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ABSTRACT

Reducing casualties and property losses through effective evacuation route planning has been a key focus for
researchers in recent years. As part of this effort, an enhanced sparrow search algorithm (MSSA) was proposed.
Firstly, the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer
position update stage of the SSA algorithm. Secondly, the Cauchy-Gaussian perturbation was applied to the
optimal position of the SSA algorithm to improve its ability to jump out of local optima. Finally, the local
search mechanism based on the mountain climbing method was incorporated into the local search stage of the
SSA algorithm, improving its local search ability. To evaluate the effectiveness of the proposed algorithm, the
Whale Algorithm, Gray Wolf Algorithm, Improved Gray Wolf Algorithm, Sparrow Search Algorithm, and MSSA
Algorithm were employed to solve various test functions. The accuracy and convergence speed of each algorithm
were then compared and analyzed. The results indicate that the MSSA algorithm has superior solving ability and
stability compared to other algorithms. To further validate the enhanced algorithm’s capabilities for path planning,
evacuation experiments were conducted using different maps featuring various obstacle types. Additionally, a
multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.
Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multi-
exit evacuation path planning. The findings demonstrate that the MSSA algorithm outperforms the comparison
algorithm, showcasing its greater advantages and higher application potential.
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1 Introduction

With the rapid urbanization of China and the emergence of densely populated places, the large-
scale crowd gathering activities such as cultural tourism, conference forums, and sports events are
constantly increasing. However, the frequency of safety accidents associated with these gatherings has
surged significantly. For instance, a serious stampede accident occurred during the Halloween activities
of the Itaewon in Seoul on October 29th, 2022, and the high-density crowd could not be effectively
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and timely evacuated, resulting in 156 deaths. In the early morning of March 1st, 2022, a fire broke
out at the Ramad Shopping Center in the Syrian capital Damascus, causing 14 fatalities and 4 injuries.
Consequently, the planning and design of evacuation routes for crowds in such emergencies has become
a major focus of research [1].

One key component in the field of evacuation path research is the path planning algorithm. Based
on their characteristics, these algorithms can be categorized into classical intelligent optimization
algorithms and heuristic intelligent optimization algorithms [2]. Classical intelligent optimization
algorithms include algorithms such as the A∗ algorithm [3,4] and Tabu search algorithm [5,6], while
heuristic intelligent optimization algorithms encompass methods like grey wolf optimizer (GWO) [7],
ant optimization algorithm [8], particle swarm optimization [9], etc. Additionally, machine learning-
based algorithms have also been used by a large number of scholars in the study of path planning, such
as neural networks [10], support vector machines, or reinforcement learning techniques. Compared
with the dynamic path planning process of evacuation, classical intelligent optimization algorithms
suffer from drawbacks such as poor real-time performance and high randomness, and they are no
longer able to meet the needs of evacuation path planning. The heuristic intelligent optimization
algorithms can partially overcome these limitations. Thus, heuristic intelligent optimization algorithms
have been extensively studied by researchers due to their ability to provide fast solving speed, high
accuracy, and excellent real-time performance. Many scholars have designed and proposed numerous
intelligent optimization algorithms [11,12]. The intelligent optimization algorithms that excel in path
planning include the ant colony optimization algorithm inspired by the foraging process of the ant
colony [13], the fruit fly optimization algorithm proposed by simulating the predatory behavior of
fruit flies using their keen sense of smell and vision [14], the grey wolf optimization algorithm proposed
based on the internal social hierarchy and hunting behavior of the grey wolf population [15], and the
whale optimization algorithm proposed by imitating the social behavior of humpback whales [16].

Inspired by the foraging and anti-predatory behavior of sparrows, Xue et al. designed the sparrow
search algorithm (SSA) in 2020 [17]. Compared to other biomimetic intelligence algorithms, the
sparrow search algorithm exhibits strong problem-solving ability and faster convergence. As a result,
the sparrow search algorithm has attracted the attention of scholars and has been quickly applied
to different research fields, including power load forecasting [18], image processing [19], robot path
tracking [20], sensor network performance optimization [21], wireless positioning [22] and fault
diagnosis [23]. However, the basic sparrow search algorithm has low convergence accuracy in solving
multi-drone collaborative trajectory planning problems and is prone to falling into local optima.
Zhang et al. [24] proposed a modified sparrow algorithm using a logarithmic spiral strategy and an
adaptive ladder strategy. This adaptation allows it to plan coordinated flight trajectories with nearly
optimal cost and constraint conditions while ensuring time coordination. Jiang et al. [25] transformed
the route planning problem into a multidimensional function optimization problem by establishing a
three-dimensional task space model and a cost function for unmanned aerial vehicle route planning.
Additionally, they incorporated a chaos strategy, leveraging the convergence speed and exploration
ability of an adaptive inertia weight balancing algorithm. Furthermore, a trajectory planning method
based on a chaotic sparrow search algorithm was proposed by others [26] to solve the problems of high
computational complexity and difficult convergence in drone trajectory planning.

Given the widespread application of the sparrow search algorithm in unmanned aerial vehicle
trajectory planning, we aim to utilize this algorithm for personnel evacuation path planning. However,
due to the different goals and application scenarios between the two types of application areas,
the factors that the path algorithm needs to consider are also different. Drone trajectory planning
[27] involves determining an appropriate path for a drone to execute specific tasks (e.g., material
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transportation, patrols, etc.) while ensuring the drone reaches the target location with precision,
efficiency, and safety. Factors considered in trajectory planning include the position of the drone, flight
speed, flight altitude, terrain, wind conditions, obstacles, etc. [28]. This planning is usually completed
by robot control algorithms and can be achieved through mathematical models and optimization
algorithms. Pedestrian evacuation path planning [29] refers to the planning of a suitable path to
respond to emergencies, enabling pedestrians to evacuate quickly and safely to secure areas. The
factors that need to be considered in path planning include personnel distribution, safety exits, path
restrictions such as stairs, as well as personnel flow, and evacuation time [30].

The sparrow search algorithm can plan routes based on the current location, target location,
obstacles and other information. It then optimizes decisions within the stochastic process using
available information. However, the sparrow algorithm also possesses certain flaws and shortcomings.
In the early stages of algorithm iteration, the search range is limited, and cannot perform effective
global searches. And there is a risk of falling into local optimal solutions in the later stage of iteration.
Therefore, there is scope for targeted optimization [31]. In response to these problems, scholars
continue to optimize and improve this algorithm. For instance, Xin et al. [32] initialized the population
through a Tent chaotic sequence. This strategy increased the diversity of the initial population and
enhanced the global search capability of the algorithm. Wei et al. [33] employed the logistic-tent
mapping for population initialization to enhance diversity in the population. Also, an adaptive period
factor is introduced into the producer’s update position equation. This manuscript addresses the
deficiencies of the aforementioned sparrow search algorithm and introduces an improved sparrow
search algorithm (MSSA). The major contributions are summarized as follows:

(1) The Golden Sine Cosine Algorithm and a nonlinear weight factor are introduced into
the Sparrow Algorithm Producer Update Equation, thereby enhancing the global and local search
capabilities of the discoverers.

(2) The Gaussian Cauchy perturbation strategy is added to the proposed algorithm, which is to
improve its ability to escape local optima.

(3) The strategy of mountain climbing is presented to improve the local search ability of the SSA
algorithm.

To evaluate the effectiveness of the improved algorithm, we conducted comparative experiments
using five different algorithms, including the SSA algorithm, MSSA algorithm, WOA algorithm,
GWO algorithm, and IGWO algorithm, to solve the standard test functions, aiming to verify and
assess the effectiveness of the improved algorithm. Ultimately, the comparative experiments with
the evacuation simulation model built by the grid method were carried out to prove the proposed
algorithm’s potential for practical engineering applications.

2 Basic Principles of Sparrow Search Algorithm

The sparrow search algorithm [17] initially divides the sparrow population into two different types:
discoverers and followers. Then the third type of individuals, i.e., the scouts, is randomly chosen among
the discoverers and followers. The discoverers are responsible for locating food sources for the entire
population. During the food search, the followers may temporarily deviate from the following state and
explore other places in search of abundant food sources. On the other hand, the scouts are responsible
for issuing danger alarm signals to alert the population.

The sparrows follow the discoverers, and the number of discoverers accounts for 10%–20% of
the total population. The equation for updating the position of the discoverers in the sparrow search
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algorithm is shown in Eq. (1).

xt+1
i,j =

⎧⎨
⎩

xt
i,j · exp

(
− i

α · itermax

)
, if R2 < ST

xt
i,j + Q · L , if R2 ≥ ST

(1)

In Eq. (1), xt
i,j represents the position of the i-th sparrow individual in the j-th dimension of the

t-th cycle. α is a random number with a value range of [0, 1]. itermax denotes the maximum number of
iterations. R2 is the warning value, and ST represents the safety value. When R2 < ST , the discoverer
can search within the current location range. When R2 ≥ ST , the discoverer will narrow the search
range and lead the sparrow population to move to other areas. Q is a random number subject to
normal distribution. L is a matrix of 1 × d with all elements equal to 1. This matrix can be omitted for
the position information of each sparrow individual, and the calculation process will be simplified for
each dimension of the sparrow individual to reduce the overall calculation amount and computational
complexity. The equation for updating the discoverer’s position by omitting matrix L is shown in
Eq. (2).
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⎩
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)
, if R2 < ST

xt
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(2)

Within the iteration cycle, the discoverer is the sparrow with the best position among individuals
in the sparrow population, while the other sparrows act as followers and scouts. The equation for
updating the positions of the followers is shown in Eq. (3).
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In Eq. (3), Q is a random number that follows a normal distribution, A is a matrix of 1 ∗ D. L
is also a matrix of 1 ∗ d dimensions and all elements are 1. Both A and L can be omitted, and the
equation of followers position update optimized as shown in Eq. (4).
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In Eq. (4), xwt
i,d is the worst-case position of the i-th sparrow in the d-th dimension during the t-th

iteration. xbt
i,d denotes the optimal sparrow position within the population during the t-th iteration.

xt
i,d represents the optimal position of the i-th sparrow in the d-th dimension during the t-th iteration

of the population. When i > n/2, the fitness value of this follower is poor, and the follower will move
to a position with better fitness. When i ≤ n/2, it indicates that the individual fitness value of this
follower is good, approaching the finder’s position, and searching for food could be carried out near
this position.

Within the sparrow population, 10% to 20% of individuals are responsible for reconnaissance and
warning. In each iteration, sparrow individuals are randomly selected from discoverers and followers
to become scouts. The equation for updating the scout’s position is shown in Eq. (5).
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(5)
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In Eq. (5), xbt
i,d represents the optimal sparrow position within the population during the t-th

iteration. β is a random number subject to standard normal distribution. k is a uniform random
number with a value range of [−1, 1]. ε is a minimum constant that prevents the denominator from
being unique. fi is the fitness value of the i-th sparrow individual. fw is the optimal fitness value in the
current iteration. fw is the worst fitness value in the current iteration. When fi = fg, the sparrow at the
best position in the population will move to a position nearby as a scout. When fi �= fg, this scout
sparrow individual is not in the optimal position within the population and needs to move towards
the optimal position in the population.

3 Improved Sparrow Search Algorithm
3.1 Adding Golden Sine Algorithm to Improve Update Strategy

The Golden Sine Algorithm, proposed by Tanyildizi et al. in 2017, is based on scanning within
the unit circle of the sine function, similar to the spatial search for target solving [34]. This algorithm
explores all points within the unit circle and integrates the golden section method to approach the
optimal solution. The algorithm has the characteristics of fewer parameter settings, good robustness,
and fast convergence speed.

The algorithm first randomly generates S population individual positions, corresponding to the
potential solutions of the target problem. The equation for updating the position of the i-th individual
is shown in Eq. (6).

X d
i (t + 1) = X d

i (t) ∗ | sin(r1) + r2 ∗ sin(r1)| ∗ X1 ∗ pd(t) − X2 ∗ X d
i (t) (6)

In Eq. (6), X d
i (t) represents the position of the i-th individual in the t-th iteration of the d-

dimensional space. Pd(t) is the global optimal position of the individual in the t-th iteration. r1 is
a randomly generated number within the range of [0, 2π ], which affects the individual’s movement
distance. r2 is a random number within the range of [0, π ], which affects the direction of individual
position updates. X1 and X2 are coefficients of the golden section number, and the golden section
number τ is an irrational number defined as

(√
5−1/2

)
. The introduction of these coefficients enables

the algorithm to converge quickly while approaching the optimal value. The expressions of X1 and X2

are shown in Eq. (7).

X1 = ατ + b(1 − τ)

X2 = α(1 − τ) + bτ
(7)

In Eq. (7), the initial values of α and b are set to be −π and π , and then the values of α and b
change with the target value. The values of X1 and X2 are also updated accordingly.

Based on the description of the Golden Sine algorithm, it can be seen that during the iteration
process, the individual optimal position X d

i (t) and global optimal position Pd(t) have a good fit with
the individual optimal position and global optimal position of the sparrow population. Hence, in the
code design of the algorithm, the golden sine algorithm can be introduced as two factors to replace the
sparrow search algorithm to improve the global and local search capabilities of the sparrow population
discoverer.

3.2 Nonlinear Weight Factor Optimization Strategy
On the basis of adding the golden sine algorithm, the algorithm further optimizes the location

update method of the discoverers by introducing a nonlinear weight factor ω2. The calculation equation
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is provided in Eq. (8).

ω2 = 1 −
(

cos
(

t ∗ pi
Max_iter

+ ωmax

)
∗ (ωmax + ωmin)

2
+ α

)
(8)

In Eq. (8), t represents the current number of iterations, and pi is the π .Max_iter denotes the
maximum number of iterations. ωmax, ωmin and α are the calculation parameters for the weight factor.
ωmax = 0.9, ωmin = 0.2, α = 0.45. The MSSA algorithm, incorporating the optimization strategies
of the Golden Sine algorithm and the nonlinear weight factor, updates the discoverer position code
segment as depicted in Table 1.

Table 1: Introduction of Golden Sine Algorithm optimization strategy and nonlinear weight factor

Code

if R2 < ST
for i = 1:recover_Num
X(Index(i),:) = ω2 ∗ pbest(Index(i),:) ∗ abs(sin(r1))-
r2 ∗ sin(r1) ∗ abs(c1 ∗ gbest-c2 ∗ pbest(Index(i),:));
% Discoverer location update
fit(Index(i)) = fun(X(Index(i),:),G); % Update of fitness value
end
else
X(Index(i),:) = pbest(Index(i),:) + randn(1) ∗ ones(1, dim); % Fly to other places
end

3.3 Fusion of Mountain Climbing Method and Gaussian-Cauchy Perturbation Strategy
Heuristic algorithms can effectively reduce the solving time and improve the operational efficiency

of the algorithm. In this article, we propose the MSSA algorithm introduces the mountain climbing
method as a local search strategy. Then the search accuracy of the individual optimal position and
optimal fitness value of the sparrow population could be improved. When compared with the simulated
annealing algorithm and tabu search algorithm, the mountain climbing method has the advantage of
reducing algorithm runtime and improving algorithm efficiency. Incorporating the mountain climbing
method as an optimization strategy for the optimal position generated by the iterative cycle can quickly
traverse the area near the optimal position searched by the algorithm. However, the mountain climbing
method may become trapped in local optima. Therefore, it is necessary to increase the ability to jump
out of the current position while traversing the surrounding positions. To address this, a Gaussian-
Cauchy perturbation strategy is incorporated into the optimal position. The implementation logic of
this strategy is to increase the perturbation coefficient to the search range of the current loop optimal
position when the mountain climbing method greedily traverses it. This perturbation coefficient can
offer a probability of escaping the current optimal position and enhancing the search ability of the
global optimal position.

The MSSA algorithm proposed in this article adopts a Gaussian-Cauchy perturbation strategy,
which can combine these two types of perturbations. Before calculating the perturbation of the
optimal position, a random number is generated. If the random number is greater than 0.5, Gaussian
perturbation will be used for calculation. Conversely, if the random number is less than 0.5, Cauchy



CMES, 2024, vol.139, no.2 1301

perturbation will be used. The obtained perturbation probability will participate in the greedy traversal
search for the optimal position of the mountain climbing method. Both distributions can improve and
enhance the algorithm’s capability to escape local optima when utilized for algorithm optimization.
The code snippet for the Gaussian-Cauchy perturbation strategy is shown in Table 2.

Table 2: The code snippet for Gaussian-Cauchy perturbation strategy

Code

if rand > 0.5
bestX_rct = gbest.∗(1 + gauss); % Gaussian perturbation strategy
else
bestX_rct = gbest.∗(1 + cauchy); % Cauchy perturbation strategy
end

bestX_rct represents the global most significant position after adding the disturbance strategy,
which will be involved in the calculation of greedy traversal of the mountain climbing method in the
future. gbest is the global optimal position within the current iteration cycle.

3.4 The Running Process of the MSSA Algorithm
This section combines the above four improvements with traditional SSA algorithms, including

the Golden Sine Cosine Algorithm optimization strategy, nonlinear weight factor optimization
strategy, mountain climbing local search strategy, and Gaussian Cauchy perturbation strategy. Then,
an improved Sparrow Optimization Algorithm (MSSA) was proposed. Referring to the flowchart of
the algorithms in the literature [35], the flowchart of MSSA is shown in Fig. 1.

3.5 Time Complexity Analysis of MSSA Algorithm
To evaluate the performance of the improved MSSA algorithm, the time complexity analysis was

conducted. In this analysis, N is the total number of the sparrow population, and n represents the
individual dimension. t0 represents the initialization time, while t1 is the initialization time of each
dimension of the sparrow population. The calculation time for the individual fitness value of the
sparrow population is denoted by f (n), and the time for determining the distribution of discoverers
and followers in sparrow population based on the fitness value is t2. The time complexity of the MSSA
algorithm and SSA algorithm during the initialization stage is the same, as shown in Eq. (9).

T1 = o(t0 + N · (n · t1 + f (n) + t2) = o(n + f (n)) (9)

After initialization, the algorithm enters the iteration loop stage, with Max_iter representing the
maximum number of iterations. Within a single iteration cycle, the time required for calculating the
nonlinear weight factor ω2 is d1. As the MSSA algorithm is improved by the Golden Sine algorithm,
which directly updates the location of the discoverer without any additional computational steps, the
time required for updating the location of the discoverer in the MSSA algorithm is t3. The time required
for updating the follower positions of the sparrow population is t4. The time required for updating
the position of sparrow individuals responsible for detecting and warning sparrow populations is
t5. The time required to calculate the individual position of the sparrow population is t6. The time
required to calculate the disturbance probability based on the Gaussian Cauchy perturbation strategy
is d2. The time required to calculate the optimal position of the sparrow population using the local
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search strategy mountain climbing method is d3. If the time to calculate the individual fitness value of
the sparrow population is f (n), the time complexity of the sparrow search algorithm within a single
iteration cycle is shown as Eq. (10):

T2 = o(N · (d1 + t3 + t4 + t5) + n · (t6 + d2 + d3) + f (n)) = o(n + f (n)) (10)

Since Max_iter is a fixed value, the time complexity of the iteration cycle of the MSSA algorithm
can be considered as the product of the time complexity of a single iteration cycle and the total number
of iterations, then the time complexity of the sparrow search algorithm is given by Eq. (11):

T = T1 + Max_iter · T2 = o(n + f (n)) (11)

Based on the above analysis, it can be concluded that the time complexity of the SSA algorithm
and MSSA algorithm is of the same order of magnitude. MSSA algorithm not only enhances global
search and local search capabilities, but also does not affect the actual operational efficiency of the
algorithm.

Figure 1: MSSA algorithm flowchart
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4 Optimization Achievement Test of Improved Sparrow Search Algorithm

The performance testing of intelligent optimization algorithms requires the application of the
standard test functions and functionalized engineering problems. Speed and robustness should be
assessed by comparing the results. The specific steps involve determining the performance of different
intelligent optimization algorithms by comparing their optimal values, average values, and variance
using standard test functions under the same experimental environment. Alternatively, by examining
the optimal solution change curve of the algorithm during the iteration process, we could analyze
which algorithm exhibits a faster descent speed from the origin to any number of iterations to assess
their convergence speed. The above performance testing methods mainly evaluate the performance of
intelligent optimization algorithms from two perspectives: computer resource consumption and the
quality of results obtained. These criteria are vital for evaluating algorithm performance.

4.1 Introduction to Standard Function Test Set
In response to the MSSA algorithm proposed in Section 3, this chapter employs the standard test

functions to test its optimization and solving capabilities, where the functions F1∼F5 are the unimodal
test functions, and the functions F6∼F10 represent multimodal testing functions. Additionally, the
whale algorithm (WOA), grey wolf algorithm (GWO), and improved grey wolf algorithm (IGWO)
integrating CS algorithm strategy are introduced for comparative testing of optimization capabilities.
The test results are analyzed based on two criteria: optimization accuracy and convergence speed,
which are aimed at verifying the effectiveness of the improved optimization strategy. To ensure accu-
racy, reliability and mitigate the impact of sporadic results on the evaluation of algorithm performance,
the five algorithms participating in comparative analysis will undergo 50 repeated experiments. These
experiments will analyze the optimal value, average value, and variance of the results. The optimal
value of the search results reflects the upper limit of the search ability of each algorithm, i.e., the
ability to approximate the optimal value of the test function. The average value represents the central
value within the set of multiple search results, thereby avoiding the impact of accidental optimal
results on the assessment of the algorithm’s search ability. By calculating the variance of the solution
results, it is possible to visually assess the degree of dispersion in the distribution of each algorithm’s
solution results, thereby reflecting the advantages and disadvantages of each algorithm. In addition,
the simulation experiment software and hardware platforms used are consistent. The operating system
is Windows 10, and the simulation software employed MATLAB R2018b. Table 3 illustrates the 10
standard test functions used in this article.

Table 3: The standard test function

Number Function Function dimension N Variable value
range S

Optimal value F

Unimodal test function
F1 Sphere Function 30/60/90 [−100;100]n 0
F2 Schwefel’s Problem

2.22
30/60/90 [−10;10]n 0

F3 Schwefel’s Problem 1.2 30/60/90 [−100;100]n 0
F4 Schwefel’s Problem

2.21
30/60/90 [−100;100]n 0

(Continued)
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Table 3 (continued)

Number Function Function dimension N Variable value
range S

Optimal value F

F5 Generalized
Rosenbrock’s Function

30/60/90 [−30;30]n 0

Multimodal test function
F6 Generalized Schwefel’s

Problem 2.26
30/60/90 [−500;500]n −12569.5

F7 Generalized
Rastrigin’s Function

30/60/90 [−5.12;5.12]n 0

F8 Ackley’s Function 30/60/90 [−32;32]n 0
F9 Generalized

Griewank’s Function
30/60/90 [−600;600]n 0

F10 Generalized Penalized
Function 1

30/60/90 [−50;50]n 0

4.2 Comparative Analysis of Optimization Results
Table 4 displays the results obtained by solving unimodal test functions for five algorithms. A

detailed comparison is made among the optimal value, mean value, and variance to further evaluate
the solving ability of the improved algorithm.

Table 4: The results of solving the test function
Function Algorithm d = 30 d = 60 d = 90

Optimal Mean Variance Optimal Mean Variance Optimal Mean Variance

SSA 1.25E − 18 8.72E − 66 7.61E − 13 0.00E + 00 2.09E − 18 4.35E − 35 4.23E − 15 1.14E − 68 1.31E − 135
MSSA 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 8.17E − 97 6.01E − 192 0.00E + 00 0.00E + 00 0.00E + 00

F1 WOA 5.19E − 72 8.11E − 62 6.57E − 12 2.34E − 71 7.74E − 66 4.96E − 130 5.22E − 71 1.27E − 58 1.61E − 115
GWO 3.38E − 29 8.42E − 28 6.03E − 55 0.00E + 00 1.13E − 17 8.59E − 35 5.42E − 14 2.11E − 13 2.27E − 26
IGWO 8.30E − 35 3.17E − 33 2.23E − 65 0.00E + 00 6.57E − 22 1.31E − 42 1.07E − 17 6.86E − 17 2.55E − 33

SSA 6.60E − 67 6.94E − 37 3.00E − 72 1.63E − 79 3.16E − 34 9.07E − 67 2.55E − 73 1.03E − 34 1.06E − 67
MSSA 3.29E − 18 1.99E − 16 0.00E + 00 1.49E − 18 9.72E − 16 0.00E + 00 1.02E − 18 1.17E − 16 0.00E + 00

F2 WOA 5.21E − 54 8.62E − 48 6.35E − 94 1.43E − 54 3.28E − 47 5.94E − 93 1.89E − 52 4.44E − 44 8.65E − 87
GWO 8.94E − 18 9.66E − 17 4.06E − 33 2.25E − 11 3.55E − 11 8.18E − 23 7.96E − 09 1.18E − 08 2.35E − 17
IGWO 2.03E − 21 1.96E − 20 4.23E − 40 5.77E − 14 1.55E − 13 6.33E − 27 4.39E − 11 7.89E − 11 1.63E − 21

SSA 1.25E − 12 3.12E − 54 9.74E − 11 2.64E − 28 1.34E − 56 1.75E − 111 1.81E − 23 4.36E − 64 1.88E − 126
MSSA 1.10E − 30 1.88E − 26 0.00E + 00 1.35E − 30 1.65E − 26 0.00E + 00 2.13E − 29 7.19E − 23 0.00E + 00

F3 WOA 1.78E + 04 5.21E + 04 2.12E + 08 2.40E + 05 3.77E + 05 7.60E + 09 2.66E + 05 4.10E + 05 1.91E + 10
GWO 1.67E − 07 1.03E − 05 6.19E − 10 1.75E − 01 3.64E + 00 1.63E + 01 1.97E + 01 2.01E + 02 2.95E + 04
IGWO 9.74E − 10 2.48E − 07 3.65E − 13 3.73E − 04 3.35E − 01 6.63E − 01 1.58E − 01 1.45E + 02 2.45E + 04

SSA 3.34E − 76 4.36E − 37 1.65E − 72 1.75E − 11 2.34E − 40 5.49E − 79 7.14E − 10 2.35E − 41 5.55E − 81
MSSA 4.37E − 20 5.54E − 17 0.00E + 00 4.19E − 30 5.78E − 17 0.00E + 00 3.00E − 19 3.48E − 16 0.00E + 00

F4 WOA 1.77E + 01 5.76E + 01 4.52E + 02 6.42E + 01 8.51E + 01 7.61E + 01 1.12E + 01 6.19E + 01 1.11E + 03
GWO 9.56E − 08 9.87E − 07 1.17E − 12 3.73E − 04 2.75E − 03 1.02E − 05 4.15E − 02 3.62E − 01 4.47E − 01
IGWO 6.92E − 10 5.76E − 09 3.33E − 17 1.55E − 05 5.28E − 05 4.78E − 10 1.30E − 03 5.46E − 03 4.68E − 05
SSA 7.12E − 07 5.51E − 05 6.75E − 09 9.01E − 05 2.61E − 04 2.34E − 08 5.00E − 08 1.79E − 04 7.41E − 08
MSSA 3.11E − 09 4.28E − 05 3.94E − 09 8.10E − 07 3.71E − 04 5.69E − 07 1.15E − 06 4.61E − 04 1.12E − 06

F5 WOA 2.77E + 01 2.82E + 01 2.00E − 01 5.77E + 01 5.84E + 01 7.78E − 02 8.82E + 01 8.84E + 01 1.59E − 02

(Continued)
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Table 4 (continued)

Function Algorithm d = 30 d = 60 d = 90

Optimal Mean Variance Optimal Mean Variance Optimal Mean Variance

GWO 2.56E + 01 2.69E + 01 7.48E − 01 5.70E + 01 5.79E + 01 3.89E − 01 8.60E + 01 8.76E + 01 5.52E − 01
IGWO 2.63E + 01 2.71E + 01 3.22E − 01 5.69E + 01 5.77E + 01 5.02E − 01 8.61E + 01 8.80E + 01 6.51E − 01

SSA −8.97E + 03 −7.90E + 03 4.36E + 05 −1.58E + 04 −1.48E + 04 7.21E + 05 −2.37E + 04 −2.17E + 04 2.23E + 06
MSSA −1.26E + 04 −1.20E + 04 6.13E + 05 −1.50E + 04 −1.50E + 04 1.47E − 23 −3.77E + 04 −3.57E + 04 6.66E + 05

F6 WOA −1.25E + 04 −9.83E + 03 2.47E + 06 −2.51E + 04 −2.17E + 04 1.55E + 07 −3.64E + 04 −2.77E + 04 1.20E + 07
GWO −6.97E + 03 −6.17E + 03 4.28E + 05 −1.26E + 04 −9.72E + 03 4.58E + 06 −1.78E + 04 −1.56E + 04 2.33E + 06
IGWO −5.07E + 03 −4.43E + 03 1.71E + 05 1.12E + 04 −8.04E + 03 4.99E + 06 −1.48E + 04 −1.16E + 04 2.96E + 06

SSA 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
MSSA 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F7 WOA 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
GWO 5.68E − 14 7.44E − 01 4.07E + 00 1.59E − 12 3.97E + 00 1.59E + 01 8.29E − 11 3.56E + 00 1.44E + 01
IGWO 0.00E + 00 8.19E − 13 2.03E − 24 2.27E − 13 1.23E + 00 8.10E + 00 1.02E − 12 4.03E − 01 1.62E + 00

SSA 8.88E − 16 3.73E − 15 8.08E − 29 8.88E − 16 8.88E − 16 4.32E − 62 8.88E − 16 8.88E − 16 4.32E − 62
MSSA 8.88E − 16 8.88E − 16 4.32E − 62 8.88E − 16 8.88E − 16 4.32E − 62 8.88E − 16 8.88E − 16 4.32E − 62

F8 WOA 8.88E − 16 4.09E − 15 4.07E − 30 0.00E + 00 4.35E − 15 9.19E − 30 8.88E − 16 4.09E − 15 4.07E − 30
GWO 7.90E − 14 9.82E − 14 1.04E − 28 1.84E − 10 4.70E − 10 5.96E − 20 8.33E − 10 5.75E − 08 1.69E − 15
IGWO 2.93E − 14 3.39E − 14 2.26E − 29 1.15E − 12 3.34E − 12 3.33E − 24 6.32E − 10 9.90E − 10 2.79E − 19

SSA 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
MSSA 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

F9 WOA 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
GWO 0.00E + 00 1.12E − 02 1.39E − 04 0.00E + 00 7.81E − 03 1.67E − 04 3.89E − 14 2.05E − 03 4.20E − 05
IGWO 0.00E + 00 1.54E − 03 2.38E − 05 0.00E + 00 2.31E − 03 5.32E − 05 0.00E + 00 3.73E − 03 6.20E − 05

SSA 1.01E − 11 1.42E − 03 2.01E − 05 5.43E − 10 9.48E − 09 1.26E − 16 7.82E − 10 5.57E − 08 1.73E − 14
MSSA 7.20E − 11 4.03E − 09 4.93E − 17 4.13E − 12 4.95E − 08 1.05E − 14 6.50E − 13 2.18E − 09 2.59E − 15

F10 WOA 3.42E − 02 1.14E − 01 3.30E − 02 0.00E + 00 4.35E − 15 9.19E − 30 4.70E − 02 9.15E − 02 2.09E − 03
GWO 2.08E − 02 5.26E − 02 8.39E − 04 7.72E − 02 1.42E − 01 2.65E − 03 1.27E − 01 2.21E − 01 3.28E − 03
IGWO 1.08E − 02 3.34E − 02 2.84E − 04 5.21E − 02 1.02E − 01 1.71E − 03 1.72E − 01 2.25E − 01 1.71E03

To analyze the performance of the MSSA algorithm more intuitively, we compared the results
(including optimal value, mean value, and variance) under identical conditions. Table 4 reveals that,
except for solving functions 6 and 5, the MSSA algorithm has slightly worse computational perfor-
mance compared to some algorithms, while in other cases it generally shows strong computational
power. The results of solving the different functions under 30-dimensional, 60-dimensional, and
90-dimensional conditions show that although the MSSA algorithm does not outperform other
algorithms under all conditions, it has significant advantages overall compared to other algorithms
in the optimal value, mean value, and variance. The results prove that the MSSA algorithm possesses
strong computational capabilities for solving problems, thereby establishing a solid foundation for
subsequent practical engineering applications.

4.3 Comparative Analysis of Convergence Curve Results of Test Functions
Fig. 2 illustrates the convergence curves for the iteration of different functions under 30-

dimensional conditions. The dark blue line, green line, sky blue line, red line, and black line in
Fig. 2 represent the calculation results of GWO, IGWO, SSA, MSSA, and WOA, respectively. The
convergence curves of the functions F1∼F10 intuitively illustrate that the MSSA algorithm exhibits
rapid convergence speed and can quickly approach the optimal value of the function during the early
stages of convergence, which has a significant advantage compared to other algorithms. By conducting
a detailed analysis of the convergence curves, it can be concluded that the MSSA algorithm has a
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significant advantage in convergence speed during solving the functions F1, F2, F3, F4, F6, F8, F9, and
F10. While solving the function F5, the SSA algorithm initially exhibits slightly faster convergence
speed than the MSSA algorithm. However, it becomes evident that the MSSA algorithm possesses
a stronger ability to escape local optima and converge towards the optimal value faster after 200
iterations. Moreover, when solving the function F7, there is no significant difference in convergence
speed among the five algorithms during the initial iteration stage. However, in the middle of the
iteration, all five algorithms fall into local optima, and the convergence curves become horizontal.
In the later stage of the iteration, the MSSA algorithm outperforms others by successfully escaping
local optima and approaching the optimal value, hereby exhibiting distinct advantages over other
comparative algorithms.

(a) F1 function (b) F2 function 

  
(c) F3 function (d)F4 function 

Figure 2: (Continued)
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(g) F7 function (h) F8 function

(i) F9 function (j) F10 function

  
(e) F5 function (f) F6 function 

Figure 2: Convergence curves of different algorithms for solving different test functions
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5 Application of the MSSA Algorithm in Path Planning

Based on the achievement test of the improved algorithm in the fourth section, the path planning
capability of the algorithm in evacuation scenarios is evaluated. Initially, the grid method is employed
to construct evacuation path planning scenes with different types of obstacles. Subsequently, the
five algorithms are utilized for path planning experiments, and the path results are compared and
analyzed. Additionally, based on the actual teaching building environment, a simplified grid map is
created. Consequently, the MSSA algorithm is then applied in multi-exit evacuation path planning
simulation experiments to verify the improved algorithm’s evacuation path planning efficacy in multi-
exit environments.

5.1 Evacuation Environment Models with Different Obstacle Distribution
There are two types of map types set up in the simulation experiment. The obstacle layout of

map 1 mainly considers the pathfinding ability of the test algorithm under the scattered distribution
of obstacles, while the obstacle layout of map 2 mainly considers the pathfinding ability of the test
algorithm in multi-corner terrain. Both maps are 40 grids ∗ 40 grids in size, as depicted in Fig. 3.

Figure 3: The maps of 40 grids ∗ 40 grids

5.1.1 Optimal Path Planning for Map 1

(1) Qualitative description of the optimal path

In the case of map 1, the optimal path planning results of five comparative algorithms are
shown in Fig. 3. It can be intuitively observed that the MSSA algorithm plans the optimal path more
smoothly compared to other algorithms. There is no significant back and forth on the trajectory,
thereby reducing the total length of the optimization path. Indeed, the optimal path planned by the
MSSA algorithm is proven to be the shortest. From the simulation results, the optimal path lengths of
Figs. 4a–4e are 126.5998, 64.6762, 126.4237, 120.5461, 112.2164, respectively. The MSSA algorithm
provides an optimal path that is nearly half the length of the path planned by other algorithms. To more
accurately evaluate the performance of these five algorithms in path planning, additional quantitative
analysis is required.

(2) Qualitative analysis of the optimal path

To avoid errors caused by a single simulation result, we used the above five intelligent algorithms
to plan the path for map 1 with 50 times simulation. The results, including the optimal path length,
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average path length, iteration times of optimal path length, and minimum inflection points, are shown
in Table 5.

Figure 4: The optimal path planning for map 1

Table 5: Comparison of map 1 results

Algorithm The optimal path
length

Average path length Iteration times of
the optimal path
length

Minimum
inflection points

SSA 125.5 129.6 196 50
MSSA 68.7 70.1 78 25
WOA 128.5 134.8 73 48
GWO 120.1 125.4 195 48
IGWO 110.3 113.5 185 47
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Table 5 displays the lengths of the optimal paths provided by the SSA algorithm, MSSA algorithm,
WOA algorithm, GWO algorithm, and IGWO algorithm, which are 125.5, 68.7, 128.5, 120.1, and
110.3, respectively. The path planned by the MSSA algorithm experiences a substantial reduction in
length compared to the paths planned by other algorithms, showcasing a clear advantage. Compared
to the SSA algorithm, the WOA algorithm, the GWO algorithm, and the IGWO algorithm, the
MSSA algorithm effectively shortens the optimal path length by 45.25%, 46.53%, 42.79%, and 37.71%.
Regarding the average path length, the order of path planning length from short to long is consistent
with the order of optimal path length. When compared with the SSA algorithm, the WOA algorithm,
the GWO algorithm, and the IGWO algorithm, the MSSA algorithm reduces the average path
length by 45.91%, 47.99%, 44.09%, and 38.23%. These results highlight the advantages of the MSSA
algorithm in path planning.

With regard to the number of iterations required for the optimal paths, the order of iteration times
from least to most is as follows: the WOA algorithm, the MSSA algorithm, the IGWO algorithm, the
GWO algorithm, and the SSA algorithm. While the number of iterations of the MSSA algorithm is
only 5 times more than that of the WOA algorithm, the average path distance planned by the MSSA
is reduced by 47.99% compared to the WOA algorithm. It demonstrates that the WOA algorithm
achieves fewer iterations at the expense of sacrificing path length. As for the number of inflection
points in the path, the MSSA algorithm has the least number of inflection points, which is about half
the number of inflection points given by other algorithms. The number of inflection points in the
paths of SSA, WOA, GWO, and IGWO algorithms is in the range of 47 to 50. The path planning
results visually demonstrate that these paths are not smooth. In summary, the path planning results
of the MSSA algorithm in map 1 are significantly higher than other comparative algorithms.

5.1.2 Optimal Path Planning for Map 2

(1) Qualitative description of the optimal path

The optimal path planning results of five comparative algorithms in map 2 are shown in Fig. 4.
It can be intuitively seen from Fig. 5 that compared to other algorithms, the optimal path planned by
the MSSA algorithm is smoother, approaching a straight line. This conclusion is consistent with the
qualitative description conclusion for map 1. Similarly, we quantitatively analyzed the performance of
different algorithms for map 2 optimal path planning.

(2) Qualitative analysis of the optimal path

To avoid errors caused by a single simulation result, we used the above five intelligent algorithms
to plan the path for map 2 with 50 times simulation. The results, including the optimal path length,
average path length, iteration times of optimal path length, and minimum inflection points, are shown
in Table 6.

In Table 6, the optimal path lengths of these five algorithms, from shortest to longest, are the
MSSA algorithm, the IGWO algorithm, the GWO algorithm, the WOA algorithm, and the SSA
algorithm. Compared to the SSA algorithm, the WOA algorithm and the GWO algorithm, the
path planned by the MSSA algorithm is significantly shortened with 44.48%, 33.76%, and 37.65%,
respectively. The IGWO algorithm performs better in map type 2 than in map type 1, and the difference
in path length planned by the MSSA algorithm is reduced by approximately 21.9%.

Compared to the SSA algorithm, the WOA algorithm, the GWO algorithm, and the IGWO
algorithm, the average path length planned by the MSSA algorithm is significantly shortened with
42.96%, 33.99%, 38.23%, and 22.09%, respectively. Although the MSSA algorithm’s advantage is
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slightly diminished in map 2 compared to map 1, it still surpasses other comparative algorithms.
Concerning optimal path iteration times, the order of iteration times from least to most is MSSA,
WOA, GWO, SSA, and IGWO. Meantime the MSSA algorithm has the least number of inflection
points and the path is the smoothest. In summary, the path planning results of the MSSA algorithm
in map 2 are significantly better than other comparative algorithms. The analysis of the path planning
results for map 1 and map 2 demonstrates the high application value of the MSSA algorithm.

Figure 5: Optimal path planning results for map 2

5.2 The Path Planning Results of a Multi-Exit Evacuation Scenario
There are certain differences between the map scene in Section 5.1 and the real evacuation scene.

To reflect the application effect of the improved algorithm proposed in the real evacuation scene, we
further built a multi-exit evacuation scenario model. Due to a comprehensive comparison of the path
planning results of different algorithms in Section 5.1, only the basic sparrow search algorithm and
the improved sparrow search algorithm have been compared in terms of path planning effects. In this
section, we construct a simplified grid map of a teaching building, shown in Fig. 6, and apply the SSA
algorithm and MSSA algorithm to plan evacuation paths for its four exits. We ultimately compare and
analyze the length of evacuation paths.
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Table 6: Comparison of map 2 results

Algorithm The optimal path
length

Average path length Iteration times of
the optimal path
length

Minimum
inflection points

SSA 101.4 104.5 168 31
MSSA 56.3 59.6 48 10
WOA 85.0 90.3 50 22
GWO 90.3 96.5 113 28
IGWO 72.1 76.5 185 21

Figure 6: Multi-exit architectural model simplified grid map

The evacuation path planning results of the SSA algorithm and MSSA algorithm are shown in
Fig. 7, where P is the starting position for evacuation, and A, B, C, and D are the evacuation exits.

From Fig. 7a, it is evident that in the multi-exit evacuation scene, the planned paths follow the
contours of the building’s inherent terrain due to the limited search ability of the SSA algorithm.
Conversely, the MSSA algorithm improves its global and local search capabilities through improved
strategies, allowing it to search for the shortest distance within the building’s terrain for path planning.
In Fig. 7b, there are some longer diagonal paths. According to the principle of the shortest diagonal
between two points, the path planned in Fig. 7b appears to be shorter than the path planned in Fig. 7a.
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The quantitative results of the evacuation path length planned by the SSA algorithm and MSSA
algorithm are shown in Table 7. The PA path, PB path, PC path, and PD path in Table 7 are the
evacuation paths from the evacuation starting position P to the four evacuation exits A, B, C, and D,
respectively.

Figure 7: Path planning of different algorithms in a multi-exit teaching building

Table 7: Comparison results of the length of multi-exit evacuation path planning

Algorithm PA path length PB path length PC path length PD path length

SSA 39.2 35.1 33.2 32.1
MSSA 33.4 30.7 28.6 28.6

The path planning results of the four evacuation exits demonstrate that the MSSA algorithm has
significantly shortened the path length compared to the SSA algorithm, shown in Table 7. Compared
with the original SSA algorithm, the PA, PB, PC, and PD path planning results reveal that the MSSA
algorithm reduces the path length by 14.8%, 12.5%, 13.9%, and 10.9%, respectively. This reaffirms the
effectiveness and practical applicability of the MSSA algorithm.

6 Conclusion

Evacuation path planning has always been a concern of researchers in the security field. This
paper applies the sparrow search algorithm to solve this problem. Through several improvement
strategies, the search ability and convergence speed of the sparrow search algorithm are improved.
To enhance the global search ability, the Golden Sine Algorithm and nonlinear weight factor were
introduced in the update stage of the discoverer’s position. To improve the local search ability, a
mountain climbing mechanism was adopted for local search, while Gaussian-Cauchy perturbation was
introduced to enhance the overall search accuracy and the capacity to jump out of the local optimal
value. Then a series of standard function test sets were employed to evaluate the optimization ability
of the proposed algorithm as well as the other four intelligent algorithms. The results, including the
optimal value, mean value, and variance, showed that the MSSA algorithm exhibited good solving
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capabilities and stability compared to the other algorithms. Ultimately, the MSSA algorithm and other
four comparison algorithms were applied to plan the evacuation paths on different evacuation maps
using the gird method. The results include the optimal path length, average path length, iteration times
of optimal path length, and minimum inflection points. Important results and conclusions are shown
below:

(1) For map 1, compared with the other four comparison algorithms, the MSSA algorithm reduces
the optimal path lengths by 45.25%, 46.53%, 42.79%, and 37.71%. Additionally, the MSSA algorithm
reduces the average path lengths by 45.91%, 47.99%, 44.09%, and 38.23%.

(2) For map 2, compared with the other four comparison algorithms, the optimal path lengths
planned by the MSSA algorithm are significantly shortened with 44.48%, 33.76%, 37.65%, and 21.9%.
Moreover, the average path lengths planned by the MSSA algorithm are significantly reduced with
42.96%, 33.99%, 38.23%, and 22.09%, respectively.

(3) In the multi-exit evacuation scenario, compared with the results planned by the original SSA
algorithm, the lengths of PA, PB, PC, and PD paths show that the MSSA algorithm reduces the path
lengths by 14.8%, 12.5%, 13.9%, and 10.9%, separately.

These results demonstrate that the MSSA algorithm had significant advantages in evacuation path
planning over the comparative algorithm, with strong potential for practical applications. However,
there are still some limitations in this study. The advantage of the MSSA algorithm compared to
the SSA algorithm is not obvious when solving the fixed dimension test function. Additionally,
the current research primarily focuses on optimizing path length, neglecting the multi-objective
optimization problem and three-dimensional spatial environment, which aligns more closely with real-
world demands.
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