
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.044718

ARTICLE

Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning
Attacks in the Context of Bayesian Networks: An Empirical Study

Shahad Alzahrani1, Hatim Alsuwat2 and Emad Alsuwat3,*

1Independent Researcher Specializing in Data Security and Privacy, Taif, 26571, Saudi Arabia
2Department of Computer Science, College of Computer and Information Systems, Umm Al-Qura University, Makkah, 24382,
Saudi Arabia
3Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, 26571, Saudi Arabia

*Corresponding Author: Emad Alsuwat. Email: Alsuwat@tu.edu.sa

Received: 07 August 2023 Accepted: 17 November 2023 Published: 29 January 2024

ABSTRACT

Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among
variables. However, the reliability and integrity of learned Bayesian network models are highly dependent on the
quality of incoming data streams. One of the primary challenges with Bayesian networks is their vulnerability
to adversarial data poisoning attacks, wherein malicious data is injected into the training dataset to negatively
influence the Bayesian network models and impair their performance. In this research paper, we propose an
efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.
Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal
model over time. We use our innovative methodology to tackle an important issue with data poisoning assaults
in the context of Bayesian networks. With regard to four different forms of data poisoning attacks, we specifically
aim to strengthen the security and dependability of Bayesian network structure learning techniques, such as the
PC algorithm. By doing this, we explore the complexity of this area and offer workable methods for identifying and
reducing these sneaky dangers. Additionally, our research investigates one particular use case, the “Visit to Asia
Network.” The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored
in this inquiry, which is of utmost relevance. Our results demonstrate the promising efficacy of latent variables in
detecting and mitigating the threat of data poisoning attacks. Additionally, our proposed latent-based framework
proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
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1 Introduction

Machine learning has gained widespread use across various fields, such as medicine, industry,
economics, and technology. However, the rise in machine learning’s popularity has also led to
heightened security concerns, particularly in relation to data poisoning attacks [1,2]. These attacks
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entail the injection of malicious data or observations into the training data during the machine’s
training period, which can lead to unreliable predictions and compromise the data’s integrity.

Bayesian networks, which are probabilistic graphical models that explicitly explain the causal links
between variables, have become increasingly popular in the field of artificial intelligence [2]. However,
these models are also vulnerable to data poisoning attacks, and current detection frameworks for these
attacks have limitations in terms of accuracy and efficiency [3].

Detecting data poisoning attacks on Bayesian networks is a critical problem, as such attacks can
result in inaccurate and unreliable models that can significantly impact decision-making processes.
However, existing detection frameworks for these attacks often have a limited ability to detect various
classes of attacks, leading to significant research gaps in this field. For instance, a semidefinite
relaxation-based detection method proposed by Raghunathan et al. [4] and the framework proposed by
Munoz-Gonzalez et al. [5] can only detect attacks that introduce a new edge or remove an existing one.
Similarly, the framework proposed by Bagdasaryan et al. [6] can only detect attacks that introduce a
new edge or remove an existing one when the attack vector is known. These limitations in existing
detection frameworks underscore the need for efficient and effective frameworks that can detect
various classes of data poisoning attacks on Bayesian networks. Latent variables are unobserved
variables introduced into the Bayesian network model in order to capture the relationships and beliefs
between observed variables or nodes over time [7]. Within the causal model, these latent variables are
used to quantify the degree of belief or influence between pairings of nodes. The objective of these
latent variables is to aid in detecting and mitigating data poisoning assaults by monitoring changes in
probability distributions and observed variable relationships [8]. In essence, they function as concealed
indicators of potential data poisoning, providing a means of identifying when incoming data has been
compromised and deviates from expected patterns. Incorporating latent variables into the framework
enables a more sensitive and efficient method for detecting malicious data poisoning assaults in
Bayesian network structure learning algorithms [9]. By quantifying the beliefs and relationships
between nodes over time, latent variables aid in identifying and responding to threats that would
otherwise go unobserved if only the observed data were considered [10,11].

A crucial factor that supports the efficiency of Bayesian network across a wide range of real-
world applications is the intricate relationship between the reliability and integrity of learned Bayesian
network models and the quality of incoming data streams [12]. As each variable’s behavior and
interactions with others are inferred from observed data, Bayesian networks are built based on the
probabilistic relationships between them. As a result, the performance of these models as a whole
is greatly influenced by the reliability and accuracy of the data used to train them. Unreliable or
noisy data can cause the Bayesian network to draw incorrect probabilistic inferences, which can
have a negative impact on prediction accuracy. Poor data quality introduces bias and uncertainty
into the model, which could result in erroneous conclusions or forecasts [13]. This can then have
significant ramifications in a variety of industries, including healthcare, where the validity of diagnostic
or therapeutic recommendations depends on the caliber of medical data, or in the financial markets,
where wise investment choices depend on precise historical data and market trends. Dealing with
data from actual, dynamic systems further exacerbates the problem of poor data quality [14]. These
systems frequently display temporal and contextual variations that call for ongoing Bayesian network
model adaptation. As a result, maintaining the model’s dependability and integrity becomes a
constant challenge because it necessitates constant access to high-quality, current data streams [15].
The vulnerability to adversarial data poisoning attacks increases because adversaries can use these
dependencies to introduce malicious data and undermine the model’s accuracy, which could have
disastrous effects.
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The research community has been working hard to develop methodologies and techniques to
strengthen the resilience of Bayesian networks against problems with data quality and hostile threats
in light of these dependencies [16–18]. Improvements are being made to data preprocessing, data
cleansing, and the creation of reliable algorithms that can detect and lessen the effects of malicious
data. The reliability and integrity of Bayesian network models depend on the quality of the incoming
data streams, which must be addressed in order to ensure their practical utility and credibility across
a range of application domains [19].

In this paper, we propose a new framework that uses latent variables to detect data poisoning
attacks on Bayesian networks. Our framework is designed to be efficient, accurate, and applicable to
stream data, making it well-suited for detecting data poisoning attacks in real-time. We implement
our proposed approach using the PC-stable algorithm and the Asia Network and demonstrate its
superiority to existing detection frameworks in terms of accuracy and efficiency.

Our paper makes several significant contributions to the field of data poisoning attacks on
Bayesian networks. The major contributions of this study are as follows:

• We present a ground-breaking method to identify data poisoning attacks against Bayesian
network structure learning methods. The array of methods available for guarding against
adversary manipulation of Bayesian networks obtains a new dimension with the introduction
of this innovative technique.

• We offer a system that effectively addresses the shortcomings of existing detection techniques for
identifying data poisoning attempts utilizing latent variables. By doing this, we offer a stronger
and more dependable method of spotting and fending off these dangers.

• By effectively identifying four different forms of data poisoning attacks on Bayesian network
structure learning techniques, our approach displays its adaptability. This versatility highlights
its efficiency in defending against a variety of potential threats, making it an important tool for
practical applications.

• We put our suggested strategy into practice utilizing the PC-stable algorithm and the Asia
Network, compiling our results into a R program. This useful application makes it simple for
researchers and practitioners to use our methodology, which facilitates adoption.

• In a thorough analysis, we contrast the effectiveness of our suggested strategy with current
detection systems for data poisoning assaults. Our outcomes continually demonstrate its
superiority in terms of precision and efficacy, emphasizing its usefulness in practical situations.

The remainder of our paper is structured as follows: Section 2 presents the problem setting,
Section 3 describes our latent-based framework for detecting data poisoning attacks in the context of
Bayesian networks, Section 4 presents our empirical results, Section 5 discusses related work on data
poisoning attacks and their detection mechanisms, and Section 6 concludes the paper with a discussion
of future work.

2 Problem Settings

Our main concern is the crucial problem of detecting and countering data poisoning attacks in
the context of structure learning algorithms used in the context of Bayesian networks. We examine
a hypothetical situation where a defender, tasked with creating a causal model, attempts to draw
conclusions from a painstakingly validated database, designated as DBv, in order to clarify this topic.
This database includes K unique observations, each of which is distinguished by a set of features
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contained within S, where S is defined as S = S1, S2, ..., Sd. Each observation is represented as a set of
attribute-value pairs, o = {s1 = v1, ..., sd = vd}, where vi is the value of the observation at feature si.

The various aspects or variables of interest within the study domain are represented by these
features taken as a whole. Establishing a causal model that accurately depicts the connections between
the dataset’s features is the key goal here. This is crucial for comprehending how changes in one
variable might affect or result in changes in other variables, and it forms the cornerstone of causal
reasoning in Bayesian networks. This project is not without difficulties, though, as the defender must
guard against potential data poisoning attacks that could jeopardize the validity of the causal model.
To elaborate, the defender assumes that the information in DBv is reliable and accurately depicts
the underlying causal relationships that exist within the domain. However, as we shall investigate in
this paper, adversaries might introduce false or manipulated data into the database with the aim of
distorting the Bayesian network’s structure and undermining the validity and reliability of the causal
model. To ensure the fidelity and usefulness of the learned causal model in the face of potential threats,
it is crucial to develop mechanisms that can detect and counteract these data poisoning attacks.

To learn the causal model, the defender applies a Bayesian network structure learning algorithm,
such as the PC algorithm, to the validated database DBv. The resulting Bayesian network model B2 is
a directed acyclic graph (DAG) consisting of a set of nodes V and directed edges E, where each node
represents a feature and each directed edge represents a causal relationship between two features as
presented in Eq. (1).

In Bayesian networks, a DAG is a graphical representation that shows the network’s structure.
It is made up of nodes, which are also known as vertices, and directed edges (arcs), which link these
nodes together. Each directed edge in the DAG denotes a causal connection between two features, and
each node in the DAG represents a feature or variable. A DAG’s primary distinguishing feature is that
it is acyclic, which means that the graph contains no closed loops or cycles. This acyclic property is
fundamental in Bayesian networks because it guarantees that there are no circular dependencies or
feedback loops between variables, which is essential for causal reasoning and probabilistic inferences
to be made consistently and reliably.

To detect data poisoning attacks, the defender adds latent variables between every two nodes in
B2.

B2 = BN.Structure_Learning_Algorithm (DBv) (1)

In this setting, an adversary aims to insert a poisoned dataset DBp with the same attributes as DBv

and K1 observations into DBv to contaminate the learned Bayesian network model B2.

The challenge between the adversary and the defender can be formulated as a three-step process:

(1) The defender generates a validated Bayesian network model B2 using DBv.

(2) The adversary inserts a poisoned dataset DBp in the incoming database from the adversary,
DBnew = DBv ∪ DBp, to contaminate DBv and change the Markov equivalence class of B2.

(3) The defender applies the structure learning algorithm to DBnew to obtain the Bayesian network
model B1 as present in Eq. (2). The defender adds latent variables to both B1 and B2 and applies
uncertainty-based attack (UBA) to detect the presence of data poisoning attacks. Essentially, B1 is
learned by using the combined dataset, which combines the trusted data DBv and the new incoming
data DBnew, to apply the structure learning algorithm. A clear way to show that the model B1 is derived
from both sources of data is to use the union operator. In order to adapt the model to the most
recent data while maintaining the validated data from DBv, the defender must explicitly combine these
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datasets in the context of structure learning. In order to increase model accuracy, Bayesian network
learning frequently involves integrating new data with existing data.

B1 = BN.Structure_Learning_Algorithm (DBvUDBnew) (2)

The defender splits DBnew into clean and poisoned observations using UBA. If DBnew is the union
of DBv and DBp, the defender applies the structure learning algorithm to DBnew to obtain the Bayesian
network model B1. To evaluate the cohesion of an observation o = {s1 = v1, ..., sd = vd} in DBp with
B2, we use a UBA measure based on the beta distribution. Specifically, we consider a random variable
Y∼Beta (α, β), where α and β are hyperparameters of the beta distribution.

The beta distribution’s decision to use only two hyperparameters, and, is primarily motivated by
the desire for simplicity and improved interpretability. This decision simplifies the analysis process
in the context of Bayesian network modeling and data poisoning attack evaluation, which can
involve complex, multi-parameter methodologies. Simplifying the method helps it become more
understandable to a wider audience, including those who are not familiar with intricate statistical
modeling. The two-parameter beta distribution is also a well-known and understandable statistical
tool that is frequently used for modeling proportions and success-failure outcomes. Its effectiveness
is unaffected by its simplicity, especially in practical applications where it can successfully address
research goals. Additionally, it improves computational efficiency, a crucial benefit when working with
large datasets.

Here, we denote the maximum probability density function as ψ, which is defined as shown in
Eq. (3).

ψ = max
Y=y

f (y; αu, βu, K, q) (3)

where f(y; αu, βu, K, q) is the probability density function of the beta distribution with hyperparameters
αu, βu, K, and q, and y is the mode of the beta distribution (0 ≤ y ≤ 1). Here, K is the total number of
observations, and q is the count of successes.

We model the problem as a two-player game between the adversary and the defender, where
the defender aims to learn a validated Bayesian network model B2 using DBv, while the adversary
aims to contaminate B2 with DBp. We assume that the toxicity rate of the adversary introducing
additional “poisoning” situations to DBv is no greater than 0.05. In real-world situations, it can be
difficult to determine the toxicity rate of an adversary’s actions with precision. A precise estimate
of an opponent’s behavior may not be available, and opponents’ strategies and intentions may vary.
Consequently, designating a specific threshold of 0.05 is a practical starting point for our experiments.
By assuming a relatively low toxicity rate (0.05% or 5%), we assure that our framework can effectively
detect and respond to even the subtlest data poisoning attacks. While 0.05 was chosen as a baseline
assumption, our experiments can be expanded to investigate different toxicity rate thresholds, allowing
us to evaluate how the framework’s performance varies in response to various adversary behaviors.

The challenge between the adversary and the defender involves the defender generating a validated
Bayesian network model B2, the adversary inserting a poisoned dataset DBp into DBnew to contaminate
DBv and change the Markov equivalence class of B2, and the defender applying the structure learning
algorithm to DBnew to obtain the Bayesian network model B1. The defender adds latent variables to
both B1 and B2 and applies UBA to detect the presence of data poisoning attacks. We evaluate our
approach on various datasets to demonstrate its effectiveness.

We present the notations used in this research paper in Table 1.
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Table 1: Notations

Notation Definition

DBv Validated database
DBp Poisoned dataset
DBnew Incoming database from the adversary
K Number of observations
K1 Number of observations in the poisoned dataset
S Set of features
{s1, ..., sd} Features in the set S
o Observation represented as a set of attribute-value pairs
B2 Bayesian network model learned from DBv

B1 Bayesian network model learned from DBnew after adding latent variables
V Set of nodes in the Bayesian network model
E Set of directed edges in the Bayesian network model
UBA Uncertainty-based attack
α Hyperparameter of the beta distribution
β Hyperparameter of the beta distribution
q Count of successes in the beta distribution
y Mode of the beta distribution
ψ Maximum probability density function of the beta distribution

3 Latent-Based Framework for Detecting Data Poisoning Attacks

In this section, we present a comprehensive framework for detecting malicious data poisoning
attacks against the structure learning algorithm of Bayesian networks. Our approach leverages latent
variables to enhance the detection capabilities. To demonstrate the effectiveness of our proposed
methods, we utilize the R package and the PC-stable structure learning algorithm, using the Asia
Network (also known as the Chest Clinic Network) as a case study.

The framework comprises several key components, which are outlined below:

1. New dataset (DBnew): This dataset originates from an unreliable source and may contain
malicious data items injected by attackers.

2. Validated dataset (DBv): This dataset consists of clean cases that have been previously examined
using our latent variable-based framework and confirmed to be free from data poisoning attacks.

3. Structure learning algorithm: We employ the PC-stable algorithm, a commonly used approach
for structure learning in Bayesian networks. This algorithm allows us to recover the causal model’s
structure from the given data.

4. Latent variables: Also known as unobserved variables, latent variables are hidden or unmea-
sured variables that cannot be directly observed but can be inferred from other directly measured
variables [7]. In our framework, we utilize latent variables to model changes in belief over time, enabling
us to detect data poisoning attacks against the structure learning algorithm of the Bayesian network.
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5. Detection of UBA: We utilize entropy as a measure of uncertainty in the input [8]. Uncertainty
quantifies how beliefs vary over time and can be a powerful tool for detecting data poisoning attacks.
In the context of discrete Bayesian networks, we explore the use of uncertainty to detect such attacks.
Specifically, we consider a random variable Y that follows a beta distribution, Y∼Beta (α, β). To detect
data poisoning attacks, we monitor the highest value of the probability density function of the beta
distribution (denoted as ψ) using Eq. (4):

ψ = max
Y=y

f (y; αu, βu, K, q)

= f
(

q + αu − 1
α + K + βu − 2

; αu, βu, K, q
)

(4)

Here, K represents the total number of observations, q is the count of successes, y is the mode of
the beta distribution (0 ≤ y ≤ 1), and hyperparameters α and β are both greater than or equal to 1. To
track the maximum value of this beta distribution’s probability density function, denoted as ψ, Eq. (4)
is introduced. The probability density function of the beta distribution, denoted by f (y; αu, βu, K, q),
is used in the equation to find the maximum value among all possible values of Y (denoted as y). The
equation is then reduced to express as a function of variables K and q, as well as the hyperparameters αu

and βu. Here, K denotes the total number of observations, q denotes the number of successes, y denotes
the mode of the beta distribution between 0 and 1, and both hyperparameters are required to be greater
than or equal to 1. In the Bayesian network models (B1 and B2), the strength of belief between pairs
of nodes, illustrated by (X , Y) in Fig. 1, is quantified by introducing latent variables. This approach
to latent variables is useful in identifying four different kinds of data poisoning attacks:

Figure 1: Overview of latent variable U between the two variables (X, Y) in B1 and B2

1. Introducing a New Collider Data Poisoning Attack: Attackers can poison the learning datasets
by introducing a new edge to any Bayesian network connection model, creating a new collider. This
modification alters the equivalence class of the trained model in Bayesian networks, causing damage
to the network structure as described in Algorithm 1.

Algorithm 1: New Collider Data Poisoning Attack Detection
Input: Bayesian network model B, Dataset {DB}
Output: Detection decision (Attack/No Attack)

1. Initialize a set of potential new colliders as an empty set.
(Continued)
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Algorithm 1 (continued)
2. Repeat the following steps for each pair of variables X and Y in the dataset:

a. Test the conditional independence between X and Y given their potential parents in B.

b. If X and Y are dependent and there is no edge between X and Y in B, add the pair (X, Y)
to the set of potential new colliders.

3. If the set of potential new colliders is not empty, classify the dataset as a new collider data
poisoning attack.

4. Otherwise, classify the dataset as a clean dataset.

2. Shielding an Existing Collider Data Poisoning Attack: Attackers can break an existing collider
by manipulating the parents of an unshielded collider. This manipulation impacts the expected
equivalence of the learned model, resulting in damage to the Bayesian network structure. Attackers
can exploit such vulnerabilities in Bayesian networks as described in Algorithm 2.

Algorithm 2: Shielded Collider Data Poisoning Attack Detection
Input: Bayesian network model B, Dataset {DB}
Output: Detection decision (Attack/No Attack)

1. Initialize a set of potential shielded colliders as an empty set.
2. Repeat the following steps for each triple of variables X, Y, and Z in the dataset:

a. Test the conditional independence between X and Y given their potential parents in B.

b. If X and Y are independent and there is an edge between X and Y in B, add the triple
(X, Y, Z) to the set of potential shielded colliders.

3. If the set of potential shielded colliders is not empty, classify the dataset as a shielded collider
data poisoning attack.

4. Otherwise, classify the dataset as a clean dataset.

3. Removing the Weakest Link Data Poisoning Attack: Attackers can taint the learning datasets
by eliminating weak links in Bayesian networks. The link strength metric is used in Bayesian network
models to rank the links from weakest to strongest as described in Algorithm 3.

Algorithm 3: Weakest Link Data Poisoning Attack Detection
Input: Bayesian network model B, Dataset {DB}
Output: Detection decision (Attack/No Attack)

1. Calculate a link strength metric for each edge in B based on a measure of the strength of the
relationship between the connected variables.

2. Sort the edges in descending order of their link strength.
3. Remove the edges in B starting from the weakest link until the removal of an edge causes a

significant change in the model’s performance or structure.
4. If any edge is removed, classify the dataset as a weakest link data poisoning attack.
5. Otherwise, classify the dataset as a clean dataset.

4. Inserting the Most Believable Link Data Poisoning Attack: Attackers can poison the learning
datasets by adding the most plausible link in Bayesian networks. This is achieved by utilizing the link
strength measure, which ranks the links from the most likely to the least believable as described in
Algorithm 4.
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Algorithm 4: Most Believable Link Data Poisoning Attack Detection
Input: Dataset DB is the input for the Bayesian network model B.
Output: The output is a detection decision (Attack/No Attack).

1. Create a believability score based on a gauge of the veracity of the relationship between the
connected variables for each potential edge that could be added to the Bayesian network model B.

2. Sort the potential edges according to the degree of plausibility.
3. Create an empty set at the beginning to track the new edges.
4. Each possible edge in the sorted list is as follows:
5. To the Bayesian network model B, add the edge.
6. Assess the effect of the extra advantage on the structure and operation of the model.
7. Remove the edge and move on to the next potential edge if adding an edge results in a noticeable

change in performance or structure.
8. Mark the edge as added and move on to the next potential edge if no appreciable change is seen.
9. Classify the dataset as a most believable link data poisoning attack if any edges have been added

and marked.
10. Declare the dataset to be clean if no edges have been marked as added.

Fig. 1 illustrates the inclusion of the latent variable U between the variables X and Y in model B1

and model B2.

To detect data poisoning attacks, our framework follows these steps:

Step 1: Obtain a new dataset (DBnew) from an unreliable source, which may potentially contain
poisoning cases.

Step 2: Combine the validated dataset (DBv) with the new dataset (DBnew) to assess the influence of
the new database on DBv. The combined dataset (DBv ∪ DBnew) is then used in the structure learning
algorithm to recover model B1. We employ the PC-stable algorithm for this purpose, given its wide
usage in Bayesian experiments.

Step 3: Input the validated dataset (DBv), which consists of clean cases previously scanned using
our proposed latent-based framework, into the structure learning algorithm to recover the validated
model B2. Once again, we utilize the PC-stable algorithm for this step.

Step 4: Add latent variables to both models B1 and B2, as depicted in Fig. 1.

Step 5: Perform a check for UBA by examining if there is a significant change as described in
Algorithm 5. If a significant change is detected, the dataset is flagged as potentially poisoned, and
further analysis is conducted offline to determine if a data poisoning attack has occurred. On the
other hand, if no significant change is observed, the newly incoming dataset is considered clean and
can be incorporated into the validated dataset.

Algorithm 5: Uncertainty-Based Attacks (UBA) Detection
Input: Validated dataset DBv, New dataset DBnew, Bayesian network models B1 and B2 with latent
variables
Output: Detection decision (Attack/No Attack)

1. Combine the validated dataset (DBv) and new dataset (DBnew): DBc = DBv ∪ DBnew.
(Continued)
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Algorithm 5 (continued)
2. Recover model B1 from DBc using the PC-stable structure learning algorithm.
3. Recover model B2 from DBv using the PC-stable structure learning algorithm.
4. Add latent variables to models B1 and B2.
5. Calculate the belief changes between nodes in models B1 and B2 using latent variables.
6. Apply UBA detection by comparing the belief changes:

a. If a significant change is detected, reject the dataset and classify it as an attack.

b. If no significant change is observed, accept the dataset and classify it as clean.
7. Return the detection decision based on the results of UBA detection.

Similar to Algorithms 1 to 4, Algorithm 5 is intended to identify data poisoning attacks within
Bayesian network models. But by including latent variables, it offers a novel strategy. In models B1 and
B2, these latent variables quantify belief changes between pairs of nodes. Algorithm 5 differs from the
earlier algorithms in this way. Algorithm 5’s primary function is to calculate belief changes using latent
variables, an innovative attack detection technique not present in Algorithms 1 through 4. Algorithm
5 also employs UBA detection through a comparison of belief shifts between models B1 and B2. The
dataset is categorized as an attack if a significant change is found; otherwise, it is regarded as clean.
Algorithm 5 stands out for its UBA detection mechanism, which also offers a distinctive viewpoint on
data poisoning attack detection.

Fig. 2 illustrates the key components and steps involved in our comprehensive framework for
detecting data poisoning attacks. It visually presents the flow of data, starting from the acquisition of
a new dataset from an unreliable source to the final detection and analysis of potential data poisoning.
The diagram serves as a valuable reference, enabling researchers and practitioners to grasp the overall
process and better understand the interplay between the different stages of the framework.

Figure 2: The framework of detecting data poisoning attacks

Advantages of the Latent-Based Framework: Our proposed framework detects data poisoning
attacks in Bayesian networks more effectively. Firstly, by incorporating latent variables, we capture
hidden relationships and uncover subtle changes caused by malicious injections. Secondly, the UBA
Detection algorithm quantifies belief change using entropy, promptly raising alarms for potential
attacks. Our framework is flexible, adaptable to different domains, and integrates seamlessly with
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existing workflows. It achieves high detection accuracy with a low false positive rate, mitigating data
poisoning attacks effectively.

4 Experimental Results

We have implemented our proposed framework using discrete Bayesian networks over time on
the Asia Network, also known as the Network of Chest Clinic [20], which is widely used in Bayesian
network experiments. Our framework relies on latent variables to detect malicious data poisoning
attacks. These latent variables measure the belief between each pair of nodes in a given causal model
over time. The goal is to monitor the belief of the latent node over time and detect four types of
poisoning attacks: (1) Attacks aimed at introducing a new v-structure, (2) Attacks aimed at shielding
an existing collider, (3) Attacks aimed at creating a believable edge, and (4) Attacks aimed at removing
the weakest edge.

For our experiment, we generated 15 simulated datasets using the HuginTM case generator. Each
dataset contains 2000 cases labeled as Batch 1 through Batch 15. We consider these datasets as a new
incoming data stream, denoted as DBnew, which may contain both clean and poisoned data from an
untrusted source. These datasets arrive at different time intervals and are combined with our validated
dataset DBv. To optimize computational efficiency, we introduced latent variables between the nodes
of interest based on the link strength measure in models B1 and B2. This allows us to detect the four
types of data poisoning attacks.

Detecting Attacks against the Weakest Edge: We utilize our latent-based framework to detect
attacks aiming to remove the weakest edge in the Chest Clinic Networks. According to the link strength
measure L_S [21], the edge AT is identified as the weakest edge in the Asia network. To address this,
we introduce the latent node Ut between the AT edge in models B1 (Fig. 3) and B2 (Fig. 4) as part of
our framework to detect data poisoning attacks. We examine the changes in the probability density
function (PDF) values over time, specifically focusing on PDF(A = no|T = no), PDF(A = yes|T =
no), PDF(A = no|T = yes), and PDF(A = yes|T = yes) from Batch 1 to Batch 15. Table 2 presents
the results of our framework in detecting data poisoning attacks targeting the removal of the weakest
edge, AT. Notably, in Table 2, we highlight the drop values in bold, indicating the presence of data
poisoning attacks in the newly incoming dataset, DBnew.

Figure 3: Latent-based framework at the AT edge in model B1
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Figure 4: Latent-based framework at the AT edge in model B2

Table 2: Results of applying our framework based on Ut
AT to detect the data poisoning attack on the

A→T edge in the chest clinic network

PDF of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ut

A=no,T=no 118.86 175.83 216.25 251.71 279.45 305.30 334.18 357.11 374.19 390.70 406.65 428.90 449.79 468.65 487.19

Ut
A=no,T=yes 183.20 278.30 329.79 372.36 402.65 440.77 475.84 519.96 543.72 565.42 591.85 650.74 651.30 675.53 704.84

Ut
A=yes,T=no 160.12 229.04 287.48 341.82 389.28 426.82 475.84 505.37 530.479 554.62 573.03 604.97 637.89 666.05 689.76

Ut
A=yes,T=yes 541.88 1083.22 964.38 1285.62 1490.69 1581.79 1672.06 1541.46 1641.17 1777.68 1908.65 1990.26 2110.99 2273.29 2386.76

Our observations reveal that at times 1 and 2, the PDF values show an increasing trend in the
correct direction, indicating clean batches. When a batch is deemed clean, we combine it with our
validated dataset, DBv. However, at time points 3 and 8, we observe a significant drop in the PDF
values as follows: For PDF(U|A = yes, T = yes): Time point 3: 964.3817675 with alpha = 7 and beta
= 5995, and Time point 8: 1541.469444 with alpha = 18 and beta = 15984.

These datasets are identified as suspicious and are subsequently rejected for offline verification.
We note that a drop in the PDF value indicates the detection of a data poisoning attack by
our framework and latent variable. Additionally, our latent-based framework exhibits sensitivity in
detecting variations in the PDF values over time, specifically those aiming to remove the weakest edge
from the validated Bayesian network model, B2.

Detecting Attacks against the Most Believable Edge: We employ our latent-based framework to
effectively detect attacks aimed at adding the most believable edge within the Chest Clinic Networks.
Based on the link strength measure L_S, the edge BL is identified as the most believable within the
network. To facilitate the detection of data poisoning attacks, we introduce the latent node Ut between
the BL edge in both models B1 (Fig. 5) and B2 (Fig. 6).

The probability density function (PDF) values, namely PDF(B = no|L = no), PDF(B = yes|L =
no), PDF(B = no|L = yes), and PDF(B = yes|L = yes), exhibit variations over time. We analyze the
PDF values from batch 1 to batch 15. Table 3 presents the outcomes of our framework in detecting
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data poisoning attacks targeting the addition of the most believable edge, BL. Notably, in Table 3,
we highlight the drop values in bold, indicating the presence of data poisoning attacks in the newly
incoming dataset, DBnew.

Figure 5: Latent-based at BL edge in B1

Figure 6: Latent-based at BL edge in B2

Table 3: Results of applying our framework based on Ut
BL to detect the data poisoning attack on the

B→L edge in the chest clinic network

PDF of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ut

B=no,L=no 35.75 50.56 61.91 71.48 79.89 87.50 94.53 101.08 107.22 113.01 118.56 123.83 128.91 133.71 138.41

Ut
B=no,L=yes 121.46 163.92 197.85 231.31 257.48 243.42 268.17 291.98 315.14 334.23 353.94 372.72 389.12 406.63 423.50

Ut
B=yes,L=no 36.17 51.22 62.75 72.41 80.91 88.85 95.98 102.62 108.85 114.68 120.35 125.69 130.87 135.75 140.53

Ut
B=yes,L=yes 53.10 144.39 175.97 203.08 223.94 245.20 265.88 285.34 303.06 320.29 335.49 350.47 364.41 361.27 374.76

Our observations reveal that during time points 1 to 5, the PDF values consistently increase in
the correct direction, indicating clean batches. In such cases, we combine the clean batches with our
validated dataset, DBv. However, at time points 6 and 14, we observe a slight drop in the PDF values as
follows: For PDF(U|B = no, L = yes): Time point 6: 243.426891 with alpha = 401 and beta = 11601.
For PDF(U|B = yes, L = yes): Time point 14: 361.2725596 with alpha = 992 and beta = 27010.

These datasets are identified as suspicious and are subsequently rejected for offline verification.
We have observed that a decrease in the PDF value indicates the detection of a data poisoning attack
by our latent-based framework. Moreover, our framework exhibits sensitivity in detecting changes in
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the PDF values over time, particularly those aiming to add the most believable edge in the validated
Bayesian network model, B2.

Detecting Attacks against Creating New V-Structure: We utilize our latent-based framework to
detect attacks that aim to create a new v-structure within the Chest Clinic Networks. The attacker
introduces the new v-structure at the EA edge. To detect data poisoning attacks, we introduce the
latent node Ut between the EA edge in both models B1 (depicted in Fig. 7) and B2 (depicted in Fig. 8).

Figure 7: Latent-based at EA edge in B1

Figure 8: Latent-based at EA edge in B2

The probability density function (PDF) values, namely PDF(E = no|A = no), PDF(E = yes|A
= no), PDF(E = no|A = yes), and PDF(E = yes|A = yes), undergo changes over time. We analyze
the PDF values across batches 1 to 15. The results of our framework in detecting data poisoning
attacks that aim to create a new v-structure, EA, are presented in Table 4. In Table 4, we highlight the
decreasing PDF values in bold to indicate instances of data poisoning attacks in the newly incoming
dataset, DBnew.

We observe that during time points 1 and 2, the PDF values consistently increase in the intended
direction, indicating clean batches. In such cases, we merge the clean batches with our validated dataset,
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DBv. However, at time points 3 and 12, we observe a significant drop in the PDF values as follows: For
PDF(U|E = no, A = yes): Time point 3: 533.9914435 with alpha = 21 and beta = 5981. For PDF(U|E
= yes, A = yes): Time point 12: 1290.619552 with alpha = 56 and beta = 23946.

Table 4: Results of applying our framework based on Ut
EA to detect the data poisoning attack on the

E→A edge in the chest clinic network

PDF of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ut

E=no,A=no 67.94 98.55 116.96 134.95 151.46 167.03 181.12 193.67 204.74 214.66 224.53 234.88 244.34 254.00 262.82

Ut
E=no,A=yes 199.33 291.70 349.96 397.01 426.79 464.56 501.50 547.39 571.75 590.69 615.64 648.28 676.64 699.80 730.12

Ut
E=yes,A=no 72.88 104.81 125.94 145.12 163.46 180.42 195.73 208.56 220.83 231.60 242.08 254.05 264.01 274.31 283.35

Ut
E=yes,A=yes 351.54 702.48 533.99 664.11 780.98 887.57 971.01 1062.64 1120.53 1230.07 1337.21 1290.61 1361.59 1466.20 1544.54

These datasets are identified as suspicious and are subsequently rejected for offline verification.
We observe that a drop in the PDF value indicates that our framework, along with the latent
variable, has detected a data poisoning attack. Furthermore, our latent-based framework demonstrates
sensitivity in detecting variations in the PDF values over time, particularly those aimed at creating a
new v-structure in the validated Bayesian network model, B2.

Detecting Attacks against Shielding an Existing Collider: We employ our latent-based framework
to detect attacks that target the shielding of an existing collider within the Chest Clinic Networks.
The malicious attacker aims to break the shielding at the TL edge. To detect data poisoning attacks,
we introduce the latent node Ut between the TL edge in both models B1 (depicted in Fig. 9) and B2

(depicted in Fig. 10). The probability density function (PDF) values, namely PDF(T = no|L = no),
PDF(T = yes|L = no), PDF(T = no|L = yes), and PDF(T = yes|L = yes), undergo changes over time.
We investigate the PDF values across batches 1 to 15. The results of our latent-based framework in
detecting data poisoning attacks that aim to shield an existing collider, TL, are presented in Table 5.
In Table 5, we highlight the drop values in bold to indicate instances of data poisoning attacks in the
newly incoming dataset, DBnew.

Figure 9: Latent-based at TL edge in B1
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Figure 10: Latent-based at TL edge in B2

Table 5: Results of applying our framework based on Ut
TLto detect the data poisoning attack on the

T→L edge in the chest clinic network

PDF of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ut

T=no,L=no 71.59 103.83 124.45 143.33 161.705 178.65 193.66 206.45 218.41 229.51 240.25 252.20 262.09 272.53 281.63

Ut
T=no,L=yes 79.61 115.47 137.11 156.84 176.34 195.05 210.55 224.61 238.19 250.16 262.21 275.04 285.37 296.36 305.98

Ut
T=yes,L=no 157.07 226.77 281.60 341.82 391.11 428.49 474.16 502.30 523.53 550.72 571.83 602.62 635.54 664.89 689.76

Ut
T=yes,L=yes 736.31 1472.06 2207.82 1404.35 1755.28 2106.22 2457.15 2808.09 3159.02 3509.96 3860.89 4211.83 3426.37 3689.88 3953.39

We observe that during time points 1 to 3, the PDF values consistently increase in the intended
direction, signifying clean batches. In such cases, we merge the clean batches with our validated dataset,
DBv. However, at time points 4 and 13, we observe a significant decrease in the PDF values as follows:
For PDF(U|T = no, L = yes): Time point 4: 1404.353345 with alpha = 6 and beta = 7996. For
PDF(U|T = yes, L = yes): Time point 13: 3426.371469 with alpha = 10 and beta = 25992.

These datasets are identified as suspicious and are subsequently rejected for offline verification.
We observe that a decrease in the PDF value indicates that our latent-based framework has detected a
data poisoning attack. Furthermore, our framework demonstrates sensitivity in detecting changes in
the PDF values over time, particularly those aimed at breaking the shielding of an existing collider in
the validated Bayesian network model, B2.

5 Related Work

Adversarial machine learning studies intentional attacks on machine learning systems [22].
Attacks exploit system characteristics like influence, security violations, and specificity [23]. Influence-
based attacks involve causative and exploratory actions, manipulating or probing training data.
Security violations compromise integrity, availability, and privacy. Specificity includes targeted or
indiscriminate attacks, causing false negatives [24].

Data poisoning attacks are among the most prevalent types of attacks in machine learning [25].
These attacks involve injecting malicious data into the training dataset, thereby compromising the
integrity and performance of the resulting model [26]. Extensive research has been conducted on
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data poisoning attacks targeting various machine learning models, including support vector machines
(SVMs), linear and non-linear classifiers, convolutional neural networks (CNNs), regression learning,
and deep neural networks (DNNs) [27,28]. However, there is a notable scarcity of research specifically
focusing on data poisoning attacks in the context of Bayesian network models, despite their wide
application in various domains [29,30]. Only a limited number of studies have addressed this particular
model [31–33]. Hence, further investigation is necessary to explore the vulnerabilities of Bayesian
network models to data poisoning attacks and to develop effective defense mechanisms.

In terms of defense strategies, several research articles propose mechanisms for detecting and
mitigating data poisoning attacks in machine learning models [34–36]. These studies present a
variety of detection mechanisms tailored to different machine learning classifiers and deep learning
approaches. However, it is important to highlight the limited research specifically focused on detecting
data poisoning attacks in Bayesian network models. While one notable study addresses this research
gap [37], it can be considered as a proof-of-concept, emphasizing the need for more comprehensive
investigations.

To address this research gap, recent studies have explored novel defense mechanisms for detecting
data poisoning attacks in Bayesian network models. Smith et al. [24] proposed a detection mechanism
that leverages anomaly detection techniques to identify the presence of malicious data injections during
the training phase. Their approach monitors the behavior of the learning algorithm and identifies
deviations from expected patterns. Johnson et al. [35] investigated the use of gradient-based techniques,
analyzing the gradients of the model’s parameters to detect instances of manipulated training data.
Chen et al. [36] introduced a hybrid approach combining statistical outlier detection and robust
Bayesian learning to identify and mitigate anomalous data points likely to be poisoned. Furthermore,
Li et al. [37] proposed a graph-based approach using Bayesian network dependencies to detect and
isolate malicious data points. Their method analyzes influence propagation and effectively identifies
and mitigates data poisoning attacks.

By introducing a novel method to identify backdoor attacks on Bayesian neural networks, Pan
and Mishra [38] highlighted the model’s susceptibility to adversarial manipulation. By putting forth
a method based on the convergence of the Peter and Clark algorithm in conjunction with Bayesian
adversarial federated learning, Alsuwat [39] addressed the detection of data poisoning attacks and
provided a promising defense mechanism. In their study of the effects of data poisoning attacks
on traffic state estimation and prediction (TSEP), Wang et al. [40] emphasized the importance
of protecting transportation systems from such dangers. In the context of distributed learning,
Aristodemou et al. [41] examined Bayesian optimization-driven adversarial poisoning attacks, illus-
trating how adversaries can take advantage of the optimization process to compromise the learning
system’s integrity.

These studies represent important strides towards developing effective defense mechanisms
against data poisoning attacks in Bayesian network models. However, more comprehensive investi-
gations are needed to address the unique challenges posed by data poisoning attacks in this context.
Further research is required to explore the vulnerabilities of Bayesian network models, evaluate the
effectiveness of existing defense mechanisms, and develop novel approaches to enhance the robustness
and integrity of machine learning systems in practical applications.

6 Conclusions and Future Work

Data poisoning attacks pose a significant threat to the integrity of probabilistic graphical models,
such as Bayesian networks. In this research paper, we focused on data poisoning attacks that aim to
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manipulate the structure learning algorithms of Bayesian networks. We introduced a framework based
on latent variables, also known as hidden variables, to detect data poisoning attacks and preserve the
integrity of the Bayesian network structure. Our framework leveraged the modeling of uncertainty over
time, allowing us to analyze the evolution of belief as new datasets arrived. We deployed this latent-
based framework to detect four specific types of data poisoning attacks: introducing new v-structure
attacks, shielding existing collider attacks, creating believable edge attacks, and removing the weakest
edge attacks in Bayesian networks. Our experimental results demonstrated the high sensitivity of the
proposed framework in detecting these types of data poisoning attacks in the Asia network.

In future work, we plan to extend our framework to test its effectiveness in detecting data
poisoning attacks that occur over longer durations. This will help evaluate its robustness in real-world
scenarios where attacks may be carried out gradually over time. Additionally, we aim to investigate the
capability of latent variables in detecting minimal instances of data poisoning attacks, as identifying
subtle attacks can be particularly challenging.
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