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ABSTRACT

This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary
differential equations (FODEs) which have been widely used in modeling various phenomena in engineering and
science. An approximate solution of the system is sought in the form of the finite series over the Müntz polynomials.
By using the collocation procedure in the time interval, one gets the linear algebraic system for the coefficient of
the expansion which can be easily solved numerically by a standard procedure. This technique also serves as the
basis for solving the time-fractional partial differential equations (PDEs). The modified radial basis functions are
used for spatial approximation of the solution. The collocation in the solution domain transforms the equation into
a system of fractional ordinary differential equations similar to the one mentioned above. Several examples have
verified the performance of the proposed novel technique with high accuracy and efficiency.
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1 Introduction

A novel numerical method for solving a linear system of fractional ordinary differential equations
(FODEs).

ÂD(α)

t [ϒ (t)] +
K∑

k=1

Âk (t) D(αk)
t [ϒ (t)] = B̂ (t) ϒ (t) + F (t), 0 ≤ t ≤ T , (1)

is proposed in this paper. Here: n − 1 < α ≤ n; 0 ≤ αk < α; positive integer n defines the
maximal order of the time derivative in the equation and so, defines the number of the initial
conditions of the problem; ϒ (t) = [ϒ1 (t) , ϒ2 (t) , . . . ., ϒN (t)]T is the N−vector of unknowns; Â
is a constant non-singular N × N matrix and Âk (t), B̂ (t) are time-dependent N × N matrices;
F (t) = [f1 (t) , f2 (t) , . . . ., fN (t)]T . The operator D(ν)

t denotes the Caputo fractional derivative defined
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by [1,2]:

D(α)

t [f (t)] =

⎧⎪⎨⎪⎩
1

� (m − α)

∫ t

0

d (m)

t f (τ ) dτ

(t − τ)
α−m+1 , m − 1 < α < m,

d (m)

t f (t), α = m,

(2)

where m ∈ N = {1, 2, . . . .}, and � (z) denotes the gamma function. In particular, for the power
functions we get:

D(α)

t [tz] =
⎧⎨⎩

0, if z ∈ N0 and z < n,

� (z + 1)

� (z + 1 − α)
tz−α, if z ∈ N0 and z ≥ n or z /∈ N0 and z > n − 1,

(3)

where N0 = {0, 1, 2, . . . .}.
The equations similar to (1) often arise in the modeling of various physical phenomena such as the

models of pollution in systems of lakes [3–5], of processing the Magnetic Resonance Imaging (MRI)
data [6], of the spread of infections [7,8], and also in modeling the nuclear magnetic resonance [9,10].
Recently such problems have become very relevant due to the widespread use of the fractional-order
mathematical model of the COVID-19 disease [11–14].

Besides, as is shown below, based on this technique an effective method for solving multi-term
time fractional partial differential equations (TFPDEs) of the type

D(α)

t [v (x, t)] +
K∑

k=1

ak (t) D(αk)
t [v (x, t)] = b (t) L (x) [v (x, t)] + f (x, t), (4)

can be developed. Here ai (t) and b (t) are smooth enough functions and

L (x) [v (x, t)] = ∂

∂x

(
c (x)

∂v (x, t)
∂x

)
= c (x)

∂2v (x, t)
∂x2

+ ∂c (x)

∂x
∂v (x, t)

∂x
(5)

is a spatial differential operator of the second order defined for 0 ≤ x ≤ 1. The function c(x) has
the physical sense of the diffusivity as the transport problem is considered. Let us note that Eq. (4)
includes many different known equations as particular cases. For example:

– the time-fractional sub-diffusion equation [15]

D(α)

t u(x, t) = a
∂2u(x, t)

∂x2
+ f (x, t), 0 < α < 1, a > 0, (6)

– the time-fractional telegraph equation [16–18]

D(α)

t u(x, t) + α1D(α−1)

t u(x, t) + α2u(x, t) = ∂2u(x, t)
∂x2

+ f (x, t), (7)

– the multi-term time-fractional diffusion and diffusion-wave equations [19–21]

D(μ)

t u(x, t) +
n∑

i=1

αiD
(νi)
t u(x, t) = Ke

∂2u(x, t)
∂x2

+ f (x, t), 0 < νi < μ < 2, αi, Ke > 0, (8)

– the time-fractional modified anomalous sub-diffusion equation [22–26]

∂u(x, t)
∂t

=
[
α1D

(1−v1)
t + α2D

(1−v2)
t

] ∂2u(x, t)
∂x2

+ f (x, t), 0 < v1, v2 < 1, α1, α2 > 0. (9)
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It has been shown by many researchers that the fractional equations are more suitable for modeling
some real-world applications compared with the equations of the integral order. The reviews of
some real-world applications of the fractional equations were provided by Almeida et al. [27] and
Sun et al. [28], in physics [29], solid mechanics [30], and fluid mechanics [31]. The application of
fractional equations can also be noted in the recently published books [32,33] and we refer readers
to them and to the references therein.

The exact solutions of the fractional equations are critically important for revealing complex
physical phenomena. Some well-known analytical methods have been proposed for this goal: the
Laplace transform method [34,35], the Green function method [36], the Fourier transform method
[37], the variational iteration method [38], the Adomian decomposition method [39], the method of
separating variables [40], etc.

However, because analytical solutions are available only for a narrow class of fractional problems,
a great number of numerical techniques have been developed. Currently, the finite difference (FD) and
finite element (FE) techniques are still the most useful tools in this field.

A survey of the FD methods for solving FODEs and fractional PDEs was presented by
Li et al. in [41]. Some non-standard FD techniques were proposed to solve complex fractional
systems in [42–44]. The fast FD methods for the fractional equations were proposed for solving
2D/3D space-fractional diffusion equations in [45,46]. Similar fast FD techniques were proposed for
distributed-order space-fractional problems in [47], for parameters identifying problems governed by
fractional equations in [48], for time-dependent space-fractional diffusion equations with fractional
boundary conditions in [49], for the nonlinear fractional wave equation in [50], for fractional equations
with singularity in [51], etc. The FE techniques also are the most commonly used for solving fractional
equations. The FE approach was used to solve 1D fractional equations in [52,53] and for 2D fractional
equations in [54–56]. Many works focus on the error analysis of the FE methods such as [57–59].

Recently meshless methods have become the focused issues of the researchers in science and
engineering. The meshless methods can be divided into two groups: the pure collocation techniques
[60–63] and the methods based on the integration [64–67]. To improve the accuracy of the meshless
methods combinations with semi-analytical techniques have been proposed. The Laplace transform
method has been coupled with the Adomian decomposition method in [68]. The analytical and semi-
analytical solutions of the time-fractional Cahn–Allen equation have been studied by Khater et al. in
[69]. A semi-analytical solution for the time-fractional diffusion equation has been developed by
Kazem et al. in [70]. The homotopy analysis transform method [71] and the fundamental solution
method [72] belong to the same group of techniques. Five semi-analytical techniques for solving the
fractional nonlinear telegraph equation have been studied in [73].

In this paper, a new semi-analytical meshless technique-the backward substitution method (BSM)
[74,75] is proposed to solve multi-term linear systems of FODEs. Based on the method provided
a flexible and efficient numerical technique is constructed to solve the TFPDE (4). Applying the
collocation approach, the original TFPDE is transformed into the system of FODEs which can be
handled by the proposed new technique. The performance of this approach has been thoroughly
examined by typical numerical examples. The test results are compared with the exact solutions and
with the data obtained by other numerical techniques.

The rest of the paper is organized as follows. The detailed scheme of the BSM for solving the
system of FODEs is formulated in Section 2. The scheme for solving the TFPDEs is presented
in Section 3. The numerical examples are given in Section 4. Finally, some conclusions are briefly
discussed in Section 5.
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2 Backward Substitution Method for FODEs

In this section, we propose a novel numerical scheme for solving the system (1) subjected to the
initial conditions (ICs):

ϒ (0) = ϒ0, ∂tϒ (0) = ϒ1,….,∂(n−1)

t ϒ (0) = ϒn−1. (10)

Let us define a new vector-function P (t) which satisfies the relation

P (t) = ϒ (t) − �n−1 (t), (11)

where

�n−1 (t) = ϒ0 + ϒ1t + . . . . + ϒn−1

tn−1

(n − 1) !
, (12)

is a known vector function of time. Substituting the relation (11) into the governing Eq. (1), one gets
the equation for the new variable P (t)

ÂD(α)

t [P (t)] +
K∑

k=1

Âk (t) D(αk)
t [P (t)] = F1 (t) + B̂ (t) P (t), (13)

where

F1 (t) = F (t) + B̂ (t)�n−1 (t) −
K∑

k=1

Âk (t) D(αk)
t [�n−1 (t)] . (14)

In should be noted that D(α)

t [�n−1 (t)] = 0 because n − 1 < α ≤ n. The new the system is subjected
to the zero ICs:

P (0) = 0, ∂tP (0) = 0, . . . , ∂(n−1)

t P (0) = 0. (15)

Let us rewrite the system in the form:

ÂD(α)

t [P (t)] = B̂ (t) P (t) + F1 (t) −
I∑

i=1

Âi (t) D(αi)
t [P (t)] . (16)

Let ϕm (t) be the system of basis functions on [0, T ] which are chosen in such a way that the right-
hand side of Eq. (16) can be represented in the form of the series

B̂ (t) P (t) + F1 (t) −
K∑

k=1

Âk (t) D(αk)
t [P (t)] = Â

∞∑
m=1

qmϕm (t), (17)

where qm = [qm,1, . . . ., qm,N]T are N−vectors to be determined.

Throughout the paper, we use the generalized power functions or the Müntz polynomials basis
(MPB) [76,77]. A fractional derivative of a Müntz polynomial is again a Müntz polynomial. This is a
crucial feature of this base for using it in the collocation methods for Fractional Differential Equations
(FDEs). So, we take

ϕm (t) = tδm , δm = σ (m − 1), 0 < σ ≤ 1, m = 1, 2, 3, · · · (18)

as the basis functions and the solution is sought in the class of functions which can be approximated
by the MPB and for which there exist fractional derivatives of the original Eq. (1).
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Here σ is the parameter of the MPB. The BSM which uses the Müntz polynomials has been
developed for solving single FODE in [78–80]. The results show that the Müntz polynomials provide
quite an accurate approximation of the solution in the range of 0.10 ≤ σ ≤ 0.3. Throughout the paper,
we use σ from this interval.

Under the condition (17) the system (16) can be written in the form:

ÂD(α)

t [P (t)] = Â
∞∑

m=1

qmϕm (t). (19)

Suppose that the matrix Â is invertible. So, we obtain the reduced matrix equation

D(α)

t [P (t)] =
∞∑

m=1

qmϕm (t). (20)

As it follows from Eq. (3) the analytical expression

�m (t) = � (δm + 1)

� (δm + α + 1)
tδm+α, (21)

satisfies the FODE

D(α)

t [�m (t)] = tδm = ϕm (t). (22)

Because n − 1 < α ≤ n the function �m (t) satisfies zero ICs

�m (0) = 0, ∂t�m (0) = 0, · · · , ∂(n−1)

t �m (0) = 0. (23)

Therefore, the linear combination

P∞ (t) =
∞∑

m=1

qm�m (t), (24)

is the semi-analytical solution of Eq. (20) for any qm. It satisfies zero ICs Eq. (15). Let us emphasize:
in general case, Eqs. (13) and (20) are different ones. However, if the relation (17) is fulfilled, they are
identical. In this case P∞ (t) is also the solution of (13) for any sequence qm. So, to get the vectors qm

we substitute P∞ (t) into the relation (17) and get the infinite system:

B̂ (t)
∞∑

m=1

qm�m (t) − Â1 (t)
∞∑

m=1

qm�
(α1)
m (t)−

· · · − ÂK (t)
∞∑

m=1

qm�
(αK)
m (t) + F1 (t) = Â

∞∑
m=1

qmϕm (t), (25)

or
∞∑

m=1

[
Âϕm (t) + Â1 (t)�

(α1)
m (t) + · · · + ÂK (t) �

(αK)
m (t) − B̂ (t) �m (t)

]
qm = F1 (t). (26)

If the Eq. (26) is fulfilled at any time moment t ∈ [0, T ], then the vector function P∞ (t) given in
(24) is the exact solution of the problem (13), (15) if it exists. Then the sum (11) is the exact solution
of the original problem (1), (10).
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In practical calculations, we consider the truncated series

PM (t) =
M∑

m=1

qm�m (t), (27)

as an approximate solution of the problem (13), (15). It satisfies the truncated analog of the system (20):

D(α)

t [PM (t)] =
M∑

m=1

qmϕm (t). (28)

and the unknown vectors qm are obtained by applying the collocation procedure to the truncated
analog of (26):

M∑
m=1

[
Âϕm

(
tj

) + Â1

(
tj

)
�

(α1)
m

(
tj

) + · · · + ÂK

(
tj

)
�

(αK)
m

(
tj

) − B̂
(
tj

)
�m

(
tj

)]
qm

= F1

(
tj

) def= fj, j = 1, · · · , Nc, (29)

where Nc is the number of the collocation nodes tj ∈ [0, T ]. We use the Gauss-Chebyshev collocation
points:

tj = 0.5T [1 + cos (π(2j − 1)/2Nc)] ∈ [0, T ], j = 1, 2, · · · Nc. (30)

The collocation system (29) can be written in the compact form:

ĈQ = F , (31)

where

Q = [q1, q2, . . . , qM ]T = [q1,1, . . . , q1,N, q2,1, . . . , q2,N, . . . , qM,1, . . . , qM,N]T , (32)

F= [
f1, f2, . . . , fNC

]T = [
f1,1, . . . , f1,N, f2,1, . . . , f2,N, . . . , fNC ,1, . . . , fNC ,N

]T
. (33)

The collocation matrix Ĉ contains NcM blocks

Ĉ =

⎡⎢⎢⎣
Ĉ1,1 Ĉ1,2 . . . Ĉ1,m . . . Ĉ1,M

Ĉ2,1 Ĉ2,2 . . . Ĉ2,m . . . Ĉ2,M

. . . . . . . . . . . . . . . . . .

ĈNc ,1 ĈNc ,2 . . . ĈNc ,m . . . ĈNc ,M

⎤⎥⎥⎦ (34)

Here M is the number of the Müntz polynomials ϕm (t) and Nc is the number of the collocation
points in the time interval [0, T ].

The matrices Â, Âi

(
tj

)
, B̂

(
tj

)
are square matrices of the size N × N and so, their combinations

with the scalar coefficients ϕm

(
tj

)
, �

(αi)
m

(
tj

)
, �m

(
tj

)
,

Cj,m = Âϕm

(
tj

) + Â1

(
tj

)
�

(α1)
m

(
tj

) + . . . . + ÂK

(
tj

)
�

(αK)
m

(
tj

) − B̂
(
tj

)
�m

(
tj

)
, (35)

are also the N × N square matrices. Let us note that to obtain a stable solution of the collocation
system the number of the collocation points Nc is taken twice as large as the number of the Müntz
polynomials M: Nc = 2M. Finally, we get the over-determined linear system (31) with the collocation
matrix Ĉ which contains 2M2 square N × N blocks Cj,m j = 1, . . . ., 2M, m = 1, . . . ., M. The matrix
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Ĉ has 2NM rows and NM columns. The collocation system is solved by the standard least squares
procedure.

So, the algorithm of the solution of the system (31) is as follows:

Step 1. Choose the parameter of the Müntz polynomials basis,σ .

Step 2. Choose the number of the Müntz polynomials M in the approximate solution.

Step 3. Define the functions ϕm (t) and �m (t), m = 1, . . . , M (see (21)).

Step 4. Calculate the collocation matrix Ĉ using (34) and (35).

Step 5. Calculate the vector of the right hand side F using (29), (33).

Step 6. Solve the collocation system (31) for Q and find the vectors qm, m = 1, . . . , M which form
Q (see (32)).

Step 7. Getting the functions �m (t) m = 1, . . . , M and the vectors qm, m = 1, . . . , M obtain the
approximate solution PM (t) (see (27)).

Step 8. Obtain the approximate solution of the original problem (1), (10) as the sum ϒM (t) =
PM (t) + �n−1 (t) (see (11)).

3 Numerical Scheme for TFPDEs

Let us consider the TFPDE of the form:

D(α)

t [v (x, t)] +
K∑

k=1

ak (t) D(αk)
t [v (x, t)] = b (t) L (x) [v (x, t)] + f (x, t), x ∈ [0, 1] , t ∈ [0, T ], (36)

subjected to the Dirichlet boundary conditions (BCs)

v (0, t) = g0 (t), v (1, t) = g1 (t), (37)

where L (x) is a spatial differential operator given in (5). The ICs are determined as follows:

v (x, 0) = v0 (x), ∂tv (x, 0) = v1 (x), . . . , ∂(n−1)

t v (x, 0) = vn−1 (x). (38)

Let us define the new function

u (x, t) = v (x, t) − �n−1 (x, t), (39)

where

�n−1 (x, t) = v0 (x) + v1 (x) t + . . . + tn−1

(n − 1) !
vn−1 (x).

This function satisfies the equation

D(α)

t [u] +
K∑

k=1

ak (t) D(αk)
t [u] = f1 + b (t) L (x) [u], (40)

under the BCs

u (0, t) = g0 (t) − �n−1 (0, t) ≡ h0 (t), (41)

u (1, t) = g1 (t) − �n−1 (1, t) ≡ h1 (t). (42)
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and zero ICs

u (x, 0) = 0, ∂tu (x, 0) = 0, . . . , ∂(n−1)

t u (x, 0) = 0. (43)

Here

f1 (x, t) = f (x, t) + L (x) [�n−1 (x, t)] −
K∑

k=1

ak (t) D(αk)
t [�n−1 (x, t)] . (44)

Note: The last terms in (44) can be expressed in the analytical form. Indeed,
I∑

i=1

ai (t) D(αi)
t [�n−1] = v1 (x)

K∑
αk≤1

ak (t) D(αk)
t [t] + 1

2
v2 (x)

K∑
αk≤2

ak (t) D(αk)
t

[
t2
]
, . . . ,

+ 1
(n − 1)

vn−1 (x)

K∑
αk≤n−1

ak (t) D(αk)
t

[
tn−1

]
, (45)

where the derivative D(αi)
t [tj] can be written using (3). The previous term in (44) can be written as

follows:

L (x) [�n−1 (x, t)] = L (x) [v0 (x)] + L (x) [v1 (x)] t + · · · + tn−1

(n − 1) !
L (x) [vn−1 (x)] . (46)

So, (44) is the analytical expression.

Let us define the function ug (x, t)

ug (x, t) = h0(t) + x (h1(t) − h0(t)), (47)

which satisfies the BCs (41), (42) and introduce the new variable w (x, t):

w (x, t) = u (x, t) − ug (x, t). (48)

The function w (x, t) is the solution of the TFPDE

D(α)

t [w (x, t)] +
K∑

k=1

ak (t) D(αk)
t [w (x, t)] = b (t) L (x) [w (x, t)] + f2 (x, t), (49)

where

f2 (x, t) = f1 (x, t) + L (x)
[
ug (x, t)

] − D(α)

t

[
ug (x, t)

] −
K∑

k=1

ak (t) D(αk)
t

[
ug (x, t)

]
. (50)

It is easily to prove that the function w (x, t) satisfies zero ICs and BCs:

w (x, 0) = 0, ∂tw (x, 0) = 0, . . . , ∂(n−1)

t w (x, 0) = 0, (51)

w (0, t) = w (1, t) = 0. (52)

Let us choose a set of linearly independent functions ψi (x) , i = 1, . . . , N defined in [0, 1] . For
this goal we mainly use the Multiquadric radial basis function (MQ-RBF) throughout the paper. The
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centers ζj of the RBF are distributed in the solution region [0, 1]:

ψj (x) =
√(

x − ζj

)2 + c2, (53)

where c is the shape parameter. We place the centers of the RBFs at the Gauss-Chebyshev points

ζj = 0.5 [1 + cos (π (2j − 1) /2N)] ∈ [0, 1], j = 1, 2, . . . N. (54)

Based on the numerical experiments carried out we fix the shape parameter c = 0.5 in all the
calculations.

We define the modified basis functions

φj (x) = ψj (x) + bj,0 + bj,1x, (55)

where the coefficients bj,0, bj,1 are chosen to satisfy BCs:

φj (0) = φj (1) = 0. (56)

As a result we get the linear system

bj,0 = −ψj (0), (57)

bj,0 + bj,1 = −ψj (1), (58)

for each pair of the coefficients bj,0, bj,1. The system can be solved easily in the analytical form. So, the
modified basis functions φj (x) and their linear combinations satisfy zero boundary condition (56).

We seek the solution of the Eq. (49), in the form of the linear series over the modified basis
functions φj (x)

wN (x, t) =
N∑

j=1

φj (x)ϒj (t). (59)

Substituting Eq. (59) into Eq. (49) we get
N∑

j=1

φj (x)
{

D(α)

t

[
ϒj (t)

] + a1 (t) D(α1)
t

[
ϒj (t)

] + . . . + aK (t) D(αK)
t

[
ϒj (t)

]} =

= b (t)
N∑

j=1

L (x)
[
φj (x)

]
ϒj (t) + f2 (x, t). (60)

Let xi ∈ [0, 1], i = 1, . . . , N be the collocation points distributed inside the solution domain.
Applying the collocation procedure at these points, we get the system of the FODEs:

N∑
j=1

φj (xi)
{

D(α)

t

[
ϒj (t)

] + a1 (t) D(α1)
t

[
ϒj (t)

] + . . . + aK (t) D(αK)
t

[
ϒj (t)

]} =

= b (t)
N∑

j=1

L (xi)
[
φj (xi)

]
ϒj (t) + f2 (xi, t), (61)
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We take the centers of the RBFs as the collocation points: xi = ζi. Let us rewrite the system of the
FODEs in the vector form:

ÂD(α)

t [ϒ (t)] + Â1 (t) D(α1)
t [ϒ (t)] + . . . + +ÂK (t) D(αK)

t [ϒ (t)] = B̂ (t)ϒ (t) + F (t), t ∈ [0.T ], (62)

where Â, Âi (t) , B̂ (t) are N × N matrices with the components

Â = [
φj (xi)

]N

i,j=1
, Âk (t) = ak (t) Â, B̂ (t) = b (t)

[
L (xi)

[
φj (xi)

]]N

i,j=1
, (63)

and ϒ (t) = [ϒ1 (t) , ϒ2 (t) , . . . ., ϒN (t)]T , F (t) = [f2 (x1, t) , f2 (x2, t) , . . . , f2 (xN, t)]T are N-vectors. Note
that the derivatives in the term L

(
xj

) [
φl

(
xj

)]
can be obtained in the analytical form

∂xφj (x) = x − ζj

ψj (x)
+ cj,1, ∂xxφj (x) = 1

ψj (x)
−

(
x − ζj

)2(
ψj (x)

)3 . (64)

So, the system (62) takes the same form as the linear system of FODEs (1) and can be solved by
the algorithm described in Section 2. It should be noted that taking into account (51), the vector ϒ (t)
satisfies zero ICs:

ϒ (0) = 0, ∂tϒ (0) = 0, . . . , ∂(n−1)

t ϒ (0) = 0. (65)

It means that �n−1 (t) = 0 (see (11)) and ϒ (t) = P (t). Using M the Müntz polynomials, we get
the approximate solution in the form:

wN,M (x, t) =
N∑

j=1

φj (x) PM,j (t), (66)

where PM,j (t) is jth component of the vector PM (t) given in (27). Then, the approximate solution of the
original problem (36)–(38) can be written in the form

vN,M (x, t) = uN,M (x, t) + �n−1 (x, t) = wN,M (x, t) + ug (x, t) + �n−1 (x, t)

=
N∑

j=1

φj (x) PM,j (t) + ug (x, t) + �n−1 (x, t). (67)

3.1 Nonlinear Problem
Let us consider TFPDE (4) with a nonlinear term

D(α)

t [v (x, t)] +
K∑

k=1

ak (t) D(αk)
t [v (x, t)] = b (t) L (x) [v (x, t)] + G (v) + f (x, t). (68)

Let v0 (x, t) be a function considered as the initial approximate solution. Linearization of the
function G (v) in the vicinity of v0 (x, t)

G (v) � G
(
v0
) + ∂G

∂v

(
v0
) [

v − v0
] = ∂G

∂v

(
v0
)

v + +G (v) − ∂G
∂v

(
v0
)

v0

transforms (68) into a sequence of linear TFPDEs each of those can be solved by the technique
described above. As a result, we get the iteration procedure. The iterations are stopped with the control
of the error max

x,t
|v (x, t) − v (x, t)| or after achieving the prescribed number of iterations.
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4 Numerical Examples

In this section several numerical examples are provided to show the accuracy of the proposed
scheme. To demonstrate the performance of this technique we consider the different types of errors
for systems of FODEs and TFPDEs.

emax (ϒk, Nt) = max
1≤i≤Nt

∣∣ϒk,ex (ti) − ϒk,M (ti)
∣∣ , (69)

eRMS (ϒk, Nt) =
√√√√ 1

Nt

Nt∑
i=1

(
ϒk,ex (ti) − ϒk,M (ti)

)2
. (70)

The errors (69), (70) are used in solving systems of the FODEs to estimate the approximate
solution of each component of the vector ϒ(t) = [ϒ1(t), ϒ2(t), . . . , ϒN(t)]T (see Eq. (1)).

Emax (t, Nt) = max
1≤i≤Nt

∣∣vN,M (xi, t) − vex(xi, t)
∣∣ , (71)

ERMS (t, Nt) =
√√√√ 1

Nt

Nt∑
i=1

[(
vex (xi, t) − vN,M (xi, t)

)2 +
(

∂vex

∂x
(xi, t) − ∂vN,M

∂x
(xi, t)

)2
]

. (72)

The errors (71), (72) are used in solving TFPDE (36) with the BCs (37) and the ICs (38). The error
ERMS (t, Nt) also includes the error in the approximation of the first derivative of the solution. The
subscript ex of v indicates the comparison with the analytical solution or with the data taken from the
literature. The subscript N, M of v defines the numerical solution. For (1+1) dimensional problems Nt

= 4N. The numerical experiments show that this relation guarantees the accuracy in the calculation
of the errors. To carry out convergence research, we define the convergence order (CO).

CO = log (Emax (N1) /Emax (N2))

log (N1/N2)
. (73)

4.1 Numerical Experiments for Systems of FODEs
Example 4.1 Let us consider the system given in [35]

D(α)

t

[
ϒ1 (t)
ϒ2 (t)

]
= B̂

[
ϒ1 (t)
ϒ2 (t)

]
, B̂ =

[
2, −1
4, −3

]
, 0 < α ≤ 1, (74)

with the general exact solution[
ϒ1 (t)
ϒ2 (t)

]
= c1

[
1
1

]
Eα (tα) + c2

[
1
4

]
Eα (−2tα), (75)

where Eα (t) is the one parameter Mittag-Leffler function

Eα (t) =
∞∑

j=0

tj

� (αj + 1)
,

and c1 and c2 are free parameters which define the ICs. We solve this problem by the suggested scheme
for α = 0.25, 0.5 and 0.75. The obtained results are reported in Table 1. We use the parameter of the
MPB σ = 0.3 and Nt = 50000 test points distributed randomly inside [0, 1] to calculate the errors
(69), (70).
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Table 1: The behaviour of the errors with increasing of M for different α

M 10 20 40 60 80

α = 0.25

emax (ϒ1) 39.1 4.38 8.28E-4 1.21E-7 1.35E-8
eRMS (ϒ1) 0.475 4.35E-2 7.87E-6 1.93E-9 1.90E-9
emax (ϒ2) 40.9 2.17 6.41E-4 7.32E-9 5.38E-8
eRMS (ϒ2) 0.486 3.50E-2 7.11E-6 1.14E-7 7.57E-9

α = 0.5

Emax (ϒ1) 1.54 5.06E-2 1.73E-5 2.73E-9 4.23E-10
ERMS (ϒ1) 8.00E-2 2.48E-3 4.91E-7 1.21E-10 1.03E-11
Emax (ϒ2) 1.72 2.96E-2 2.14E-5 1.51E-9 8.22E-10
ERMS (ϒ2) 8.17E-2 2.25E-3 5.16E-7 1.10E-10 1.35E-11

α = 0.75

emax (ϒ1) 8.84E-2 7.26E-4 6.31E-7 2.09E-10 3.09E-12
eRMS (ϒ1) 3.20E-2 4.36E-4 3.30E-8 7.78E-11 1.01E-12
emax (ϒ2) 1.01E-1 4.00E-3 2.96E-6 3.94E-10 2.41E-12
eRMS (ϒ2) 3.27E-2 4.07E-4 1.43E-7 6.84E-11 9.54E-13

Example 4.2 Let us consider the system described in [35]

D(α)

t

⎡⎣ϒ1 (t)
ϒ2 (t)
ϒ3 (t)

⎤⎦ = B̂

⎡⎣ϒ1 (t)
ϒ2 (t)
ϒ3 (t)

⎤⎦, B̂ =
⎡⎣1, 1, 1

2, 1, −1
0, −1, 1

⎤⎦ , 0 < α ≤ 1, (76)

with the general exact solution⎡⎣ϒ1 (t)
ϒ2 (t)
ϒ3 (t)

⎤⎦ = c1

⎡⎣−3
4
2

⎤⎦Eα (−tα) + c2

⎡⎣ 0
1

−1

⎤⎦Eα (2tα) (77)

+ c3

⎧⎨⎩
⎡⎣ 0

1
−1

⎤⎦ tα∂tEα (2tα) +
⎡⎣1

0
1

⎤⎦Eα (2tα)

⎫⎬⎭ , (78)

where ∂tEα (t) is the first derivative of the one parameter of the Mittag-Leffler function

∂tEα (t) =
∞∑

j=0

(j + 1) tj

� (α (j + 1) + 1)
,

and c1, c2, c3 are free parameters which define the ICs. We solve this problem by the suggested scheme
for α = 0.5 and c1 = c2 = c3 = 1. The obtained results are reported in Table 2.
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Table 2: The behavior of the errors with the increasing of M

M 50 100 150 200

emax (ϒ1) 10.5 6.62E-7 2.12E-11 1.45E-12
eRMS (ϒ1) 3.72 2.34E-7 3.47E-12 4.83E-13
emax (ϒ2) 65.6 1.97E-5 1.63E-10 5.91E-12
eRMS (ϒ2) 21.4 7.10E-6 5.55E-11 1.52E-12
emax (ϒ3) 55.0 2.04E-5 1.52E-10 3.98E-12
eRMS (ϒ3) 17.7 7.33E-6 5.18E-11 1.00E-12

CPU, sec. 0.35 1.31 3.32 5.34

Example 4.3 Consider the following initial value problem for the inhomogeneous Bagley–Torvik
equation [81]

d2V (t)
dt2

+ D(3/2)

t [V (t)] + V (t) = t + 1, V (0) = 1,
dV (0)

dt
= 1, (79)

with the exact solution V (t) = t + 1. As it is shown in [82] the original Bagley–Torvik equation can
be rewritten as the system of FODEs of order 1/2

D(1/2)

t

⎡⎢⎢⎣
ϒ1 (t)
ϒ2 (t)
ϒ3 (t)
ϒ4 (t)

⎤⎥⎥⎦ = B̂

⎡⎢⎢⎣
ϒ1 (t)
ϒ2 (t)
ϒ3 (t)
ϒ4 (t)

⎤⎥⎥⎦ + F (t), B̂ =

⎡⎢⎢⎣
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1

−1, 0, 0, −1

⎤⎥⎥⎦ , F (t) =

⎡⎢⎢⎣
0
0
0

t + 1

⎤⎥⎥⎦, (80)

with the initial condition

ϒ1 (0) = 1, ϒ2 (0) = 0 , ϒ3 (0) = 1, ϒ4 (0) = 0, (81)

where the solution of the original Bagley–Torvik equation V (t) = ϒ1 (t). It can be easily proved that
the exact solution of the system (80) is

ϒex (t) = [
1 + t, 2t1/2/

√
π , 1, 0

]T
. (82)

According to the method described above, the approximate solution can be written in the form:

ϒM (t) = ϒex (0) +
M∑

m=1

qm�m (t), (83)

where

�m (t) = � (δm + 1)

� (δm + 3/2)
tδm+1/2, δm = σ (m − 1). (84)

As it follows from (82), (83)

ϒM (t) − ϒex (0) = [
t, 2t1/2/

√
π , 0, 0

]T =
M∑

m=1

qm�m (t).
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Thus, the approximate solution (83) contains the exact solution ϒex (t), if the sequence �m (t),
m = 1, . . . , M contains the functions t1/2 and t. As it follows from (84), this condition is fulfilled when
the sequence δm + 1/2 = σ (m − 1) + 1/2, m = 1, . . . ., M contains the values 1/2 and 1. For example,
if σ = 1/2, then δm + 1/2 = 1/2, 1, 3/2, . . . . and the expression (83) contains the exact solution ϒex (t)
beginning from M = 2. For σ = 1/4, we get the sequence δm + 1/2 = 1/2, 3/4, 1, . . . and for σ = 0.1,
we get the sequence δm + 1/2 = 1/2, 1/2 + 0.1, 1/2 + 0.2, 1/2 + 0.3, 1/2 + 0.4, 1/2 + 0.5 = 1, . . ..
Thus, for σ = 1/4 the exact solution ϒex (t) is included in (83) beginning from M = 3 and for σ = 0.1
beginning from M = 6.

The data placed in Table 3 demonstrate that if the approximate solution (83) contains the exact
solution ϒex (t), then the method calculates it up to the machine precision.

Table 3: The behavior of the errors with the growth of M for different parameter σ

M 1 2 3 4 5 6

emax (V) , σ = 0.5 0.202 4.44E-16 2.22E-16 4.44E-16 6.66E-16 6.66E-16
emax (V) , σ = 0.25 0.202 2.83E-2 2.22E-16 4.44E-16 4.44E-16 4.44E-16
emax (V) , σ = 0.1 0.202 4.48E-2 9.43E-3 1.95E-3 1.92E-4 8.88E-16

M 5 10 20 50 100 150

emax (V) , σ = π/20 9.94E-6 3.97E-8 1.03E-9 1.28E-10 1.55E-11 4.85E-12

The data placed in the last rows of Table 3 correspond to the general case when the information
of the solution is absent. We take σ = π/20 and there are no sequences �m (t), m = 1, . . . , M which
contain the functions t1/2 and t. As a result, the error decreases slowly and gradually. The method also
provides a high accuracy but with larger values of M.

The same problem has been studied in [81] on the time interval t ∈ [0, 5] using fractional linear
multistep methods based on the Adams-type predictor-corrector technique. As demonstrated in the
paper, the errors depend on time step size �t. For time step �t = 0.5 emax (ϒ1) = −0.15131473519232,
and for �t = 0.0625 emax (ϒ1) = −0.00562770408881. These data also are placed in Table C.3 of [2].
Note that the component ϒ1 (t) corresponds to the solution of the original Bagley–Torvik equation
(79).

Table 4 shows the results of the calculation by the proposed method on the time interval t ∈ [0, 5]
with the parameter of the MPB σ = π/20. It is obvious that the method presented provides a much
more accurate solution. With a special choice of parameter σ the accuracy is even higher. For example,
if σ = 0.25, M = 3, then emax (ϒ1) = 4.44E-15 and eRMS (ϒ1) = 1.91E-15.

Table 4: The behavior of the errors of the solution on the time interval [0, 5] with the growth of M for
σ = π/20

M 5 10 15 20 25

emax (ϒ1) 4.37E-5 5.58E-8 1.29E-9 1.07E-9 4.03E-10
eRMS (ϒ1) 3.40E-6 4.11E-9 1.08E-10 9.00E-11 3.70E-11
CPU (s) 0.09 0.16 0.27 0.35 0.45
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Example 4.4 Let us consider the multi-term system with time-dependent matrices

ÂD(
√

3)
t

[
ϒ1 (t)
ϒ2 (t)

]
+ Â1 (t) D(π/2)

t

[
ϒ1 (t)
ϒ2 (t)

]
+ Â2 (t) D(0.75)

t

[
ϒ1 (t)
ϒ2 (t)

]
+Â3 (t) D(0.25)

t

[
ϒ1 (t)
ϒ2 (t)

]
= B̂ (t)

[
ϒ1 (t)
ϒ2 (t)

]
+ F (t). (85)

The ICs are

ϒ1 (0) = 1, ϒ2 (0) = 0. (86)

Her

Â =
[

1, 0.1
0.1, 1

]
, Â1 (t) = 1

1 + t
Â, Â2 (t) = t

1 + t2
Â, Â3 (t) = t2

1 + t3
Â,

B̂ (t) = et

[
1, −0.1

−0.1, 1

]
. (87)

The vector F (t) corresponds to the exact solution

ϒex (t) =
[

exp (t)
sin (t)

]
. (88)

The data placed in Table 5 demonstrate the behavior of the error of the approximate solution with
the growth of M for σ = 0.1, 0.2 and 0.3. The method converges quite fast for all σ .

Table 5: The behavior of the errors with the growth of M for different σ

M 10 20 30 50 100 150

σ = 0.1

emax (ϒ1) 7.31E-3 5.6E-4 9.08E-6 1.86E-9 2.17E-13 4.31E-14
emax (ϒ2) 1.16E-3 3.13E-5 4.38E-7 6.14E-10 3.73E-14 8.53E-15

σ = 0.2

emax (ϒ1) 7.48E-5 2.32E-7 5.01E-10 1.62E-10 3.42E-11 1.28E-11
emax (ϒ2) 5.13E-6 4.83E-8 2.79E-11 1.11E-11 1.88E-12 5.88E-12

σ = 0.3

emax (ϒ1) 7.00E-7 1.17E-8 4.33E-9 1.35E-9 1.92E-9 5.20E-9
emax (ϒ2) 2.59E-7 7.32E-10 2.71E-10 9.39E-11 1.44E-10 3.07E-9

Similar to (83), (84), the approximate solution can be written in the form:

ϒM (t) = ϒex (0) + ∂tϒex (0) t +
M∑

m=1

qm�m (t) . (89)
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where

�m (t) = � (δm + 1)

�
(
δm + √

3 + 1
) tδm+√

3. (90)

In this case we use the additional information that the components of the solution ϒ1 (t), ϒ2 (t)
are analytical functions and can be approximated by the polynomials 1, t, t2, . . ., tM+1. If we set δm =
m + 1 − √

3, then �m (t) ∼ tm+1 and so, the exact solution ϒex (t) belongs to linear span of the
polynomials 1, t, t2, . . ., tM+1.

Table 6 demonstrates a dramatic decrease in the errors with the growth of M for this special choice
of δm when an additional information on the solution is added.

Table 6: The behavior of the proposed numerical scheme with the growth of M for δm = m + 1 − √
3

M 3 5 10 15

emax (ϒ1) 3.08E-4 2.36E-7 2.44E-15 1.33E-15
emax (ϒ2) 1.57E-4 1.26E-7 6.66E-16 3.33E-16

4.2 Numerical Experiments for TFPDEs
Example 4.5 Let us consider the multi-term TFPDE [83]

D(α)

t [v] + D(0.2)

t [v] = ∂xxv + f (x, t), 0 ≤ x, t ≤ 1. (91)

Here the source term f (x, t), IC and BCs conform to the exact solution v (x, t) = (
1 + t2

) (
x2 − x

)
.

Fig. 1 and Table 7 show the behavior of the errors of the approximate solution as the functions
of N (see (59)) with the fixed M. For M = 10 the errors decrease with the growth of N in the whole
range 2 ≤ N ≤ 26. This means that the error of the spatial approximation is the dominant error. While
for M = 5 the accuracy does not improve for N > 10. Therefore, in this case, the dominant error is
the error in the solution of the system of FODEs in time. Fig. 1 shows that all the curves Emax (N),
ERMS (N) originally lay on the same curve. They move away from this curve depending on the value of
M when the error due to approximation in time becomes dominant.

Figure 1: The maximal absolute Emax (left) and ERMS (right) errors as functions of the number of RBFs
used in the approximate solution. α = 0.95, σ = 0.3
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Table 7: The Emax, ERMS, and CO vs. N at t = 1 with M = 10, σ = 0.3

α = 0.95 α = 0.5 α = 0.25

N Emax ERMS CO Emax ERMS CO Emax ERMS CO

4 8.77E-3 1.96-2 2.8 9.07E-3 2.02-2 2.8 9.22E-3 2.06-2 2.8
8 7.45E-5 4.45E-4 5.9 7.47E-5 4.45E-4 5.97 7.48E-5 4.46E-4 5.99
12 3.05E-6 2.76E-5 8.3 3.05E-6 2.76E-5 8.25 3.05E-6 2.76E-5 8.25
16 1.81E-7 2.07E-6 10.4 1.81E-7 2.07E-6 10.4 1.81E-7 2.07E-6 10.4
20 1.24E-8 1.71E-7 12.6 1.24E-8 1.71E-7 12.6 1.24E-8 1.71E-7 12.6
24 9.49E-10 1.52E-8 14.5 9.54E-10 1.52E-8 14.6 9.22E-10 1.52E-8 14.8
26 5.80E-10 4.72E-9 6.1 6.74E-10 4.68E-9 4.34 5.89E-10 4.65E-9 5.6

[83], Table 1 Emax = 4.20E-4 Emax = 2.08E-5 Emax = 3.90E-6

Fig. 2 and Table 8 show the behavior of the errors as functions of M with the fixed N. It is evident
that the proposed scheme converges fast with the increase of M. For the larger M more accurate results
can be obtained. The same problem was studied by Jin et al. in [83] using the Galerkin FE method and
FD discretization of the time-fractional derivatives. Using h = 2−10 mesh size and the time step size
τ = 1/160, they obtained the data placed in the last row of Table 7. The comparison shows that the
method presented provides a much more accurate solution.

Example 4.6 Let us consider the multi-term TFPDE

D(π/4)

t [v] + t
1 + t

D(0.5)

t [v] + t2

1 + t2
D(0.25)

t [v]

= sinh (t) D(0.2)

t [L (x) [v]] + cosh (t) D(0.1)

t [L (x) [v]] + (
1 + t2

)
L (x) [v] + f (x, t), 0 ≤ x, t ≤ 1,

with the spatial operator L (x) [v (x, t)] = ∂x (cos (x) ∂xv (x, t)). The Dirichlet BCs and IC conform to
the exact solution v (x, t) = sin (x + t).

Figure 2: The maximal absolute Emax (left) and ERMS (right) errors vs. M with fixed N. α = 0.95, σ = 0.3
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Table 8: The TFPDE (91) with α = 0.95. The Emax, ERMS, and CO vs. M at t = 1 with N = 26 and
σ = 0.3

M Emax ERMS CO CPU, sec.

2 5.43E-3 1.33-2 2.4 0.5
4 1.16E-5 5.34E-5 13.0 0.8
6 7.85E-9 4.13E-8 17.1 1.2
8 1.25E-9 5.41E-9 7.5 1.8
10 5.80E-10 4.72E-9 0.3 2.3

Table 9 shows the errors, convergence order, and CPU time as the functions of N with the fixed
M. The data also are illustrated by the graphics in Fig. 3. With increasing of N the proposed method
converges fast, and we can obtain the errors around 10−9 with M = 10 and N = 20. It should also
be noted that with a small number of N = 4, the computed errors are around 10−3, which should be
sufficient for engineering applications.

Table 9: The Emax, ERMS, and CO vs. N at t = 1 with M = 10

N Emax ERMS CO CPU, sec.

4 2.43E-3 5.55E-3 3.7 0.5
8 2.96E-5 1.17E-4 5.8 0.9
12 9.79E-7 6.01E-6 9.2 1.5
16 4.50E-8 4.04E-7 11.1 2.4
20 3.52E-9 3.10E-8 9.7 3.1
24 1.53E-9 4.62E-9 0.03 3.7
26 4.17E-9 6.77E-9 – 4.1

Figure 3: The maximal absolute Emax (left) and ERMS (right) errors vs. N for different M

Table 10 and Fig. 4 show the errors vs. M with the fixed N to verify the performance of the
proposed scheme. The order of convergence is larger than 3.
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Table 10: The Emax, ERMS, and CO vs. the M at t = 1 with N = 26, σ = 0.3

M Emax ERMS CO CPU, sec.

2 1.31E-3 3.18E-3 1.6 0.8
4 1.28E-5 7.33E-5 10 1.3
6 9.44E-7 2.95E-6 4.2 2.5
8 7.01E-8 2.01E-7 12.7 3.2
10 3.05E-9 7.03E-9 5.7 4.6
12 4.26E-10 1.01E-9 7.0 6.2

Figure 4: The maximal absolute Emax (left) and ERMS (right) errors vs. M for different fixed N

Example 4.7 In the following examples we consider three cases for α > 1 to verify the performance
of the proposed scheme.

Case 1: Consider the following equation:

D(π/2)

t [v] + 1
1 + t

D(e/2)

t [v] + t
1 + t2

D(π/4)

t [v] + t2

1 + t3
D(e/4)

t [v]

= ∂2
xxv + f (x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T . (92)

Here we have 1 < α < 2 and the equation needs two ICs

v (x, 0) = cos x,
∂v (x, 0)

∂t
= − sin x.

The boundary conditions are

v (0, t) = cos (t), v (1, t) = cos (t + 1).

The exact solution of the problem is v (x, t) = cos (x + t) .

Case 2: Consider the following equation:

D(
√

5)
t [v] + cos t

1 + t
D(e/2)

t [v] + sin t
1 + t2

D(π/4)

t [v] + t2

1 + t3
D(e/4)

t [v]

= etL (x) [v] + f (x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T ,
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with the spatial operator L (x) [u (x, t)] = ∂x (cosh (x) ∂xu (x, t)). Here we have 2 < α < 3 and the
equation needs three ICs

v (x, 0) = sin x,
∂v (x, 0)

∂t
= cos x,

∂2v (x, 0)

∂t2
= − sin x.

The boundary conditions are

v (0, t) = sin (t), v (1, t) = sin (t + 1).

The exact solution of the problem is v (x, t) = sin (x + t) .

Case 3: Consider the following equation:

D(π)

t [v] + cosh t
1 + t

D(
√

5)
t [v] + sinh t

1 + t2
D(e/2)

t [v] + t2

1 + t3
D(π/4)

t [v]

= etL (x) [v] + f (x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T , (93)

with the spatial operator L (x) [v (x, t)] = ∂x (sinh (x) ∂xv (x, t)). Here we have 3 < α < 4 and the
equation needs four ICs

v (x, 0) = sin x,
∂v (x, 0)

∂t
= cos x,

∂2v (x, 0)

∂t2
= − sin x,

∂3v (x, 0)

∂t3
= − cos x. (94)

The boundary conditions are

v (0, t) = sin (t), v (1, t) = sin (t + 1). (95)

The exact solution of the problem is v (x, t) = sin (x + t) .

Tables 11, 12 show the errors with increasing of N with the fixed M. It is evident that the
proposed scheme provides very accurate results. Furthermore, for a small number of N, we can also
get moderately accurate results with errors around 10−6. For larger N the proposed scheme converges
faster. The accuracy of the proposed method is also demonstrated in Fig. 5. Finally, Table 13 shows

the error when the Gaussian RBF exp
(

−
(x

c

)2
)

is used in spatial aproximation. For a small number

of N the Gaussian RBF provides a more accurate solution than the MQ-RBF. For large N both RBFs
provide the results with errors of the same level of accuracy.

Table 11: The Emax, ERMS, and CO vs. the N at t = 1 with M = 10, σ = 0.3

N Emax ERMS CO CPU

10 2.37E-6 9.16E-7 5.62 0.8
14 1.00E-7 3.45E-8 10.0 1.0
18 5.31E-9 1.85E-9 12.5 1.2
22 9.32E-10 4.96E-10 4.4 1.4
26 5.46E-10 3.23E-10 – 1.6
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Table 12: The Emax, ERMS, and CO vs. the N at the time moment t = 1 with M = 25

N Emax ERMS CO CPU

8 4.19E-6 1.93E-6 5.51 1.7
12 1.61E-7 5.66E-8 8.29 2.3
16 7.61E-9 2.64E-9 10.7 3.0
20 4.74E-10 1.56E-10 12.7 4.7
24 6.17E-11 2.39E-11 7.53 6.9

Figure 5: The domain absolute errors
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Table 13: The errors vs. N at t = 1 with M = 25 using the MQ and the Gaussian as the basis functions

MQ c = 0.5 Gaussian c = 1

N Emax ERMS Emax ERMS

8 6.39E-7 2.62E-7 9.11E-10 4.69E-10
12 1.22E-7 4.79E-8 2.26E-10 1.37E-10
16 3.53E-9 1.36E-9 9.38E-11 5.91E-11
20 1.52E-10 5.52E-11 2.95E-10 1.85E-10
24 3.53E-11 1.75E-11 3.57E-11 2.13E-11

Example 4.8 Consider the nonlinear time-fractional the Huxley-Burgers’ equation of the following
form:

D(α)

t [v] = ∂xxv + v(1 − v)(v − γ ) + f (x, t), 0 ≤ x, t ≤ 1.

The Dirichlet BCs and IC conform to the exact solution v (x, t) = x3 (t + 1).

Tables 14, 15 and Fig. 6 show the behaviour of the errors with the growth of N and the fixed
M. The data are obtained after 3 iterations of the quazilinearization procedure. The same problem
was considered by Hadhoud et al. in [84] using a numerical technique based on the cubic B-spline
collocation method and the mean value theorem for integrals. The maximal absolute errors obtained
there for the mesh size �x = 0.01 and the time step �t = 0.01 are shown in the last rows of the
tables. The last columns of the tables contain the data corresponding to α = 1, i.e., to the solution of
the equation of the integer order. These data demonstrate that the proposed method can be used for
solving equations of fractional order as well as equations of integer order without any modification
of the algorithm.

Table 14: The errors concerning the change of the number of modified RBF N at time moment t = 1
with γ = 0.1, M = 12

α = 0.5 α = 0.75 α = 1

N Emax ERMS CO Emax ERMS CO CPU, sec. Emax

4 1.48E-2 3.40-2 3.7 1.48E-2 3.40-2 2.7 0.6 1.49E-2
8 2.43E-4 1.04E-3 5.8 2.43E-4 1.04E-3 5.3 1.6 2.49E-4
12 9.09E-6 5.83E-5 9.2 9.09E-6 5.83E-5 8.9 3.3 9.09E-6
16 4.50E-7 4.15E-6 11.1 4.51E-7 4.15E-6 11.0 5.6 4.50E-7
20 2.80E-8 3.22E-7 9.7 2.83E-8 3.32E-7 12.9 7.9 2.82E-8
24 2.24E-9 2.86E-8 0.03 2.83E-9 2.86E-8 10.8 9.7 2.31E-9

[84], Table 4, Emax = 4.32419E-5 Emax = 4.33585E-5

Example 4.9 Consider the TFPDE

D(α)

t [v] = ∂xxv + f (x, t), 0 ≤ x, t ≤ 1.
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Table 15: The errors concerning the change of the number of modified RBF N at time moment t = 1
with γ = 0.5, M = 12

α = 0.5 α = 0.75 α = 1

N Emax ERMS CO Emax ERMS CO CPU, sec. Emax

4 1.48E-2 3.39-2 2.7 1.48E-2 3.39-2 2.7 0.6 1.48E-2
8 2.45E-4 1.04E-3 5.3 2.46E-4 1.04E-3 5.4 1.6 2.46E-4
12 9.10E-6 5.83E-5 8.9 9.10E-6 5.83E-5 8.9 3.3 9.11E-6
16 4.50E-7 4.15E-6 11.0 4.51E-7 4.15E-6 11.0 5.6 4.51E-7
20 2.80E-8 3.32E-7 13.0 2.82E-8 3.32E-7 12.9 7.9 2.82E-8
24 2.20E-9 2.87E-8 14.2 2.64E-9 2.87E-8 11.7 9.7 2.32E-9

[84], Table 5, Emax = 1.30516E-5 Emax = 1.30943E-5

Figure 6: The maximal absolute Emax (left) and ERMS (right) errors as functions of the number of the
RBFs N used in the approximate solution. The data correspond to α = 0.5, γ = 0.1

The source function f (x, t), Dirichlet BCs v (0, t) = v (1, t) = 0 and IC v (x, 0) = 0 conform the
exact solution v (x, t) = x4 (1 − x) tα with the strong singularity at t = 0.

Table 16 shows the behavior of the errors with the growth of N with the fixed M = 12 and with
the parameter of the MPB σ = 0.3. The same problem was considered by Ferrás et al. in [85] using
a numerical technique based on the combination of the method of lines with the hybrid collocation
method. The maximal absolute errors obtained there are shown in the last row of the table.

Table 16: The errors concerning the change of the number of modified RBF N at time moment t = 1
with M = 12

α = 1/3 α = 1/6
N Emax ERMS CO Emax ERMS CO CPU, sec.

8 9.3253E-4 4.3268-3 5.56018 9.3218E-4 4.3260-3 5.55793 0.32
16 2.2861E-6 2.2668E-5 10.49099 2.2860E-6 2.2677E-5 10.49066 0.47

(Continued)
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Table 16 (continued)

α = 1/3 α = 1/6
N Emax ERMS CO Emax ERMS CO CPU, sec.

20 1.5849E-7 1.9733E-6 12.49289 1.5841E-7 1.9733E-6 12.49788 0.56
24 1.4215E-8 1.8169E-7 12.94107 1.4084E-8 1.8204E-7 13.94107 0.96

[85], Table 7, Emax = 8.93E-5 Emax = 7.04E-5

5 Conclusion

This paper presents a new meshless technique for solving multi-term linear systems of fractional
equations. These systems have been used in modeling various phenomena in different branches of
engineering and science. Using substitution (11), we transform the original system into the one for the
vector variable P (t) which satisfies zero ICs. Then P (t) is sought in the form of the finite series over
the Müntz polynomials basis. Applying the collocation procedure in the domain, we get the linear
algebraic system solved by the standard numerical procedure. Then, on the base of this technique,
the method of solving the TFPDE has been developed. The collocation at the centers of the RBF
transforms the TFPDE into a system of FODEs similar to the one considered in Section 2.

In the authors’ opinion, the main results achieved in the paper are: (1) The effective method for
solving systems of the FODEs with time-dependent coefficients has been developed and tested. (2)
On the base of this technique the method of solving TFPDEs of the high fractional order has been
proposed. The method has been tested on the problems with the highest derivative of the orders:
1 < α < 2, 2 < α < 3 and 3 < α < 4. (3) The technique has been extended to nonlinear the
Huxley-Burgers’ TFPDE. It should be stressed that the proposed method can be used for solving both
equations of fractional and integer order without any modification of the algorithm.

Some remarks: (1) In this paper the MQ-RBF is mainly used for spatial approximation. However,
the last example demonstrates that the Gaussian RBF is suitable for this purpose. The other global
RBFs, compactly supported RBFs and B-splines also can be used for spatial approximation in the
framework of the proposed technique. (2) Only the Dirichlet BCs are considered in this study. However,
the proposed technique can be extended to the problems with the boundary conditions of the general
type by some modification of the Eqs. (56)–(58). (3) Only (1 + 1) dimensional problems have been
considered. However, using multidimensional RBSs, this approach can be extended to the (2 + 1) and
(3 + 1) dimensional problems.

It should be remarked that the limitation of the presented technique is caused by the fast growth
of the size of the collocation matrix Ĉ of the linear system (31) with the growth of N and M. Because
Ĉ is the dense matrix the problem of ill-conditioning also arises.

To overcome this problem we presuppose the use of a localized scheme of the spatial approxima-
tion based on the compactly supported radial basis functions (CSRBF) in the future to avoid dense
and ill-conditioning matrices.

To overcome the problems of calculations on the large time interval [0, Tmax], we think of using the
approach developed in [86].

Let [0, Tmax] represent a sum of the subintervals:

[0, Tmax] = [0, T ] ∪ [T , 2T ] ∪ . . . . ∪ [(L − 1) T , LT ] .
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Solving the Eq. (1) in the first subinterval [0, T ], we use the ICs (10) of the original problem. As a
result of the solution we get the vectors

ϒ 1
0 = ϒ (T), ϒ 1

1 = ∂tϒ (T) ,….,ϒ 1
n−1 = ∂(n−1)

t ϒ (T),

which can be used as the initial data for solving the equation in the second subinterval [T , 2T ].
Applying the transform

t = τ + T ,

We get the equation for the unknown vector ϒ 2 (τ ) defined on the interval τ ∈ [0, T ]:

ÂD(α)

t

[
ϒ 2 (τ )

] +
K∑

k=1

Âk (τ + T) D(αk)
t

[
ϒ 2 (τ )

] = B̂ (τ + T) ϒ 2 (τ ) + F (τ + T), 0 ≤ τ ≤ T ,

with the ICs

ϒ 2 (0) = ϒ 1
0 , ∂tϒ

2 (0) = ϒ 1
1 ,….,∂(n−1)

t ϒ 2 (0) = ϒ 1
n−1.

Then, the vectors ϒ 2 (T), ∂tϒ
2 (T) , . . ., ∂(n−1)

t ϒ 2 (T) are used as the ICs for solving on the interval
t ∈ [2T , 3T ], etc. So, we solve the original equation at the same time interval τ ∈ [0, T ] with the
time-dependent coefficients computed at the shifted time τ + lT . The calculations are continued till
t = LT = Tmax. We can choose T small enough to reduce the value M and so the size of the collocation
matrix. It is worth emphasizing that in the paper mentioned above the system of 3 FODEs has been
solved on the time interval [0, Tmax] = [0, 5000]. All these items mentioned above will be the subjects
of the further study.
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