(
1 − T∗

� − F∗
�
)�ν

�
)

,(
1 − ��

�=1

(
1 − T

∗
� − F

∗
�

)�ν
�
)
⎞
⎟⎠ �
( (

T∗
� − F∗

�
)
,(

T
∗
� − F

∗
� − 

∗
�

)) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(57)
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4.2 Intuitionistic Fuzzy Rough Fairly Orderd Weighted Averaging (IFRFOWA) Aggregation Operator

Definition 4.2. Assume that
(

Rh, Rh

)
=
{ (

Th, Fh

)
,(

Th, Fh

) } be the combination of IFRNs, and

IFRFOWA: Fn → F , is a mapping, if

IFRFOWA

{(
R1, R2, ....R�

)
,(

R1, R2, ....R�

)} =
⎧⎨
⎩
⎛
⎝� ν

1 ∗
(

R
ξ(1)

, Rξ(1)

)
⊕ � ν

2 ∗
(

R
ξ(2)

, R
ξ(2)

)
⊕....., ⊕� ν

�
∗
(

R
ξ(�)

, R
ξ(�)

)
⎞
⎠
⎫⎬
⎭ (58)

then the arrangement IFRFOWA is known “intuitionistic fuzzy rough fairly ordered weighted
averaging (IFRFOWA) operator”, here �ν

1 � 0 and
∑�

�=1 � ν

1 = 1. U : 1, 2, 3, ..., n → 1, 2, 3, ..., n

is a permutation s.t.
(

R
ξ(�−1)

, Rξ(�−1)

)
�
(

R
ξ(�)

, Rξ(�)

)
. The theorem further below demonstrates that

we can also simply consider IFRFOWA using reasonably operational laws.

Theorem 4.5. Let
(

Rh, Rh

)
=
{ (

Th, Fh

)
,(

Th, Fh

) } be the combination of IFRNs, We can find out

IFRFOWA by:

IFRFOWA

{(
R1, R2, ....R

�

)
,(

R1, R2, ....R�

)} (59)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
T

ξ(�)

)�ν
�

��
�=1

(
T

ξ(�)

)�ν
ξ(�) + ��

�=1

(
F

ξ(�)

)�ν
ξ(�)

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

ξ(�)
− F

ξ(�)

)�ν
�
)⎞⎟⎟⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
Tξ(�)

)�ν
�

��
�=1

(
T

ξ(�)

)�ν
ξ(�) + ��

�=1

(
F

ξ(�)

)�ν
ξ(�)

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

ξ(�)
− F

ξ(�)

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
F

ξ(�)

)�ν
�

��
�=1

(
T
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ξ(�) + ��
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(
F
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)�ν
ξ(�)

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

ξ(�)
− F

ξ(�)

)�ν
�
)⎞⎟⎟⎠,

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ��

�=1

(
Fξ(�)

)�ν
�

��
�=1

(
T

ξ(�)

)�ν
ξ(�) + ��

�=1

(
F

ξ(�)

)�ν
ξ(�)

⎞
⎟⎟⎠
(

1 − ��
�=1

(
1 − T

ξ(�)
− F

ξ(�)

)�ν
�
)⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(60)

where � ν

1 � 0 and
∑�

�=1 � ν

1 = 1.

Proof. Validation is identical to the previous argument.

Theorem 4.6. Let
(

R�, R�

)
=
{ (

T�, F�
)
,(

T�, F�

) } be the combination of IFRNs and
(

R
�
, R�

)
={ (

T
�
, F

�

)
,(

T�, F�

) } be the IFRNs such that,
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(
R�, R�

)
=
(

R
�
, R�

)
. Then

IFRFOWA

{(
R1, R2, ...R

�

)
,(

R1, R2, ...R�

)} =
(

R
�
, R�

)
(61)

Proof. Validation is identical to the previous argument.

Theorem 4.7. Assume that
(

R�, R�

)
=
{ (

T�, F�
)
,(

T�, F�

) } be the combination of IFRNs. Then for

IFRFOWA

{ (
R1, R2, ...R

�

)
,(

R1, R2, ...R�

) } =
{ (

T�, F�
)
,(

T�, F�
) }, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎨
⎩
(

maxξ(�)

{
T

ξ(�)
+ F

ξ(�)

})
,(

minξ(�)

{
Tξ(�)

+ Fξ(�)

})
⎫⎬
⎭ �
{(

T� + F�
)
,(

T� + F�
)}

�
{(

minξ(�)

{
T

ξ(�)
+ F

ξ(�)

})
,
(

maxξ(�)

{
Tξ(�)

+ Fξ(�)

})}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Proof. Validation is identical to the previous argument.

Theorem 4.8. Assume that
(

R�, R�

)
=
{ (

T�, F�
)
,(

T�, F�

) } and
(

R∗
�, R

∗
�

)
=
{ (

T∗
�, F∗

�
)
,(

T
∗
�, F

∗
�

) } are the

group of IFRNs, and additionally

IFRFOWA

{(
R1, R2, ...R�

)
,(

R1, R2, ...R�

)} =
(

R, R
)

=
{(

T, F
)
,(

T, F
)}

and

IFRFOWA

{(
R∗

1, R∗
2, ...R∗

�

)
,(

R
∗
1, R

∗
2, ...R

∗
�

)} =
(

R∗, R
∗) =
{(

T∗
�, F∗

�
)
,(

T
∗
�, F

∗
�

)} (62)

Then, {(
T + F
)
,
(

T + F
)}

�
{(

T∗
� + F∗

�
)
,
(

T
∗
� + F

∗
�

)}
, if{(

T
ξ(�)

+ F
ξ(�)

)
,
(

T
ξ(�)

+ F
ξ(�)

)}
�
{(

T∗
ξ(�)

+ F∗
ξ(�)

)
,
(

T
∗
ξ(�)

+ F
∗
ξ(�)

)}
Proof. Validation is identical to the previous argument.

5 Multi Attribute Group Decisions-Making (MAGDM) Methodology

We visualized an MAGDM issue where there are n different alternatives, and each alternative is
assessed employing a set of ĈĴ distinct attributes. It is essential to propose a group of �� experts in this
scenario, whose weights must all be greater than zero and whose sum is one. We recollected that the
given alternative ĈĴ(Ĵ = 1, 2, ..., n) can be obtained from a professional ��(� = 1, 2, ..., ℘) in the term

of IFR context, IFRNs are used to express the evaluation results, R℘

Ĵ� =
{(

T℘

Ĵ�, F℘

Ĵ�

)
,
(

T
℘

Ĵ�, F
℘

Ĵ�

)}
satisfying, 0 ≤ T℘

Ĵ�, F℘

Ĵ� ≤ 1 and 0 ≤ T℘

Ĵ� + F℘

Ĵ� ≤ 1. Moreover, consider the case where �t is the
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weight value satisfying �t � 0 and �m
t=1�t = 1 for the attribute ĈĴ . Following the research of the ideal

alternative, the suggested operator is used to create MAGDM that is pertinent to the IFR information,
with the further stages incurred.

5.1 Decision-Making Algorithm
In this section, we devolved the decision algorithm for n-by-m matrix.

Step 1. Based on the applicability of the DMs mentioned in IFRNs, determine the weights of
the DMs.

Step 2. A decision-matrix in terms of IFRNs was constructed based on the expertise of
professionals. It is denoted by �(℘) = (�(℘)

Ĵ�)n×m (See Table 1).

Step 3. To create a combined IFR evaluation matrix and subsequently generate an aggregated
IFR decision matrix, it is imperative to consider that in a group decision-making process,
the individual opinions must be carefully accumulated and integrated to form a cohesive and
representative group opinion.

Step 4. Normalize the decision matrix if the attributes are of the cost type; otherwise, there is
no need for normalization.

Step 5. Develop the score matrix using the IFRNs’ scoring function.

Step 6. Utilizing the normalized decision matrix, evaluate the weighted IFR decision matrix as
a whole by appyling the suggested AOs.

Step 7. Obtain a score value for the total weighted aggregated value using SF. Determine the
order in which the options should be ranked based on the SF, and then decide the option you
think is the best.

Table 1: Expert information matrix

Ĉ1 Ĉ2 . . . . . . . . . Ĉm

�1 A1

{
(T1

11, F1
11),

(T
1

11, F
1

11)

} {
(T1

12, F1
12),

(T
1

12, F
1

12)

}
. . . . . . . . .

{
(T1

1m, F1
1m),

(T
1

1m, F
1

1m)

}

A2

{
(T1

21, F1
21),

(T
1

21, F
1

21)

} {
(T1

22, F1
22),

(T
1

22, F
1

22)

}
. . . . . . . . .

{
(T1

2m, F1
2m),

(T
1

2m, F
1

2m)

}
...

...
...

...

An

{
(T1

n1, F1
n1),

(T
1

n1, F
1

n1)

} {
(T1

n2, F1
n2),

(T
1

n2, F
1

n2)

}
. . . . . . . . .

{
(T1

nm, F1
nm),

(T
1

nm, F
1

nm)

}

�2 A1

{
(T2

11, F2
11),

(T
2

11, F
2

11)

} {
(T2

12, F2
12),

(T
2

12, F
2

12)

}
. . . . . . . . .

{
(T2

1m, F2
1m),

(T
2

1m, F
2

1m)

}

A2

{
(T2

21, F2
21),

(T
2

21, F
2

21)

} {
(T2

22, F2
22),

(T
2

22, F
2

22)

} {
(T2

2m, F2
2m),

(T
2

2m, F
2

2m)

}
...

...
...

...

(Continued)
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Table 1 (continued)

Ĉ1 Ĉ2 . . . . . . . . . Ĉm

An

{
(T2

n1, F2
n1),

(T
2

n1, F
2

n1)

} {
(T2

n2, F2
n2),

(T
2

n2, F
2

n2)

}
. . . . . . . . .

{
(T2

nm, F2
nm),

(T
2

nm, F
2

nm)

}

�℘ A1

{
(T℘

11, F℘

11),
(T

℘

11, F
℘

11)

} {
(T℘

12, F℘

12),
(T

℘

12, F
℘

12)

}
. . . . . . . . .

{
(T℘

1m, F℘

1m),
(T

℘

1m, F
℘

1m)

}

A2

{
(T℘

21, F℘

21),
(T

℘

21, F
℘

21)

} {
(T℘

22, F℘

22),
(T

℘

22, F
℘

22)

}
. . . . . . . . .

{
(T℘

2m, F℘

2m),
(T

℘

2m, F
℘

2m)

}
...

...
...

...

An

{
(T℘

n1, F℘

n1),
(T

℘

n1, F
℘

n1)

} {
(T℘

n2, F℘

n2),
(T

℘

n2, F
℘

n2)

}
. . . . . . . . .

{
(T℘

nm, F℘

nm),
(T

℘

nm, F
℘

nm)

}

6 Case Study

The science learning objectives of experimentation include improving subject-matter mastery,
developing scientific reasoning skills, raising awareness of the variety and uncertainty associated
with empirical work, establishing practical skills, raising awareness of the nature of science, fostering
enthusiasm for the sciences and scientific learning, and enhancing teamwork skills. According to the
research, laboratory experiences are more likely to succeed in achieving these objectives if they are
planned with definite learning objectives in mind, meticulously organized into the flow of educational
settings science instruction, integrated with acquiring about science topics and procedures, and include
continuing learner discussion and reflection. Large scientific databases and virtual representations
of natural phenomena are more likely to be useful if they are incorporated within a well-planned
arrangement of classroom science training that also incorporates laboratory activities.

For efficient patient care in the field of healthcare, medical disorders must be accurately and
promptly diagnosed. Healthcare professionals and medical facilities frequently depend on outside
laboratories for medical testing to do this. However, choosing the best laboratory for testing can be
challenging as it involves weighing criteria like price, reliability, turnaround time, and others. This
case study attempts to investigate the selection procedure for the best medical testing laboratory. A
medical testing laboratory is seeking to collaborate with Healthcare Institution, a large local health
care institution, to provide a variety of diagnostic services. The hospital’s management thinks that
by combining their testing requirements with a single laboratory, operations might be made more
efficient and expenses could perhaps be decreased. Currently, they send their samples to multiple
outside labs. However, they want to be sure the chosen laboratory gives top-notch services and satisfies
their particular needs. The management staff of the hospital must take into account a number of things
while selecting the best laboratory. Here are some important factors to think about:

Assurance of quality: To make sure the laboratory complies with industry standards, look into its
licenses and accreditations, including ISO 15189 or CAP. Examine the lab’s track record for consis-
tency and dependability in test results. Inquire about the laboratory’s quality assurance procedures
and error prevention strategies.
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Testing menu: Make sure the laboratory’s diagnostic menu has the necessary range of examinations
that the hospital requires. As the hospital grows its offerings, ascertain if the laboratory is capable of
handling upcoming testing requirements.

Reaction time: Examine the lab’s turnaround times for various test types. Think about how
turnaround time affects patient care and hospital operations.

Cost and price: Ask for comprehensive price information, which should include test-specific
expenses, volume reductions, and any other fees. Be sure to factor in any possible cost savings from
combining testing services under one laboratory.

Transportation and sample handling: To guarantee sample integrity, assess the laboratory’s sample
collecting, transportation, and handling procedures. With the laboratory, go over details including
specimen pick-up and delivery schedules.

Customer service: Evaluate the customer service provided by the lab, paying particular attention
to adaptability, communication, and the presence of an assigned account manager. Find out how the
laboratory handles problems or inconsistencies in test results.

Integration of data: For effective data sharing, ascertain whether the laboratory can easily interface
to the hospital’s electronic health record, or EHR, system.

Security and conformity: Make sure the lab adheres to data protection laws and maintains strict
security procedures for patient data.

Reputation and references: Look for references and learn about the laboratory’s standing in the
medical community.

The healthcare organization can make an informed choice that supports its objectives of delivering
excellent care to patients while maximizing operational efficiency by carefully weighing these variables
and thoroughly evaluating possible laboratory partners. The case study serves as an excellent example
of the value of making well-structured decisions when choosing a medical screening laboratory. This
strategy can be used as a guide for other providers of healthcare that are faced with comparable choices
in the constantly changing field of medical diagnostics.

6.1 Numerical Example
During a surgical procedure, surgical technologists also known as operating room technicians

assist surgeons, nurses, and other members of the medical staff. The surgical technologist’s job is crucial
because they maintain a clean and ordered environment. Assume someone is interested in learning
about the best laboratory out of a list of four options X = {�1, �2, �3, �4} having the best results
facility the following four techonologies: Ĉ1(MRNA TECHNOLOGY), Ĉ2(VIRTUAL REALITY),
Ĉ3(NEUROTECHNOLOGY), and Ĉ4(TELEMEDICINE).

Step 1 The weights values are (0.2314, 0.3312, 0.3161, 0.1213) determined by the DMs listed in
IFRNs and their applicability.

Step 2 The expert data that was acquired from the survey are presented in Tables 2–5.

Step 3 In Table 6, develop a combined IFR evaluation matrix.

Step 4 All the information is beneficent, so there is no need to normalize it.

Step 5 Develop the score matrix in Table 7 with the help of Table 6, using the IFRNs’ scoring
function.
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Table 2: Expert-information matrix

Ĉ1 Ĉ2 Ĉ3 Ĉ4

�1

{
(0.71, 0.23),
(0.34, 0.42)

} {
(0.44, 0.25),
(0.57, 0.28)

} {
(0.47, 0.48),
(0.16, 0.25)

} {
(0.51, 0.38),
(0.32, 0.56)

}

�2

{
(0.19, 0.24),
(0.36, 0.23)

} {
(0.66, 0.13),
(0.57, 0.32)

} {
(0.43, 0.42),
(0.38, 0.55)

} {
(0.19, 0.61),
(0.24, 0.53)

}

�3

{
(0.42, 0.34),
(0.17, 0.63)

} {
(0.25, 0.36),
(0.13, 0.37)

} {
(0.52, 0.45),
(0.11, 0.85)

} {
(0.11, 0.53),
(0.26, 0.38)

}

�4

{
(0.39, 0.37),
(0.28, 0.41)

} {
(0.32, 0.25),
(0.27, 0.51)

} {
(0.31, 0.53),
(0.32, 0.56)

} {
(0.58, 0.33),
(0.22, 0.59)

}

Table 3: Expert-information matrix

Ĉ1 Ĉ2 Ĉ3 Ĉ4

�1

{
(0.66, 0.22),
(0.25, 0.53)

} {
(0.42, 0.29),
(0.46, 0.27)

} {
(0.54, 0.29),
(0.34, 0.44)

} {
(0.53, 0.17),
(0.15, 0.45)

}

�2

{
(0.48, 0.27),
(0.52, 0.42)

} {
(0.25, 0.14),
(0.36, 0.41)

} {
(0.52, 0.21),
(0.37, 0.44)

} {
(0.28, 0.53),
(0.31, 0.44)

}

�3

{
(0.41, 0.23),
(0.34, 0.54)

} {
(0.34, 0.25),
(0.31, 0.56)

} {
(0.21, 0.24),
(0.34, 0.37)

} {
(0.33, 0.52),
(0.15, 0.27)

}

�4

{
(0.28, 0.19),
(0.41, 0.35)

} {
(0.51, 0.23),
(0.61, 0.25)

} {
(0.53, 0.22),
(0.16, 0.55)

} {
(0.27, 0.52),
(0.15, 0.38)

}

Table 4: Expert-information matrix

Ĉ1 Ĉ2 Ĉ3 Ĉ4

�1

{
(0.39, 0.45),
(0.18, 0.46)

} {
(0.34, 0.27),
(0.39, 0.51)

} {
(0.59, 0.31),
(0.26, 0.57)

} {
(0.36, 0.41),
(0.44, 0.28)

}

�2

{
(0.12, 0.13),
(0.38, 0.45)

} {
(0.28, 0.43),
(0.59, 0.33)

} {
(0.25, 0.44),
(0.51, 0.37)

} {
(0.24, 0.16),
(0.24, 0.37)

}

�3

{
(0.44, 0.43),
(0.17, 0.81)

} {
(0.37, 0.28),
(0.45, 0.49)

} {
(0.44, 0.37),
(0.43, 0.51)

} {
(0.46, 0.25),
(0.24, 0.51)

}

�4

{
(0.38, 0.29),
(0.37, 0.23)

} {
(0.44, 0.33),
(0.22, 0.54)

} {
(0.26, 0.45),
(0.43, 0.28)

} {
(0.21, 0.45),
(0.54, 0.42)

}
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Table 5: Expert-information matrix

Ĉ1 Ĉ2 Ĉ3 Ĉ4

�1

{
(0.71, 0.21),
(0.12, 0.83)

} {
(0.37, 0.28),
(0.41, 0.32)

} {
(0.31, 0.53),
(0.27, 0.39)

} {
(0.47, 0.32),
(0.35, 0.59)

}

�2

{
(0.44, 0.33),
(0.29, 0.56)

} {
(0.39, 0.44),
(0.11, 0.52)

} {
(0.47, 0.35),
(0.25, 0.38)

} {
(0.43, 0.45),
(0.45, 0.28)

}

�3

{
(0.35, 0.23),
(0.39, 0.42)

} {
(0.18, 0.24),
(0.44, 0.14)

} {
(0.25, 0.58),
(0.43, 0.32)

} {
(0.37, 0.45),
(0.36, 0.52)

}

�4

{
(0.29, 0.41),
(0.28, 0.34)

} {
(0.45, 0.34),
(0.22, 0.74)

} {
(0.17, 0.46),
(0.44, 0.52)

} {
(0.52, 0.26),
(0.25, 0.43)

}

Table 6: Expert-information aggregated matrix

Ĉ1 Ĉ2 Ĉ3 Ĉ4

�1

{
(0.5922, 0.2938),
(0.2329, 0.5188)

} {
(0.3932, 0.2732),
(0.4572, 0.3542)

} {
(0.5117, 0.3694),
(0.2645, 0.4310)

} {
(0.4643, 0.3126),
(0.3052, 0.4386)

}

�2

{
(0.2942, 0.2260),
(0.4108, 0.4024)

} {
(0.3713, 0.2657),
(0.4509, 0.3772)

} {
(0.4077, 0.3482),
(0.4020, 0.4360)

} {
(0.2647, 0.4218),
(0.2886, 0.4192)

}

�3

{
(0.4145, 0.3186),
(0.2529, 0.6316)

} {
(0.3092, 0.2837),
(0.3283, 0.4429)

} {
(0.3592, 0.3709),
(0.3261, 0.5192)

} {
(0.3250, 0.4284),
(0.2293, 0.4016)

}

�4

{
(0.3382, 0.2899),
(0.3515, 0.3247)

} {
(0.4366, 0.2795),
(0.3607, 0.4612)

} {
(0.3500, 0.3935),
(0.3163, 0.4633)

} {
(0.3530, 0.4223),
(0.3016, 0.4473)

}

Table 7: Score information matrix

Ĉ1 Ĉ2 Ĉ3 Ĉ4

�1 0.50313 0.55575 0.49395 0.50457
�2 0.51915 0.54483 0.50638 0.42808
�3 0.42931 0.47772 0.44881 0.43107
�4 0.51878 0.51415 0.45238 0.44625

Step 6 Utilizing the normalized decision matrix, evaluate the weighted IFR decision matrix
using weight values are 0.2314, 0.3312, 0.3161, 0.1213 as a whole by applying the suggested
AOs given in Table 8.

Step 7 Obtain a score value for the total weighted aggregated value using SF in Table 9.
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Step 8 Ranking of the alternative is described in Table 10.

Table 8: Aggregated weighted information matrix

�1

{
(0.1976),
(0.8556)

} {
(0.7987),
(0.1433)

}

�2

{
(0.4358),
(0.5624)

} {
(0.5626),
(0.4222)

}

�3

{
(0.0960),
(0.5065)

} {
(0.9024),
(0.4862)

}

�4

{
(0.2795),
(0.5718)

} {
(0.7172),
(0.4212)

}

Table 9: Score values of all alternatives

IFRFWA IFRFOWA

�1 0.5278 0.2187
�2 0.5033 0.2098
�3 0.3034 0.1682
�4 0.4282 0.1763

Table 10: Ranking of the alternatives

Operators Ranking Best alternative

IFRFWA S (�1) > S (�2) > S (�4) > S (�3) �1

IFRFOWA S (�1) > S (�2) > S (�4) > S (�3) �1

The ranking in graphical is shown in Fig. 1.

7 Relationship Model between Alternatives and Attributes

In this specific section, we have built a thorough model that makes it easier for researchers to draw
associations and connections between various options and the evaluation criteria. We can properly
express and evaluate the information in this model by using quaternion numbers, which work in four-
dimensional spaces. Let us examine the main points of this model in greater detail in order to give a
clearer understanding. In 1840, Olinde Rodrigues introduced the concept of quaternion numbers and
their applications to rotations. However, in 1843, Irish mathematician Sir William Rowan Hamilton
independently made the discovery and applied it to the study of three-dimensional mechanics. A
quaternion can store every rotation in a three-dimensional coordinate system. A quaternion is the
combination of three complex components and one real element. Furthermore, it pertains to much
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more than just rotations. For rotations, quaternions are favoured over Euler angles, and the wager lock
issue is eliminated. In computer animation, quaternions are frequently used to demonstrate how the
orientations of graphical objects vary. Early animated systems were beset by issues such as convenient
interpolation, gimbal lock, and instability. They provide a creative solution to these problems.

Figure 1: Graphical representation of ranking

To determine the relationship between a patient’s disease and their symptoms, we first provided
an example medical diagnosis. We can use this methodology to determine the relationship between
alternatives and attributes based on this instance.

Numerical Example Based on IFQNs: See Table 11 for our consideration of four Patient-referenced
documents. Label δ in Table 11’s column Class of COVID-19 indicates that the patient has COVID-19,
while Label � indicates that the patient does not. The relationship between the COVID-19 illness and
the attributes is depicted in the last row. (dEQ) Euclidean quaternion distance measure (Equation given
below) is used to determine the degree of relationship between each Patient (�σ) (here σ = 1, 2, 3, 4)
and the COVID-19 disease.

dEQ = d(�σ ,D) = 1
4n

n∑
σ=1

√
(�σ� − ��d)2 + (Tσ� − T�d)2 + (Fσ� − F�d)2 + +(σ� − �d)2

Here if d(�σ ,D) ≥ 0 then it shows COVID-19 Disease otherwise any other disease.

Testing Process: The formula dQT calculates the relationship between the patient and the illness D.

Assume IFQ1 and IFQ2 are two functions then the distance between IFQ1 and IFQ2 is shown in
formula dQT . Using this we can calculate the last row of the Table 11.

dQT =
√(

�IFQ1
− �IFQ2

1
)2 + (TIFQ1

− TIFQ2

)2 + (FIFQ1
− FIFQ2

)2 + + (IFQ1
− IFQ2

)2
From the Table 11, we find that d(�1,D) = 0.1008, d(�2,D) = 0.0875, d(�1,D) = 0.0705, and

d(�1,D) = 0.0721.



CMES, 2024, vol.139, no.2 1925

Table 11: Records on COVID-19 Disease

(�σ) Chills Cough Difficulty
breathing

Fatigue Loss of taste Result

(�1)

{
0.1, 0.03,
0.2, 0.1

} {
0.06, 0.1,
0.4, 0.06

} {
0.8, 0.02,
0.2, 0.8

} {
0.2, 0.7,
0.01, 0.2

} {
0.2, 0.3,
0.3, 0.6

}
δ

(�2)

{
0.3, 0.7,
0.1, 0.01

} {
0.2, 0.01,
0.2, 0.02

} {
0.7, 0.3,
0.1, 0.1

} {
0.2, 0,

0.4, 0.5

} {
0.5, 0.4,

0, 0.1

}
�

(�3)

{
0.3, 0.5,

0.4, 0

} {
0.7, 0.2,
0.4, 0.1

} {
0.4, 0.3,
0.4, 0.5

} {
0.5, 0.3,
0.3, 0.2

} {
0.5, 0.3,
0.1, 0.4

}
�

(�4)

{
0.6, 0.2,
0.3, 0.2

} {
0.1, 0.6,
0.3, 0.2

} {
0.3, 0.5,
0.3, 0.1

} {
0.6, 0.3,

0.4, 0

} {
0.5, 0.3,
0.3, 0.4

}
�

COVID-19

{
0.8, 0.2,
0.2, 0.03

} {
0.7, 0.3,
0.01, 0.3

} {
0.01, 0.02,
0.8, 0.02

}{
0.9, 0.03,
0.1, 0.7

} {
0.2, 0.4,
0.5, 0.4

}

8 Discussion and Comparison Analysis

The approach has applications in many different industries where decision-makers must cope with
erroneous or incomplete data, including financial markets, engineering, health care diagnosis, and
risk assessment. Making more trustworthy and solid judgements in these areas is made feasible by
utilizing IFRSs and fairness operators. One of the main benefits of this approach is its capacity to
acquire and process complicated, hesitant, and uncertain data, resulting in more accurate and realistic
decision-making. The model can be highly computational despite its benefits, especially when working
with enormous data sets. The additional complexity associated with IFRSs and fairness operators
can make it difficult for non-experts to grasp and evaluate the model’s conclusions. Occasionally,
decision-makers lack knowledge of each intuitionistic fuzzy component, for instance. In light of
this, an IFRS theory is defined as the combination of positive and negative information within
a framework that is intuitively ambiguous. However, this theory does not adequately replicate the
situation in which both positive and negative information in the IFS component must be considered.
After making the necessary adjustments, we redesigned the concept of IFRS. In addition, we present
new algebraic properties for the proposed operators and a brand-new aggregation operator. Based
on the IFRFWA and IFRFOWA data proposed in this research, we utilized the expanded MAGDM
method. Table 12 compares our proposed model to the intuitionistic fuzzy rough weighted geometric
(IFRWG), intuitionistic fuzzy rough ordered weighted geometric (IFROWG) and intuitionistic fuzzy
rough hybrid geometric (IFRHG) aggregation operators [55], intuitionistic fuzzy hybrid weighted
arithmetic and geometric aggregation operators (IFHWAGA) [56], intuitionistic fuzzy power weighted
average (IFPWA) operator, intuitionistic fuzzy Heronian mean (AIFHM) aggregation operator [57],
IFRWAA, and IFRWGA AOs and intuitionistic fuzzy rough Yager (IFRY) weighted averaging
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(IFRYWA), IFRY ordered weighted averaging (IFRYOWA), IFRY hybrid averaging (IFRYHA)
aggregation operators [58]. The graphical view of the comparison analysis is given in Fig. 2.

Table 12: Comparative analysis

Methods Ranking result Best option

IFHWAGA No outcomes –
AIFHM No outcomes –
IFPWA No outcomes –
IFRWAA S (�2) > S (�3) > S (�4) > S (�1) �2

IFRWGA S (�2) > S (�3) > S (�4) > S (�1) �2

IFRFWA S (�2) > S (�4) > S (�3) > S (�1) �2

IFRFOWA S (�2) > S (�4) > S (�1) > S (�3) �2

IFRWG S (�4) > S (�2) > S (�3) > S (�1) �4

IFROWG S (�4) > S (�3) > S (�2) > S (�1) �4

IFRHG S (�2) > S (�3) > S (�1) > S (�4) �2

IFRHA S (�2) > S (�4) > S (�1) > S (�3) �2

IFRYWA S (�3) > S (�2) > S (�4) > S (�1) �3

IFRYOWA S (�2) > S (�4) > S (�3) > S (�1) �2

IFRYHA S (�2) > S (�4) > S (�3) > S (�1) �2

Figure 2: Graphical representation of comparison analysis
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Positive aspects of the suggested technique and AOs: It is clear that practically all factors are given
similar weight through the process in real decision-making challenges. For instance, in some specific
situations, the reliability of the thing is prioritized over its price and speed of manufacturing. As a
result, choosing the right weight for the attributes requires careful consideration. The ranking order of
alternatives is impacted since the researchers in the existing approaches [59–62] select attribute weights
at random. We applied a method of optimization based on limited weight input of the attributes in our
devised approach to satisfy the attribute weights. Our suggested method for determining characteristic
weight is more accurate and effective. Former academics studied decision-makers (DMs) using weights
that were arbitrarily chosen without a sound justification. As a result, dealing with risk-preference
judgement issues will be challenging because of this. However, according to the real decision demands,
DMs were given priority in our proposed system. As a result, as shown in our suggested approach, the
weighting mechanism is more appropriate and workable.

9 Conclusion

To summarize, in this study, we developed a variety of unique operational principles for IFRNs
that ensure neutrality or fairness while interacting with the MD and NMD of the associated IFRSs.
According to a recent study, DMs’ associated aggregate evaluations are unfair if they produce an equal
amount of MD and NMD while assessing objects. With an emphasis on correctness and relevance
during decision-making that is influenced by the DM’s thinking, we proposed a number of original
fairness or neutrality frameworks that focus on IFRSs and the proportionality allocation laws of
MD and NMD. The linkages between the IFQNs were also inferred and evaluated, and a practical
decision-making scenario was defined and handled using relationships. It was chosen to create a potent
combination of an IFS using quaternion numbers for scenarios where each item has a range of possible
values that are determined by quaternion membership and non-membership. A fresh approach to
decision-making was also suggested based on the IF-QNs. The benefits of these strategies are further
described below:

• A DM should designate the same level of truthfulness and falsity when evaluating items;
otherwise, the accompanying aggregate rankings are unethical. We examined how well the
supplied AOs adapted to the previous AOs and demonstrated that our proposed operators are
more adaptable than the previous operators.

• When compared to other currently available solutions for MADM tasks in an IFR environment,
the IFRFWFA and IFRFOWFA operators’ findings are accurate and dependable, highlighting
their practical applications.

• Quaternion-based decision-making models were also offered and assessed. Medical diagnostics,
a recently created application for addressing the symptoms and characteristics of diseases in
patients, provide experimental support for the proposed paradigm.

• On the basis of the intuitionistic fuzzy quaternion model, the relationship between alternatives
and attributes can be determined.

• When compared to current methodologies, which fail to take into account the interrelationships
of attributes in practical applications, the MAGDM strategies recommended by this study are
more accurate and have a larger setpoint due to their increased ability to recognize connections
between attribute values and alternatives. This illustrates that more links between traits may be
discovered using the MAGDM methods discussed in this study.
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• The application of the proposed AOs (Arithmetic Operators) could significantly contribute to
the advancement of research in various areas, such as two-sided perfectly matched decision-
making involving multi-granular and insufficient requirement weight information. Further-
more, these AOs can be utilized for personalized individual continuity and regulation of
consensus. When evaluating the constraints imposed by the proposed AOs, there is no need to
consider the levels of participation, abstention, and non-membership. The anticipated AOs have
been developed with an innovative hybrid design that incorporates prioritized and collaborative
AOs, making them cutting-edge and versatile in addressing complex decision-making scenarios.

• In future work, we will explore the theoretical foundation of Intuitionistic Fuzzy Rough
Sets (IFRSs) for Einstein functions, utilizing state-of-the-art decision-making approaches such
as AHP, TOPSIS, GRA, and EDAS. Our research will delve into the application of these
methods in various domains, including soft computing, robotics, horticulture, smart systems,
the humanities, economics, and human resource management. By investigating the intersection
of IFRSs and cutting-edge decision-making techniques, we aim to enhance our understanding
of these hybrid methodologies and their potential impact across diverse fields of study.

• In future research, the proposed methods can be applied to address various issues, including
two-sided matching decision-making involving multi-granular and incomplete criterion weight
information. Additionally, these methods can be extended to handle personalized individual
consistency control consensus problems and tackle consensus reaching with non-cooperative
behavior management decision-making problems.
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