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ABSTRACT

A new approach for flexoelectric material shape optimization is proposed in this study. In this work, a proxy model
based on artificial neural network (ANN) is used to solve the parameter optimization and shape optimization
problems. To improve the fitting ability of the neural network, we use the idea of pre-training to determine the
structure of the neural network and combine different optimizers for training. The isogeometric analysis-finite
element method (IGA-FEM) is used to discretize the flexural theoretical formulas and obtain samples, which
helps ANN to build a proxy model from the model shape to the target value. The effectiveness of the proposed
method is verified through two numerical examples of parameter optimization and one numerical example of
shape optimization.
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1 Introduction

Optimization plays a vital role in the analysis of physical systems and in the science of decision
making, aiming to maximize utility within resource constraints. Structural optimization problems
can be broadly classified into three categories: size optimization [1–3], shape optimization [4–6], and
topology optimization [7–10]. Size optimization [11–13] focuses on minimizing the thickness (e.g.,
cross-sectional area) of a specific structure type. Shape optimization [14–16] focuses on optimizing
specific contours or shapes of designated domain boundary segments. Topology optimization [17–19]
aims to minimize the material layout of the entire structure. Several approaches have been proposed
to tackle optimization problems, including Newton’s method, Gauss-Newton method and some other
methods [20–24]. Moreover, researchers have developed metaheuristic optimization algorithms like
Particle Swarm Optimization [25], Differential Evolution [26], and other similar techniques [27–30].
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Machine learning has gained significant attention in recent years as an alternative to classical
optimization methods [31,32]. Since the 1980s, artificial neural network (ANN) [33–36] has become a
prominent research topic in the field of artificial intelligence. ANN aims to simulate the information
processing mechanism of neuronal networks in the human brain by constructing simplified models
through various connection methods. ANN is composed of interconnected nodes, known as neurons,
which represent specific output functions or activation functions. The connections between these nodes
are represented by weighted values called weights, which act as the neural network’s memory. The
output of the network is determined by the specific connection method, weight values, and activation
functions utilized. Neural networks are often used to approximate algorithms or natural functions and
to express logical strategies.

Kien et al. [37,38] proposed the Deep Lagrangian Method (DLM) as a new approach for solving
size and shape optimization problems. This method cleverly combines Lagrange duality with deep
learning techniques. Lagrangian duality theory provides a framework for solving the dual problems
associated with primal constrained optimization problems. In the DLM, input data is utilized to train a
deep neural network, with the parameters fine-tuned until the output closely aligns with the predicted
values. By leveraging the interpolation capabilities of deep learning, the method effectively identifies
the minimum input value. Consequently, this deep learning-based method enhances sensitivity analysis
by making efficient use of a substantial amount of input data for neural network training.

Flexoelectricity was first introduced by Mashkevich and Tolpygo in 1957 [39], but its significance
in bulk crystal materials was found to be weak, resulting in limited attention during the early stages.
However, with the advancements in nanotechnology, significant strain gradients can now be observed
at small scales, leading to the emergence of flexible electronics as a new avenue for studying size-related
phenomena [40,41]. Unlike piezoelectric materials, where linear polarization is observed, different
piezoelectric materials in flexible structures exhibit polarization that is dependent on the gradient.
This makes flexoelectricity a more prevalent electromechanical coupling mechanism [42], as it can
occur in any dielectric material, including those with centrally symmetric crystal structures [43–45].
Chen et al. [46] used a generalized n th-order perturbation and other isogeometry stochastic finite
element method to quantitatively analyze the uncertainty of the mechanical properties of piezoelectric
materials.

In the realm of flexoelectric effect analysis, numerous scholars have made remarkable contribu-
tions. El Dhaba et al. [47] and Awad et al. [48] examined the flexoelectric effects of materials with
anisotropy and isotropy, correspondingly. Ghasemi et al. [49] introduced an isogeometric formula
to calculate the flexoelectric effect based on the strain gradient expression of flexoelectricity, and
presented 2D cantilever and 3D truncated pyramid models. Qu et al. [50] conducted a study on the
buckling of piezoelectric semiconductor Reissner Mindlin plates. They determined the buckling load
and mode, and also examined the wave particle resistance effect of flexible semiconductor materials
[51]. Nguyen et al. [52] developed an isogeometric numerical model for the Maxwell-Wagner polar-
ization effect in bilayer structures consisting of piezoelectric or flexoelectric materials. Liu et al. [53]
constructed a real spatial phase field model using isogeometric analysis (IGA) to investigate the
flexoelectric effect of ferroelectric materials at the nanoscale. Yin et al. [54] derived a curvature-based
Euler-Bernoulli and Timoshenko beam model for flexoelectricity based on the coupled stress and
flexoelectricity theory. They analyzed the impacts of flexoelectric effects, microstructure effects, and
boundary conditions on the mechanical behavior of nanobeams using IGA. Gupta et al. [55] explored
the effective piezoelectric and dielectric properties of boron nitride (BN) reinforced nanocomposites
(BNRC), along with the surface flexoelectric effect. Their findings indicated that size-dependent
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flexoelectric and surface effects should be taken into account for accurate modeling of active
nanostructures.

IGA represents substantial progress in computational mechanics [56], functioning as an expansion
of the finite element technique. One of the key advantages of isogeometric analysis (IGA) is its
ability to discretize partial differential equations using non-uniform rational B-spline basis functions.
This feature allows engineers to directly perform numerical analysis from computer-aided design
(CAD) models [57–61], ensuring both geometric accuracy [62–65] and eliminating the need for mesh
generation. It is worth mentioning the contributions made by Jahanbin and Rahman [66] in developing
engineering applications for uncertainty quantification through Stochastic Isogeometric Analysis
(SIGA) in high-dimensional linear elasticity. Furthermore, Liu et al. [67] proposed a novel technique
based on reduced basis vectors in SIGA for solving practical engineering problems. Chen et al. [68]
utilized the radial integration technique for solving 2-D transient heat conduction problems via
isogeometric boundary element analysis. Due to IGA’s ability to meet the continuity requirements
of fourth-order partial differential equations (PDEs), it becomes possible to consider the flexible
electrical properties by ensuring the necessary C1 continuity [69]. As a result, this article selects
isogeometric analysis-finite element method (IGA-FEM) as the method for obtaining the mechanical
properties of flexible electrical structures.

Based on the aforementioned inspiration, we propose a method that combines ANN and IGA-
FEM for solving shape optimization problems. In this method, the bending theoretical formulas
are discretized using IGA-FEM to generate samples. These samples are then used to train the
artificial neural network, which establishes a proxy model linking the model shape to the target value.
Subsequently, this proxy model is utilized to solve shape optimization problems.

The content structure of this paper is set as follows: In the second section, the steps and
improvements of ANN for optimization problems are introduced. In the third section, the theoretical
formulas of flexographic problems and how to obtain initial samples by IGA-FEM method are
expounded. Finally, in the fourth section, the effectiveness and accuracy of the method are verified
by numerical examples.

2 Artificial Neural Network Methods for Optimization Problems

In order to make it easier for readers to understand, we first give a brief introduction to the
composition and working principle of ANN. Please see [70–72] for detailed information.

2.1 Artificial Neural Network
ANN typically consist of three layers: input, hidden, and output. Among them, the input layer

receives data, while the output layer produces the final result. Multiple hidden layers can exist. Each
layer contains multiple neurons, with the number depending on specific requirements. The number
of hidden layers in ANN can be customized, often involving multiple layers. These layers are fully
connected, meaning that there are connections between adjacent layers, but no connections within the
same layer.

Neural networks utilize two main processes, known as forward propagation and back propagation,
to achieve self-learning. Forward propagation involves inputting samples into the neural network,
which then passes through hidden layers until the output layer generates the desired output. The
quality of the model’s fit is evaluated by assessing the loss function. Typically, the mean square error
between the output layer results and sample labels is commonly utilized as the loss function for ANN,
Fig. 1 illustrates an ANN network structure and neuronal node calculation process.
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Figure 1: Neural network structure and neuron parameters

The input and output vectors are denoted as x = {X1, X2, . . . , Xn0
} and p = N̂(X1, X2, . . . , Xn0

),
respectively. Each node establishes connections with the subsequent layer via weight vectors ω and
bias terms b. The activation Function fk is used to calculate the output value of neurons located in the
k-th hidden layer, as shown as

v̂k
i = fk(vk

i ), (1)

also written as

v̂k
i = fk

(nk−1∑
j=1

ωk
ij v̂

k−1
j + bk

i

)
, (2)

where i = 1, 2, . . . , nk, 1 ≤ k ≤ K, K is the total number of the hidden layers. At the first layer, we have

v̂1
i = f1

(
n0∑

j=1

ω1
ijXj + b1

i

)
, (3)

where i = 1, 2, . . . , nk. At the last layer, we have

v̂K
i = fK

(
nK−1∑

j=1

ωK
ij v̂K−1

j + bK
i

)
, (4)

where i = 1, 2, . . . , nK . The weights and biases are represented as ωij and bi, respectively. The node’s
position within the layer is denoted by j, and nk−1 represents the total number of neurons in the (k−1)-th
layer. Therefore, the output can be expressed as

v̂k
i = fk(ω

kv̂k−1 + bk), 1 ≤ k ≤ K. (5)

In this study, we employed ANN to address the optimization problem. The methodology involved
constructing a surrogate model of the optimization problem by training an artificial neural network,
in order to find the optimal solution to the optimization problem. Notably, the ANN method is well-
suited to address nonlinear optimization problems, thus enhancing its capability in handling complex
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systems. For instance,

(FL)

⎧⎨⎩
min

x
ĝ0(x),

s.t.
{

ĝj(x) ≤ 0, j = 1, 2, . . . , m,
xi ∈ χ , i = 1, 2, . . . , n,

(6)

where χ = {x ∈ Rn: xmin
i ≤ xi ≤ xmax

i , i = 1,2, . . . ,n}. ĝj : Rn → R, j = 0, 1, . . . , m is a continuously
differentiable function and can be expressed as

ĝj(x) =
n∑

i=1

ĝji(xi), j = 1, 2, . . . , m. (7)

Then, the mapping model of x = {x1, x2, . . . , xn} to ĝ0(x) is established through the neural network,
so the optimization problem (FL) can be written as

min{ŷ1, ŷ2, . . . , ŷn}, (8)

where ŷ = {ĝ0(x(�))|x(�) ∈ x}, � = 1, . . . , n is the predicted value of the neural network model, so the
resulting sample can be written as{
(x1, y1), . . . (x†, y†), . . . (xn, yn)

}
. (9)

Using the mapping capabilities of neural networks, the initial sample can be expanded to{
(x1, y1), . . . (x†, y†), . . . (xn, yn)

} → {
(x1, y1), . . . (x†, y†), . . . (xñ, yñ)

}
, (10)

where ñ � n, and when the prediction accuracy of the neural network is high enough. The optimal
result of the predicted value can be considered as the optimization result of the original problem. Since
the prediction accuracy of ANN is affected by many factors, how to improve its prediction accuracy
is introduced next.

2.2 Dual Optimization Neural Network (DONN)
The accuracy of models in artificial neural networks during training and prediction is influenced

by the neural network structure, including hidden layers and neurons. However, the optimal neural
network structures vary for different problems. To address this, we propose a data-driven approach,
referred to as Algorithm 1. This approach efficiently discovers a neural network structure that is better
suited to the specific model, reducing the required time. The implementation concept of the algorithm
is provided in the appendix in Fig. A1.

The DONN method first determines the optimal combination of a set of neural network layers
and neurons through Algorithm 1 to establish a neural network structure, and then inputs the training
data sets x(†) = (x(†)

1 , x(†)

2 , . . . , x(†)

n )T , y(†) = (y(†)

1 , y(†)

2 , . . . , y(†)

n )T into the neural network for training, and
obtains x(†) to y(†) mapping relationship. After that, predict enough x̂(†) to get ŷ(†), find the minimum
value in ŷ(†) and its corresponding x̂(†) combination.

The sigmoid function serves as the activation function for neuron nodes. Let us assume that the
predicted value of the j-th unit in the output layer is represented as ŷ(†)

j . In order to quantify the loss,
the Mean Square Error (MSE) is chosen as the loss function and can be formulated as

Loss =
1

Nη

Nη∑
†=1

m∑
j=1

(ŷ(†)

j − y(†)

j )
2
. (11)
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Thus, as the value of the loss function approaches zero, the neural network’s predicted result and
the actual result exhibit a smaller error. The role of a neural network optimizer is to continuously
minimize the loss function through training on the data set. Different optimizers possess varying
capabilities in reducing the loss function’s value. Furthermore, the choice of optimizer depends on
the specific problem at hand, as different problems may require different optimizers. An appropriate
optimizer not only enhances model accuracy but also minimizes the required training iterations and
mitigates the risk of overfitting the neural network. In practice, it is possible to employ multiple
optimizers for combined training within a neural network. Selecting the appropriate number of
iterations further enhances training efficiency.

We divide the process of stochastic analysis with DONN into three stages:

(1) Preparation stage: Obtain a batch of training data sets through Latin-Hypercube sampling,
leave samples that meet the constraints, obtain the initial data set X, Y. After normalization, the
training set X̂, Ŷ is obtained. The normalization process is expressed as follows:

X̂ = X − Xmin

Xmax − Xmin

, Ŷ = Y − Ymin

Ymax − Ymin

. (12)

A small part of the normalized dataset is selected, and an artificial neural network is established
through Algorithm 1.

(2) Model training and validation phase: the dataset is divided into training dataset and testing
dataset. The former is utilized to construct the approximate function f that captures the relationship
between the input and output. The latter is employed to assess the model’s generalization capability.
The training process of the machine learning model involves searching for optimal parameters that
minimize the loss function, while the testing process is conducted to validate the accuracy of the fitted
function. Furthermore, it is necessary to post-process the predicted value to ensure its alignment with
the input Y. The post-processing for this purpose is provided as

PostXξ
= X̂ξ ∗ (Xmax − Xmin) + Xmin, PostY = Ŷξ ∗ (Ymax − Ymin) + Ymin, (13)

where PostXξ
represents X after de-normalization, Xmin, and Xmax represent the minimum and maximum

values in X, respectively, and Ymin and Ymax respectively represent the minimum and maximum values
of Y. X̂ξ and Ŷξ represent arbitrary elements in X̂ and X̂, respectively.

(3) Application stage: The correctness of the mapping relationship f̃ is established and verified
through the previous stage. Once the new normalized data NXξ is input and passed to the trained
model, the response of the corresponding normalized data NYξ will be obtained. For optimization
problems, we generally want to obtain a set of parameters under the condition that the constraints
are satisfied, so that the function value corresponding to this set of parameters is the maximum or
minimum.

For the input variable X, if the conditions are met, selecting a relatively large value range can
not only ensure that the optimal solution g0 is within this range, but also improve the accuracy of the
training model, but it will also bring relatively large sample data set, increasing the computational
cost. At the same time, the collected samples may not meet the constraints of the specific problem.
Therefore, we perform a screening on the initial samples X, Y obtained by using Latin hypercube
sampling, in which the samples that meet the constraints are added to the training data. In this way,
the scale of the dataset can be greatly reduced, and the interference of model training by irrelevant data
can be reduced, thereby improving the speed and accuracy of model training. On the premise that the
correctness of the model has been verified before, in order to find a more accurate optimal solution,
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it is a good choice to use a test set with a relatively large amount of data to find the optimal solution.
The calculation speed is very fast, and there is no need to worry about increasing the computational
cost. Fig. 2 shows the specific operation flow chart of the DONN method.

Figure 2: DONN flow charts for stochastic analysis

In the upcoming section, we will present an overview of the flexoelectric problem theory and
provide guidance on obtaining the initial sample.

3 Initial Sample Acquisition for Flexoelectric Problems

In this section, we provide a comprehensive introduction to the theory of the flexoelectric problem
and outline the process of obtaining initial samples using the IGA-FEM method.

3.1 Theory and Formulations of Flexoelectricity
The enthalpy density H of dielectric materials subject to flexoelectric effects depends on both the

strain gradient and the electric field gradient. The enthalpy density equation may be expressed as [73]

H
(
Sij, Ei, Sjk,l, Ei,j

) = 1
2

CijklSijSkl − eiklEiSkl +
(

dijklEi,jSkl + f̂ijklEiSjk,l

)
− 1

2
κijEiEj. (14)

Using the symbol ϕ, one may represent the scalar electric potential. The strain tensor is denoted by
the symbol Sij, whereas the fourth-order elasticity tensor is denoted by the symbol Cijkl. eijk represents
the third-order piezoelectric tensor. The sign Ei (i.e., Ei = ϕ,i) stands for the electric field, which is
defined as the gradient of the scalar electric potential ϕ. The symbol for the second-order dielectric
tensor is κij. The symbol for the fourth-order converse flexoelectric tensor is dijkl, whereas the symbol
for the fourth-order direct flexoelectric tensor is f̂ijkl.

Consider the terms in Eq. (14)’s bracketed sections, which cover the direct and opposite flexoelec-
tric effects. We reach the following results by integrating these terms across the physical domain 	,
using integration by parts, and using the Gauss divergence theorem to the first term.∫

	

(
dijklEi,jSkl + f̂ijklEiSjk,l

)
d	 = −

∫
	

(
diljk − f̂ijkl

)
EiSjk,ld	 +

∫
∂	

dijklEiSkld�

= −
∫

	

μijklEiSjk,ld	 +
∫

∂	

dijklEiSkld�, (15)
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where the single material tensor μijkl is defined as μijkl = diljk − f̂ijkl. Therefore, we can rewrite Eq. (14)
as

H
(
Sij, Ei, Sjk,l

) = 1
2

CijklSijSkl − eiklEiSkl − μijklEiSjk,l − 1
2
κijEiEj. (16)

For purely piezoelectric dielectrics, we have

Tij = ∂H̄

∂Sij

and Di = −∂H̄

∂Ei

. (17)

The normal electromechanical stresses (T̂ij/D̂i), higher-order electromechanical stresses (T̃ijk/D̃i),
and physical electromechanical stresses (Tij/Di) are defined by the following equations in the presence
of flexoelectricity.

T̂ij = ∂H

∂Sij

and D̂i = −∂H

∂Ei

, (18)

T̃ijk = ∂H

∂Sij,k

and D̃ij = −∂H

∂Ei,j

, (19)

Tij = T̂ij − T̃ijk,k and Di = D̂i − D̃ij,j. (20)

After substituting Eqs. (18) and (19) into Eq. (20), we obtain

Tij = T̂ij − T̃ijk,k = CijklSkl − ekijEk + μlijkEl,k, (21)

Di = D̂i − D̃ij,j = eiklSkl + κijEj + μijklSjk,l. (22)

The electrical enthalpy of a flexoelectric dielectric is given by

H = 1
2

∫
	

(
T̂ijSij + T̃ijkSij,k − D̂iEi

)
d	. (23)

The work done by external forces, such as mechanical traction t̄i and surface charge density ω̂,
can be expressed as

Wext =
∫

�t

t̄iuid�t −
∫

�D

ω̂ϕd�D, (24)

where the sign ui stands for displacement. ti represents mechanical traction, while ω̂ represents surface
charge density. The symbols �t and �D represent the mechanical and electric displacement boundaries,
respectively.

The kinetic energy of a system is defined as

KE = 1
2

∫
	

ρ̂u̇iu̇id	, (25)
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where the ρ̂ denotes the density, while
·

(·) indicates the derivative with respect to time t. Using
Hamilton’s principle and ignoring the damping term, we get

δ

∫ t2

t1

(KE − H + Wext) dt = 0. (26)

Upon substituting Eqs. (23)–(25) into Eq. (26), we obtain

δ

∫ t2

t1

(
1
2

∫
	

ρ̂u̇iu̇id	 − 1
2

∫
	

(
T̂ijSij + T̃ijkSij,k − D̂iEi

)
d	 +

∫
�t

t̄iuid�t −
∫

�D

ω̂ϕd�D

)
dt = 0. (27)

By adding the variation operation within the integral operations, we obtain∫ t2

t1

(
1
2

∫
	

δ
(
ρ̂u̇iu̇i

)
d	 − 1

2

∫
	

δ
(

T̂ijεij + T̃ijkεij,k − D̂iEi

)
d	 +

∫
�t

t̄iδuid�t −
∫

�D

ω̂δϕd�D

)
dt = 0. (28)

Using the chain rule of variation and reordering the operations, we get∫ t2

t1

[
1
2

∫
	

δ
(
ρ̂u̇iu̇i

)
d	

]
dt = −

∫ t2

t1

[∫
	

ρ (δuiüi) d	

]
dt, (29)

∫ t2

t1

[
1
2

∫
	

δ
(

T̂ijεij + T̃ijkSij,k − D̂iEi

)
d	

]
dt =

∫ t2

t1

[∫
	

(
T̂ijδSij + T̃ijkδSij,k − D̂iδEi

)
d	

]
dt. (30)

Now we can rewrite Eq. (28) as∫ t2

t1

(
−

∫
	

ρ̂ (δuiüi) d	 −
∫

	

(
T̂ijδεij + T̃ijkδεij,k − D̂iδEi

)
d	 +

∫
�t

t̄iδuidS −
∫

�D

ω̂δϕdS
)

dt = 0. (31)

To fulfill Eq. (31) for all possible values of u, the time integration integrand must disappear,
resulting in∫

	

ρ̂ (δuiüi) d	 +
∫

	

(
T̂ijδSij + T̃ijkδSij,k − D̂iδEi

)
d	 −

∫
�t

t̄iδuidS +
∫

�D

ω̂δϕdS = 0. (32)

The inertia element is ignored in the case of a static situation, resulting in the following:∫
	

(
T̂ijδsij + T̃ijkδSij,k − D̂iδEi

)
d	 −

∫
�t

t̄iδuidS +
∫

�D

ω̂δϕdS = 0. (33)

We may derive the weak version of the governing equation for flexoelectricity by putting Eqs. (18)–
(22) into Eq. (33), as illustrated as∫

	

(
CijklδSijSkl − ekijEkδSij − μlijkElδSij,k − κijδEiEj −eiklδEiSkl − μijklδEiSjk,l

)
d	

−
∫

�t

t̄iδuid�t +
∫

�D

ω̂δϕd�D = 0. (34)
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3.2 IGA-FEM Used to Discretize the Fourth-Order Partial Differential Equation of Flexoelectricity
In this section, we use B-spline basis functions to discretize the controlling Eq. (14). The B-spline

basis function H is defined recursively by the Cox-de-Boor formula [74–77], and its expression is

N̂i,0(ς) =
{

1 if ςi ≤ ς < ςi+1,

0 otherwise,
(35)

when p = 1, 2, 3, . . ., we have

N̂i,p(ς) = ς − ςi

ςi+p − ςi

N̂i,p−1(ς) + ςi+p+1 − ς

ςi+p+1 − ςi+1

N̂i+1,p−1(ς). (36)

Fig. 3 shows a particular multidimensional B-spline form function that is distinguished by knot
vectors � = [0 0 0 0 0.5 1 1 1 1]. The orders p and q of the shape functions are three.
The image shows that a variety of function types for the B-spline basis functions may be obtained by
defining the knot vectors � and the orders p, q. This meets the criteria for continuity needed to solve
the governing equations for flexoelectricity. Eq. (34)’s linear algebraic discrete system equation may
be stated as[

Auu Auϕ

Aϕu Aϕϕ

] [
u
�

]
=

[
fu

fϕ

]
, (37)

and

Auu =
∑

e

∫
	e

(Bu)
TC(Bu)d	e, (38)

Auϕ =
∑

e

∫
	e

[(Bu)
TeT(Bϕ) + (Hu)

T
μT(Bϕ)]d	e, (39)

Figure 3: The schematic diagram in illustrates the B-spline shape functions with a specific configuration
of knot vectors
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Aϕu =
∑

e

∫
	e

[(Bϕ)
Te(Bu) + (Bϕ)

T
μ(Hu)]d	e, (40)

Aϕϕ = −
∑

e

∫
	e

(Bϕ)
T
κ(Bϕ)d	e, (41)

fu =
∑

e

∫
�te

N̂
T

u t�d�te, (42)

fϕ = −
∑

e

∫
�De

N̂
T

ϕ
ωd�De. (43)

In Eqs. (38)–(43), the subscript e represents the eth finite element in 	e, �te, and �De, where 	 =
∪e	e. The matrices Bu, Bϕ, and Hu are provided as

Bu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂N̂1

∂x
∂N̂2

∂x
· · · ∂N̂ncp

∂x
0 0 0 · · ·

0 0 · · · 0
∂N̂1

∂y
∂N̂2

∂y
· · · ∂N̂ncp

∂y

∂N̂1

∂y
∂N̂2

∂y
· · · ∂N̂ncp

∂y
∂N̂1

∂x
∂N̂2

∂x
· · · ∂N̂ncp

∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (44)

Bϕ =

⎡⎢⎢⎢⎣
∂N̂1

∂x
· · · ∂N̂ncp

∂x

∂N̂1

∂y
· · · ∂N̂ncp

∂y

⎤⎥⎥⎥⎦ , (45)

Hu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2N̂1

∂x2

∂2N̂2

∂x2
· · · ∂2N̂ncp

∂x2
0 0 · · · 0

0 0 · · · 0
∂2N̂1

∂y∂x
∂2N̂2

∂y∂x
· · · ∂2N̂ncp

∂y∂x
∂2N̂1

∂y∂x
∂2N̂2

∂y∂x
· · · ∂2N̂ncp

∂y∂x
∂2N̂1

∂x2

∂2N̂2

∂x2
· · · ∂2N̂ncp

∂x2

∂2N̂1

∂x∂y
∂2N̂2

∂x∂y
· · · ∂2N̂ncp

∂x∂y
0 0 · · · 0

0 0 · · · 0
∂2N̂1

∂y2

∂2N̂2

∂y2
· · · ∂2N̂ncp

∂y2

∂2N̂1

∂y2

∂2N̂2

∂y2
· · · ∂2N̂ncp

∂y2

∂2N̂1

∂x∂y
∂2N̂2

∂x∂y
· · · ∂2N̂ncp

∂x∂y
.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

In Eqs. (44)–(46), the subscript ncp represents the the number of basis functions. The matrices C,
κ, e, and μ can be expressed in matrix form as

C =
(

Ỹ
(1 + ν)(1 − 2ν)

)⎡⎣1 − ν ν 0
ν 1 − ν 0
0 0

(
1
2
− ν

)
⎤⎦ , (47)
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κ =
[
κ11 0
0 κ22

]
, (48)

e =
[

0 0 e15

e31 e33 0

]
, (49)

μ =
[
μ11 μ12 0 0 0 μ44

0 0 μ44 μ12 μ11 0

]
, (50)

where the Poisson’s ratio is denoted by the symbol ν and the Young’s modulus by the sign Ỹ .
Following that, various numerical examples are provided to demonstrate the efficacy and precision
of the suggested approach.

4 Numerical Examples

In this section, we use three models to analyze the optimization problem, the first two models to
analyze the parameter optimization problem, and the last model to analyze the shape optimization
problem using the flexoelectric effect as an example.

4.1 Example of Structural Parameter Optimization
First example, we examine a truss structure consisting of bars with Young’s modulus E and density

ρ. The truss incorporates two connected bars, which converge at an angle of α (as depicted in Fig. 4),
with the length of the first bar represented as l. A force F, greater than zero, is exerted on the truss.
The problem’s objective concerns the determination of the cross-sectional area Ai to achieve optimized
weight. In addition, the constraint conditions for maximum stress and displacement at the tip are
defined as δ.

α

2 , / cosA l α

2 ,A l

F
δ

x

y

Figure 4: A two-bar truss constrained by stress and displacement at the top

The weight of the truss is given by

g0(A1, A2) = ρl
(

2√
3

A1 + A2

)
. (51)

In addition, the following constraints were applied to the stress:

|σi| ≤ σ0, i = 1, 2, (52)
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and the displacement

δ ≤ δ0, (53)

with

δ0 = σ0l
E

, (54)

where A1 ≥ 0 and A2 ≥ 0 are the design constraints. Let x1 = 2F
σ0A1

, x2 = 2F
σ0A2

, and

√
3ρlF
σ0

= 1.

Then, the optimization problem can be expressed as

(FL)1

⎧⎪⎨⎪⎩
min
x1,x2

ĝ0(x1, x2) = 4
3x1

+ 1
x2

,

s.t.
{

ĝ1(x1, x2) = 4√
3
x1 + √

3x2 − 1 ≤ 0,
x1 > 0, x2 > 0.

(55)

We use the Latin hypercube sampling method for initial sampling, and remove the sample points
that do not meet the constraints to obtain S1, which is substituted into the neural network as a training
set for model training. The number of hidden layers of the neural network and the number of nodes
per layer are determined by Algorithm 1. Fig. 5 shows the neural network structure determined by
Algorithm 1. During training, we set up a two-layer optimizer, first using the Adam optimizer for fast
fitting of the pre-model, and then using the gradient descent optimizer for fine-tuning the model. The
gradient descent optimizer has a learning rate of 10−4, which is used to ensure the accuracy of the
model predictions.

Figure 5: The first neural network structure built

In the neural network, the size of the data set directly affects the time spent in model training
and the training effect. If the data set is too large, more iterations are required in the neural network
training stage, and the time consumption increases significantly. At the same time, if the dataset is too
small, the neural network will not be able to learn all the features, resulting in poor prediction effect
after model training. Therefore, choosing a dataset of suitable size can effectively solve the above two
problems. Fig. 6a shows the relationship between the loss function value of different optimizers and
the number of iterations, and Fig. 6b shows the error curve under different sampling intervals, that is,
different data sets of different sizes.
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Figure 6: Decline curve of loss function and error analysis of data sets of different sizes

As can be seen from Fig. 6b, when �X = 0.001 or less, the relative error reaches the minimum. In
order to shorten the training time, we choose � = 0.001 for sampling. After screening, 2450 samples are
used as the training set. Select � = 0.0001 for sampling. After screening, 24,500 samples are used as the
test set, which can not only verify the effect of training, but also verify the generalization performance
of the model and help us find the optimal solution. Figs. 7a and 7b show the relationship between
the relative error (RE) between the predicted value and the true value and the number of iterations is
given, respectively.

Figure 7: Error of DONN optimization results

After observing the decreasing law of the loss function and the relationship between the relative
error and the number of iterations under different data and sizes, we make Adam optimizer perform
20,000 iterations, and GD optimizer perform 20,000 iterations. We restrict the range of xi to 0.01 ≤
x1, x2 ≤ 3, because the optimal result is within this range. If you choose a large range of xi (e.g.,
0.01 ≤ xi ≤ 10). It will bring a lot of unnecessary calculations.

Using 1957 constrained samples as the training set, the solutions for DONN are given in Table 1,
which are in good agreement with the exact solutions.
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Table 1: Comparison of DONN results and analytical solutions

Design
variable

Value RE
(%)

Exact DLM DONN

x1 0.2474 0.2480 0.2474
x2 0.2474 0.2480 0.2474
min 9.4300 9.4086 9.4250 0.05

4.2 Weight Minimization of a Cantilever
Second example, we shift our focus to the cantilever beam illustrated in Fig. 8. The beam possesses

a thin-walled cross-section depicted in Fig. 8b, with a thickness labeled as t. Each segment of the cross-
section has a side length denoted as xi, where i = 1, 2. The objective is to determine the values of xi

that optimize the weight of the cantilever beam while ensuring that the tip displacement, δ, remains
below a specified threshold denoted as δ0 [78].

Figure 8: Cantilever structure (a) and hollow square section (b)

In this case, we make an assumption that the thickness of the segment is significantly smaller in
comparison to the side length, denoted as t 
 xi. As a result, the second moment of inertia can be
calculated as

Ii = x4
i

12
− (xi − 2t)t

12
= 2tx3

i

3
. (56)

Then, the weight of the beam can be calculated using the following equation:

t̂0(x) = 4lρt(x1 + x2). (57)

The calculation of tip displacement can be expressed as [78]

δ = Fl3

2Et

(
1
x3

1

+ 7
x3

2

)
. (58)
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The optimization problem of nested formulas can be expressed as follows:

(FL)2

⎧⎪⎪⎨⎪⎪⎩
min
x1,x2

t̂0(x1, x2) = a1(x1 + x2),

s.t.

{
t̂1(x1, x2) = 1

x3
1
+ 7

x3
2

≤ a2,

x1 > 0, x2 > 0,

(59)

with a1 = 4ρlt and a2 = 2δ0Et
Fl3

. Let a1 = 1 and a2 = 2, so the optimization problem can be simplified
to

(FL)2

⎧⎪⎪⎨⎪⎪⎩
min
x1,x2

t̂0(x1, x2) = x1 + x2,

s.t.

{
t̂1(x1, x2) = 1

x3
1
+ 7

x3
2

≤ 0,

x1 > 0, x2 > 0.

(60)

In Table 2, the results of the DLM methods can be found.

Table 2: Comparison of DONN results and analytical solutions

Design
variable

Value RE
(%)

Exact DLM DONN

x1 1.3797 1.3800 1.3821
x2 2.2442 2.2400 2.2421
min 3.6239 3.6200 3.6237 0.06

Similar to the previous example, we set the range for xi again, 0.1 ≤ x1, x2 ≤ 5, to ensure the
global minimum value; the neural network structure determined by Algorithm 1 is shown in Fig. 9.
Fig. 10 shows the change curves of loss functions for different optimizers and the relative error curves
of optimization results for data sets of different sizes. After observing the decreasing law of the loss
function and the relationship between the relative error and the number of iterations under different
data and sizes, we made the Adam optimizer perform 20,000 iterations and the GD optimizer for
20,000 iterations. We choose � = 0.001 for sampling, and after filtering, 2450 samples are used as
training set S2. Select � = 0.0001 for sampling, after screening, take 24,500 samples as the test set, S2,
input S2 as the training set into the neural network for model training, and find the smallest predicted
value from the test set A set of { x1, x2, y}. The DLM solution is given in Table 2, which agrees well
with the exact solution. Figs. 11a and 11b show the relative error (RE) between the predicted and true
values as a function of the number of iterations, respectively.
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Figure 9: The second neural network structure built

Figure 10: Decline curve of loss function and error analysis of data sets of different sizes

Figure 11: The relationship between the error of the predicted result and the true value and the number
of training times of the neural network

4.3 Shape Optimization of Flexoelectric Materials
The shape of flexoelectric materials that is most frequently researched is the truncated pyramid.

In Fig. 12, the truncated pyramid model is displayed. While the bottom edge is immovable, the top
edge is subject to evenly distributed forces of F magnitude. Tables 3 and 4 provide the dimensions of
the model and the characteristics of the BaTiO3 material used, respectively. Here, we specifically state
that the top edge’s electric potential is zero. Here, we process the electric potential at the bottom edge
using the penalty function technique, leading to an equipotential border condition. We get the electric
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potential and strain distributions shown in Fig. 13 for this benchmark scenario. The distributions of
the electric potential and strain are largely identical to those seen in [79].

Figure 12: The size of the truncated cone model structure and the uniformly distributed force on the
upper edge

Table 3: Parameter setting table of truncated pyramid

Type Symbol Magnitude Unit

Upper edge width a1 750 μm
Lower edge width a2 2250 μm
Thickness h 750 μm
Distributed force F 6 N/μm

Table 4: Table of characteristic parameters of conical materials

v Y e31 μ12 κ11 κ33 χ33

0.37 100 GPa −4.4 C/m2 1 μC/m 11 nC/Vm 12.48 nC/Vm 1408
Note: v: Poisson ratio, Y : Young’s modulus. e31: piezoelectric constant. μ12: flexoelectric constant, κ11 and κ33:

dielectric constants, χ33: electric susceptibility.

Figure 13: The distribution of total potential (a) and the distribution of strain in the x2 direction (b)

Firstly, we add control points to the truncated pyramid shape in Fig. 14. Then, we use the control
points on the two waists of the trapezoid as input parameters for ANN and change them within a
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range of 20 percent, the maximum potential corresponding to the initial truncated pyramid is 0.374193.
Using ANN, we find a shape with a larger potential than before.

Figure 14: The truncated pyramid shape control point and its movement direction, with points within
the dashed line as random variables, vary within a 20 percent range

In terms of sample calculation, we select three control points on each waist, so that their x-
direction coordinates fluctuate within a 20 percent range. 5000 sets of samples were calculated using
IGA-FEM, and an ANN network was trained 50,000 times to obtain a mapping model of the
maximum potential corresponding to the shape from the control point coordinates. The loss values of
ANN are given in Fig. 15a, and the prediction error is shown in Fig. 15b.

Figure 15: Loss function decline curve (a) and relative error curve (b) between predicted value and true
value during ANN training

It can be seen from the prediction error chart of loss value that the prediction error of neural
network reaches a very low degree. Therefore, it can be used for the shape optimization of this
problem. The shape change in the optimization process is shown in Fig. 16, The corresponding
potential and strain distributions are given in Figs. 17 and 18, respectively. In addition, Fig. 19 shows
the optimization effect curve under different training times.

With the increase of the number of iterations, the prediction accuracy and optimization effect
of the neural network gradually increased, and became stable after the number of iterations reached
32,000.
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Figure 16: The shape obtained by optimization under different iterations

Figure 17: The potential distribution corresponding to the shape is optimized under different iterations

Figure 18: The displacement distribution corresponding to the shape is optimized under different
iterations
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(a) The curve of the maximum potential
value corresponding to the shape with the

number of iterations

(b) The percentage increase curve of the
maximum potential value corresponding to the
optimized shape under different training times

compared with the pre-optimized shape

Figure 19: The maximum potential value corresponding to the optimized shape under different
iterations (a) and the percentage increase of the optimized maximum potential value compared with
the original model (b)

5 Conclusion

In this paper, ANN is used to optimize the structural parameters and shapes, and some techniques
to improve the fitting effect are proposed. ANN only needs the samples of the corresponding problem
for optimization, and then a proxy model could be built to deal with the optimization problem. Since
the reliability of the optimization in this method depends on the accuracy of ANN, the idea of pre-
training is used to find a suitable network structure, and the method of combining multiple optimizers
is used to improve the prediction accuracy of ANN. To ensure the accuracy of samples, IGA-FEM is
used to obtain high-precision samples, and the mapping model from shape control points to maximum
potentials is established to solve the shape optimization problem. In the future, we will introduce deeper
neural networks and meta-heuristic optimization algorithms, and study the extension of this method
to shape optimization problems of more complex models.
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Appendix A

Figure A1: Algorithm 1: Neural network structure random search algorithm
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