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ABSTRACT

To improve the prediction accuracy of the International Roughness Index (IRI) of Jointed Plain Concrete Pavements
(JPCP) and Continuously Reinforced Concrete Pavements (CRCP), a machine learning approach is developed in
this study for the modelling, combining an improved Beetle Antennae Search (MBAS) algorithm and Random
Forest (RF) model. The 10-fold cross-validation was applied to verify the reliability and accuracy of the model
proposed in this study. The importance scores of all input variables on the IRI of JPCP and CRCP were analysed
as well. The results by the comparative analysis showed the prediction accuracy of the IRI of the newly developed
MBAS and RF hybrid machine learning model (RF-MBAS) in this study is higher, indicated by the RMSE and
R values of 0.2732 and 0.9476 for the JPCP as well as the RMSE and R values of 0.1863 and 0.9182 for the
CRCP. The accuracy of this obtained result far exceeds that of the IRI prediction model used in the traditional
Mechanistic-Empirical Pavement Design Guide (MEPDG), indicating the great potential of this developed model.
The importance analysis showed that the IRI of JPCP and CRCP was proportional to the corresponding input
variables in this study, including the total joint faulting cumulated per KM (TFAULT), percent subgrade material
passing the 0.075-mm Sieve (P200) and pavement surface area with flexible and rigid patching (all Severities)
(PATCH) which scored higher.
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JPCP Jointed Plain Concrete Pavements
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MEPDG Mechanistic-Empirical Pavement Design Guide
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TFAULT Total Joint Faulting Cumulated per KM
P200 Percent Subgrade Material Passing the 0.075-mm Sieve
PATCH Pavement Surface Area with Flexible and Rigid Patching (all Severities)
LTPP Long-term Pavement Performance
IRII Initial International Roughness Index
AGE Pavement Age in Years
TC Percentage of Slabs with Transverse Cracking (All Severities)
SPALL Percentage of Joints Spalled
FI Freezing Index
PUNCH All Severities of Punchouts Number Per Mile

1 Introduction

In recent years, with the development of road transportation, the total amount of road freight
is also growing, and the phenomenon of overload of large trucks is common [1,2]. Cement pavement
refers to pavement composed of cement concrete panels or base, also known as rigid pavement, which is
widely used in heavy traffic because of its advantages of large stiffness, strong bearing capacity, good
stability, good durability, high compressive strength, and tensile strength [3–5]. JPCP is a pavement
consisting of a concrete surface layer and a base or substratum, with reinforced concrete pavement only
in the joint zone and local areas, also known as white pavement [6,7], and JPCP has the advantages
of low initial cost and low maintenance cost compared with other cement pavement, so it is widely
used [8]. CRCP is a pavement form that controls cracks caused by longitudinal shrinkage of concrete
pavement by placing sufficient continuous reinforcement in the longitudinal direction [9–11], and also
a kind of high-performance cement pavement that can effectively overcome the diseases caused by the
weak links such as transverse shrinkage joints in the joint concrete pavement [12].

The smoothness of the pavement is the main factor in the vehicle running environment and is
one of the important indexes of pavement performance [13], the road is not flat will increase the
vehicle vibration and resistance in the process of moving, which affects the service life of the dynamic
vehicle system and transmission system [14]. The research shows that the smoothness of the pavement,
especially the initial smoothness of the pavement, seriously influences the service life of the road
surface [15]. Therefore, it is of great practical significance to study the roughness of road surfaces
[16]. The MEPDG, developed by the American Association of State Highway and Transportation
Officials and the National Cooperative Highway Research Program, is one of the most commonly
used models for predicting pavement performance [17–20], which adopts to evaluate the smoothness
of the pavement [21]. However, with the development of the times, researchers have found that the
accuracy of MEDPG in predicting pavement performance has certain limitations [22,23]. Hence, it is
extremely important to develop a more accurate model for predicting pavement performance [24–26].

In recent years, machine learning has been applied in various fields (including slope stability
classification, compressive strength prediction, rock joint shear strength prediction, and loading-
bearing capacity of structures) because of its excellent performance. Also, proposed soft computing
approaches, such as tree-based intelligent techniques, regression models, and nonlinear models were
applied [27–32]. Researchers have also introduced it into the research of pavement performance
direction and achieved remarkable results [33,34]. Yan et al. proposed a hybrid machine learning model
of Particle Swarm Optimization and Support Vector Machine to establish the evaluation model of
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the performance of asphalt pavement, with Pavement Condition Index, Pavement Structure Strength
Index, Skidding Resistance Index and IRI as evaluation indexes. The PCI prediction model based
on machine learning was established by using SSI, SRI, and IRI. The results showed that the model
can evaluate the performance of asphalt pavement simply and efficiently [35]. Wang et al. researched
a fuzzy regression method to predict the IRI and compared the results of MEPDG, conventional
grey model, and fuzzy grey model with the actual long-term pavement performance (LTPP) data.
The results showed that the fuzzy regression model based on the grey theory has a better prediction
effect on the IRI [36]. Kaloop et al. improved the results of optimal pruning extreme learning machine
by combining optimal pruning extreme learning machine and wavelet analysis [37]. Li et al. studied
the sensitivity of different variables to the creep of concrete based on the existing data and the
SVM model re-selected the indicators based on the results, and re-trained the SVM model based
on the newly selected parameters, verifying that the parameters with low sensitivity and strongly
correlated parameters have a positive impact on improving the robustness of the model [38]. Zounemat-
Kermani et al. proposed to use new machine learning models to simulate the degradation of concrete
caused by environmental factors used machine learning models to analyze the sensitivity of parameters
causing concrete corrosion and confirmed the effectiveness of machine learning in performance
prediction and sensitivity analysis [39]. However, currently, much research on machine learning in the
direction of the smoothness pavement was based on single machine learning models [33,40,41], which
had low prediction accuracy and did not involve the important analysis of variables.

To improve the prediction accuracy on the smoothness of JPCP and CRCP and explore the
influence of input indexes on output index, this study proposed the smoothness prediction model
of JPCP and CRCP based on RF-MBAS and the main contents of the study are as follows. Firstly,
dataset used to evaluate JPCP and CRCP are selected based on LTPP, and the feasibility of indicators
and dataset selection was verified through statistical analysis and correlation analysis. Then, based on
hyperparameter tuning [42], the accuracy of the models are proved by the analysis of the consistency
between the predicted value and the actual value. Finally, the sensitivity of all input indexes and human
intervention indexes to the IRI of the two types of pavement are creatively analyzed. The research
process is shown in Fig. 1.

In order to solve the problem of low prediction accuracy and efficiency of traditional evaluation
methods on the smoothness of JPCP and CRCP, this study proposed RF-MBAS. The prediction
accuracy of RF-MBAS needs to be evaluated by the hyperparameter tuning effect of MBAS on RF
and the prediction accuracy of the RF-MBAS on the IRI of JPCP and CRCP. Further analysis of
the importance of the indicators to the IRI of the JPCP and CRCP is necessary to assess the extent to
which they affect the smoothness on the two types of pavement. Hence, the specific research objectives
are summarized as follows:

• Evaluate the hyperparameter tuning effect of MBAS on FA that predicts the IRI of JPCP
and CRCP.

• Compare and analyze the accuracy of RF-MBAS and MEPDG in predicting the IRI of JPCP
and CRCP.

• Analyze the importance score of input indicators on IRI of JPCP and CRCP, and provide
feasible suggestions for civil engineers to build and maintain JPCP and CRCP.
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Figure 1: Flow chart of the study

2 Research Methods
2.1 Description of the Dataset

A reliable database is a basis to verify the accuracy of the prediction of IRI for JPCP and CRCP.
The data of the database established in this study came from the LTPP database, which is a large and
reliable database of different pavement structures in the United States, Canada, and other regions.
LTPP includes the data on the performance of pavement related to summary, structural, climatic,
traffic, and road performance modules. Considering the influence mechanism of JPCP and CRCP
comprehensively, including pavement disease, traffic load, pavement structure, and field condition, and
considering the IRI evaluation index of JPCP and CRCP by MEPDG to ensure the reliability of model
comparison results, this study finally selected initial smoothness measured as IRI (IRII), pavement age
in years (AGE), percentage of slabs with transverse cracking (all severities) (TC), percentage of joints
spalled (SPALL), PATCH, TFAULT, freezing index (FI), P200 as input variables to predict the IRI
of JPCP, and IRII, AGE, TC, PATCH, all severities of Punchouts number per mile (PUNCH), FI,
and P200 as input variables to predict the IRI of JPCP and CRCP (as shown in Appendix A). The
rationality of data distribution is the basis to evaluate the accuracy of the prediction model, this
study analyzed the mathematical statistical and frequency histograms of the variables of JPCP and
CRCP, and the results are shown in Table 1 and Fig. 2. Fig. 2 mainly depicts the data coverage and
distribution of the variables, as can be seen, the frequency distribution histogram of IRII and AGE in
input variables of JPCP show the single-peak pattern, and the frequency distribution of P200 is relatively
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stable. In short, the data distribution of each input variable have the wide and reasonable coverage.
Hence, the frequency distribution histogram of IRI in the corresponding database is the single-peak
type. The frequency distribution histograms of IRII, AGE, and P200 in the input variables of CRCP are
single-peak type, and the final data distribution frequency histogram of IRI also shows the single-peak
pattern.

Table 1: Mathematical statistical analysis of the variables of JPCP and CRCP

Pavement type Indexes Max Min Range Median S.D

JPCP

IRII 2.59 0.43 2.16 1.18 0.45
AGE 33.71 2.37 2.37 14.11 5.95
TC 65.1 0 65.1 5.23 11.97
SPALL 105.4 0 105.4 20.12 30.59
PATCH 559.2 0 559.2 10.58 56.51
TFAULT 1902.3 0 1902.3 264.83 381.11
FI 1862.8 0 1862.8 303.62 441.25
P200 97.9 1 96.9 39.64 27.28
IRI 4.18 0.77 3.41 1.82 0.69

CRCP

AGE 30.6 3.9 26.7 16.78 6.4
IRII 1.71 0.75 0.96 1.22 0.28
TC 303.6 0 303.6 40.99 61.75
PUNCH 13.2 0 13.2 0.37 1.8
PATCH 4 0 4 0.21 0.59
FI 1095.9 0 1095.9 2225.4 261.38
P200 97.3 1.7 95.6 49.6 27.65
IRI 2.6 0.79 1.81 1.45 0.36

Figure 2: (Continued)
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Figure 2: (Continued)
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Figure 2: (Continued)
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Figure 2: Frequency distribution histogram of the variables of JPCP and CRCP (JPCP: a–i, CRCP:
j–r)

2.2 Correlation Analysis
The analysis of two or more variables that are correlated is called correlation analysis [43,44].

Correlation analysis can measure the degree of closeness between two factors [42,45,46], and the
existence of certain connections or probability between elements is the basis for correlation analysis
of elements [47]. The correlation analysis results between the input variables of JPCP and CRCP are
shown in Fig. 3. It is obvious that the correlation values on the diagonal line from the bottom left
to the top right of JPCP and CRCP are all 1, indicating that the correlation coefficients between the
same variables are 1, while the correlation coefficients at other positions except the diagonal are all
less than 0.5, manifesting that the correlation coefficients between different variables are all less than
0.5. The above analysis results show that there is a certain correlation between the input variables used
to predict the IRI of JPCP and CRCP in this study, and the correlation between the variables is low,
thus the prediction effect of the model will not be affected by the multicollinearity between the input
variables [48–50].
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Figure 3: Correlation analysis of input variables

2.3 Algorithm
2.3.1 Mechanistic-Empirical Pavement Design Guide (MEPDG)

MEPDG was first proposed by the American Association of State Highway and Transportation
Officials and the U.S [51]. National Highway Research Program, Since then, researchers have car-
ried out more in-depth studies on MEPDG and made corresponding updates and improvements.
Currently, MEDPG has been widely used in the United States and also attracted the attention of
transportation experts worldwide [52]. The subject of MEDPG involves a wide range of research
directions. At present, the research mainly focuses on the four directions of structure, material, model,
and mechanical analysis [53].

2.3.2 Improved Beetle Antennae Search (MBAS)

(1) Basic BAS

BAS algorithm is a meta-heuristic algorithm proposed by researchers inspired by the foraging
behavior of beetles [54,55]. The beetles swing their scent-picking whiskers to get the location of the
food, choose the direction of their next flight based on the concentration of food odor received by their
left and right whiskers, and keep updating their position until they find food [56]. In the BAS algorithm,
the objective function to be optimized is regarded as food, and the variables in the objective function
are regarded as the position of the beetle [57,58]. The flow chart of BAS is performed in Fig. 4.

(2) Improvement of BAS

BAS has been widely used to solve practical problems in engineering due to its good optimization
ability [59]. However, the BAS algorithm has some shortcomings such as the limited ability of the
individual to search for optimal value, and the individual cannot make full use of the obtained optimal
value information [60]. The optimization of BAS relies too much on parameter setting, which is related
to the convergence and solution accuracy of the algorithm [20,61]. However, there are few types of
research on the improvement of the BAS algorithm. This study proposed the MBAS based on Levy
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flight and self-inertial weight optimization. Levy flight was used to update the position of individual
beetle in the process of beetle position update, to expand the search capability, which jump out of the
local optimal solution. The formula for increasing beetle step size is as follows:

x(i) = ∂ |Levy| ⊗ x(i−1) (1)

Figure 4: Flow chart of BAS

In the formula, x is a random parameter, and x ∈ [0, 1], ⊗ means term by term multiplication,
|Levy| represents the levy distribution with infinite variance, and infinity is defined as Levyu = t−λ, (1 <

λ ≤ 3). The levy flight formula is as follows:∣∣f (i) − f (i−1)
∣∣ < 10−5(fw − fb) (2)

In the formula, fb and fw represent the historical best fitness value and the historical worst fitness
value, respectively.

In this study, the adaptive weight method with exponential change was used to ensure the search
range. With the increment of the number of iterations, the weight decreases exponentially, which greatly
increases the local optimization capability of the algorithm. The adaptive weight monotone decreasing
equation is:

xi+1 = ηi × xi (3)

In the formula, X i represents the step size of the current position, ηi represents the inertia weight
of the adaptive function, and its calculation formula is as follows:

ηi = (1 − ∂) 0.95 + α
f i

w − f i

f i
w − f i

b

(4)

In the formula, f i is used to represent the fitting equation of the current position, f i
b and f i

w are
used to represent the best fitting value and the worst fitting value, and ∂ is the parameter used for the

tradeoff between (1 − ∂)0.95 and ∂
f i

w − f i

f i
w − f i

b

, and ∂ = 0.2.
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2.3.3 Random Forest (RF)

RF is a common classification machine learning method combining Bagging ensemble learning
and based on multiple decision trees [62,63]. Firstly, RF needs to learn the sub-model of the trained
weak classifier, then combine the weak classifier according to the results, and finally get the final result
of the model according to the voting result of the subset or average value [64]. The steps of RF are
shown in Fig. 5.

Figure 5: The framework flow chart of the RF

3 Result and Analysis
3.1 Hyperparameter Tuning

In this study, root mean square error (RMSE) was used to measure the results of hyperparameter
tuning [65]. RMSE is calculated as follows:

RSME =
√√√√ 1

m

m∑
i=1

(
y′

i − yi

)2
(5)

where y′
i is the predicted value, yi is the actual value, and m is the number of samples.

In the process of training, the model often matches the training data well but fails to predict the
data outside the training set, which is called overfitting [66–69]. Therefore, it is necessary to verify
the effect on the hyperparameter tuning of the model. According to previous studies, this study chose
10-fold cross-validation to verify and further optimize the effect of MBAS on RF. The diagram of
10-fold cross-validation is shown in Fig. 6, the original data used for validation was divided into 10
groups, and each group of data in 10 groups was taken as the validation set in turn, and the remaining
9 groups were taken as the training set, and obtained 10 models [70]. As can be seen from Fig. 7, the
RMSE values of the IRI prediction models of the two kinds of pavement with MBAS hyperparameter
optimization are all low at each cross-validationthe, which proves the effectiveness of hyperparameter
tuning, and the minimum RSME value of JPCP is obtained at the 7th iteration, the minimum RSME
value of CRCP is obtained at the 10th iteration, which reflects at the 7th iteration and 10th iteration
models with the most accuracy.

3.2 Results of the Model
To verify the accuracy of the prediction on IRI of JPCP and CRCP by the newly developed RF-

MBAS, we analyzed the fitting effect between the predicted and actual values and the result are shown
in Fig. 8. We can clearly see that the consistency between the predicted values and the actual values
of the test set of JPCP and CRCP is high, only a few points with large errors exist, but these points
do not affect the prediction effect of the model on the whole. The test set of JPCP had a high R-value
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(0.9476) and low RSME-value (0.2732), and the test set of CRCP also had a high R-value (0.9182)
and low RSME-value (0.1863). Also, from the above calculation, it can be obtained the MAE values
of 0.2358 and 0.1657 for the IRI prediction of the JPCP and CRCP, respectively. The above results
proved that RF-MBAS has high prediction accuracy on the IRI of JPCP and CRCP.

Figure 6: 10-fold cross-validation method process

Figure 7: RMSE results of the hyperparameter tuning

Figure 8: Actual measured vs. predicted measured values of the IRI
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To more intuitively prove that the prediction accuracy of RF-MBAS is significantly improved
compared with that of MEPDG, this study analyzed the predicted values and actual values on the IRI
of JPCP and CRCP by RF-MBAS and MEPDG, respectively, and the comparison results are shown
in Fig. 9. It can be clearly seen from Fig. 9 that the fitting effect of RF-MBAS on the predicted values
and actual values on the IRI of the two kinds of road pavement is better than that of the traditional
MEPDG, which proves once again that the RF-MBAS developed in this study has better prediction
effect.

Figure 9: Comparison of the actual value and predicted value of IRI of RF-MBAS and MEPDG

3.3 Importance of Variables
Fig. 10 shows the analysis results of importance scores of input variables on the IRI of JPCP and

CRCP. The importance scores of the eight input variables for the IRI of JPCP decrease in order of
IRII, TFAULT, FI, AGE, P200, SPALL, TC, and PATCH, and for the IRI of CRCP decreases in the
order of IRII, FI, P200, AGE, TC, PATCH and PUNCH.

Figure 10: The importance score of the input variable

Through further analysis of the input variables of JPCP and CRCP, it can be found that IRII,
FI, and AGE cannot be manually interfered with, so engineers cannot increase IRI by changing the
above variables when designing and maintaining JPCP and CRCP. It is important to analyze the
importance of the variables that can be manipulated for engineers to enhance the IRI during design
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and maintenance. In the input variables of JPCP and CRCP, the importance score of the variables that
can be manipulated is shown in Fig. 11. It can be seen that the input variables of JPCP that can be
manually intervened are TFAULT, P200, PATCH, TC, and SPALL, respectively, and their importance
scores to IRI are 2.0089, 0.9715, 0.4523, 0.4439, and 0.3122, respectively. The importance score of
TFAULT and P200 to the IRI of JPCP is high, that is, engineers can focus on the fineness of TFAULT
and P200 to increase the IRI when designing and maintaining JPCP. The variables of CRCP that can be
interfered with are P200, PATCH, TC, and PUNCH, respectively, among which P200 and PATCH have
relatively high importance scores to the IRI, with 1.4444 and 1.0539, indicating that the IRI of CRCP
shows higher sensitivity to P200 and PATCH.

Figure 11: The importance score of the input variable that can be artificially interfered with

4 Conclusions

To overcome the weakness of the prediction models in the previous MEPDG, this study developed
RF-MBAS to predict the IRI of JPCP and CRCP and compared the prediction effect of RF-MBAS
and MEPDG. The 10-fold cross-validation was applied to verify the reliability and accuracy of the
model. In addition, this study creatively proposes to analyze the importance score of all input variables
that can be interfered with by humans. After the above research, the following conclusions are drawn:

(1) To achieve the two goals of jumping out of the optimal local solution and improving the
convergence accuracy, levy flight, and adaptive weight methods were used to improve the basic
BAS algorithm. From the relationship between the number of iterations and RSME values, the
RSME values converge rapidly and drop to a lower value with the increase of iterations proving
MBAS shows a good efficiency on the hyperparameter tuning of RF. The proposed evolved
RF-MBAS model was an important innovation point of this study to characterize and predict
pavement IRI.

(2) The predicted values predicted by RF-MBAS have high consistency with the actual values
for IRI of JPCP and CRCP. This study compared the prediction effects of MEPDG and RF-
MBAS, and the results further proved that the RF-MBAS has better prediction effects on the
IRI of JPCP and CRCP, and the machine learning model shows great superiority in predicting
IRI compared to the traditional MEPDG.

(3) The importance of the input variables of IRI used to evaluate JPCP and CRCP is ranked from
highest to lowest as IRII, TFAULT, FI, AGE, P200, SPALL, TC, PATCH and IRII, FI, P200,
AGE, TC, PATCH, PUNCH, the higher scores of JPCP were TFAULT and P200 (2.0089
and 0.9715) and the highest scores of CRCP were P200 and PATCH (1.4444 and 1.0539),
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respectively. The IRI of JPCP and CRCP was proportional to the corresponding input variables
in this study, including TFAULT, P200, PATCH which scored higher.

The RF-MBAS model developed in this study has satisfactory accuracy in the evaluation of the
IRI of JPCP and CRCP. However, the optimization of JPCP and CRCP involves multiple conflicting
goals such as usage performance and economic performance. Hence, in the future, researchers need
to develop multi-objective optimization models that can simultaneously optimize multiple conflicting
objectives of JPCP and CRCP.
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Appendix A: Input and Output Variables Employed in the Study

(a) JPCP

IRII

(m/km)
AGE
(years)

TC SPALL PATCH TFAULT FI (°C/day) P200 (%) IRI (m/km)

2.28 20.32 0 0 0 0 32 44.7 3.31
2.28 21.84 0 0 0 861.8 32 44.7 3.38
0.85 13.56 0 6 0 83.8 2.4 18.7 1.16
1.03 8.95 0 0 0 0 52.1 84.3 1.14
1.03 12.17 0 6 0 39.9 52.1 84.3 1.18
1.03 14.86 0 0 0 159.4 52.1 84.3 1.21
1.23 13.65 3.1 43.4 0 93 0 24.2 1.3
1.23 18.84 0 15.5 0 179.1 0 24.2 1.28
1.56 9.4 2.7 51.3 0 78.9 0 26.3 1.64
1.56 14.63 5.4 29.7 0 309.5 0 26.3 1.69
1.14 13.41 9.3 24.8 0 88.9 0 13.9 1.48
1.14 18.64 0 9.3 0 191.6 0 13.9 1.61
1 11.98 0 99.2 0 205.6 1 46.2 1.48
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Table A1 (continued)

1 17.18 3.1 37.2 0 537.1 1 46.2 1.69
1.22 11.06 3.1 89.9 0 53.1 0.8 28.2 1.57
1.22 16.3 0 58.9 0 338.3 0.8 28.2 1.73
0.73 19.19 24.8 0 0.7 12.9 0.7 51 1.29
0.73 24.48 37.2 3.1 0 128.6 0.7 51 1.44
0.77 12.56 6.2 83.7 0 19.9 7.6 64.5 1.01
0.77 17.07 3.1 71.3 0 0 7.6 64.5 1.01
0.77 17.16 3.1 0 0 61.5 7.6 64.5 1.01
0.77 17.25 15.5 74.4 0 0 7.6 64.5 0.94
1.39 20.48 6.2 86.8 0 302.2 0.2 47.8 2.34
1.39 24.32 6.2 12.4 0 0 0.2 47.8 2.19
1.4 8.48 10.8 45.9 0 32.2 0 11.4 1.4
1.4 13.68 0 2.7 0 98.7 0 11.4 1.4
1.31 6.25 62.4 0 0 188.9 3.5 2.9 1.68
1.22 15.68 56 0 0 0 0.7 31.1 1.77
1.22 18.59 64 0 0 467.1 0.7 31.1 1.87
0.65 5.33 0 0 0 20.6 0.2 2.5 0.77
0.89 2.37 0 0 0 6.6 3.4 1 0.99
0.89 3.78 0 5.6 0 0 3.4 1 1.06
0.89 7.88 0 11.2 0 0 3.4 1 1.24
1.88 2.6 0 0 0 19.5 0 2.8 1.92
1.88 4.03 0 0 0 0 0 2.8 1.91
1.88 8.14 0 8.4 0 32.7 0 2.8 1.96
1.84 16.94 28 0 337.5 807.4 0.1 14.7 2.8
1.84 18.36 28 12 293.4 0 0.1 14.7 2.73
1.84 22.48 16 16 559.2 799.7 0.1 14.7 3.02
1.5 9.37 0 20 0 26.3 24.8 50.5 1.78
1.5 9.82 0 0 0 0 24.8 50.5 1.87
1.5 12.9 0 0 0 65.8 24.8 50.5 1.77
1.5 15.46 0 0 0 236.8 24.8 50.5 1.95
1.06 16.41 0 8 0 0 4.6 27.7 1.12
1.06 19.51 4 36 0 189.8 4.6 27.7 1.14
1.06 21.99 0 20 0 69.6 4.6 27.7 1.13
0.68 11.61 0 12 0 157.9 25.2 1.4 1.23
0.68 12.07 0 12 0 0 25.2 1.4 1.48
0.68 15.17 0 4 0 177.6 25.2 1.4 1.36
0.68 17.65 0 12 0 125 25.2 1.4 1.21
1.21 13.82 0 0 0 0 19.7 37.9 1.35
1.21 16.91 0 12 0 203.9 19.7 37.9 1.38
1.19 17.37 0 0 0 240 17.5 35.3 1.24
1.19 17.82 0 0 0 0 17.5 35.3 1.24
1.19 20.91 0 11.7 0 246.6 17.5 35.3 1.25
1.19 23.47 0 11.7 0 350.4 17.5 35.3 1.26
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Table A1 (continued)

0.47 17.79 0 35.1 0 136.3 23.5 43.2 0.98
0.47 18.24 0 0 0 0 23.5 43.2 1.07
0.47 21.33 3.9 11.7 0 19.4 23.5 43.2 1.14
0.47 23.88 3.9 11.7 0 142.7 23.5 43.2 0.97
1.31 9.36 0 0 0 78.9 11.1 59.9 1.5
1.31 9.82 0 0 0 0 11.1 59.9 1.56
1.31 12.91 0 0 0 39.5 11.1 59.9 1.49
1.31 13.67 0 0 0 78.9 11.1 59.9 1.57
1.31 14.41 0 4 0 92.1 11.1 59.9 1.59
1.31 14.88 0 0 0 92.1 11.1 59.9 1.59
1.25 6.02 0 4 0 0 3.7 21.4 1.35
1.25 11.65 0 4 0 0 3.7 21.4 1.41
1.33 5.4 0 0 0 6.6 308.5 68 1.6
1.33 10.91 0 0 0 0 308.5 68 1.88
1.63 16.79 9.3 9.3 0 99.5 456.1 67.4 1.8
1.63 18.88 0 34.1 0 79.6 456.1 67.4 1.83
1.63 19.5 3.1 18.6 0 95.9 456.1 67.4 1.82
1.38 16.34 0 12 0 0 389 31.7 1.65
1.38 17.72 4 0 0 82.2 389 31.7 1.68
1.19 13.56 0 9.3 0 26.5 300 62.4 1.63
1.19 18.85 36 8 0 677.6 618.1 60.9 3.26
2.13 17.82 8 8 0 0 515 30.6 2.3
1.6 9.77 0 0 0 69.6 470.7 56.3 1.72
1.35 10.69 0 0 0 358.8 270.4 93.3 1.61
0.81 9.85 0 0 0 225.7 296.4 89.6 1.38
1.43 7.36 0 0 4.6 251.5 191 52.3 1.51
1.79 21.81 0 4 0.7 31.6 546 19.7 2.19
1.23 20.96 0 16 0 44.2 516.3 9.9 1.56
1.23 21.81 0 0 0 65.8 516.3 9.9 1.54
1.36 6.42 0 0 0 0 77.4 26.3 1.69
1.36 7.09 0 0 0 0 77.4 26.3 1.72
1.36 11.13 0 0 0 322.4 77.4 26.3 1.93
1.07 6.42 4 4 0 0 48.2 29.4 1.6
1.07 7.09 4 4 0 0 48.2 29.4 1.66
1.07 11.17 8 48 0 243.4 48.2 29.4 1.99
0.91 8.52 0 0 0 0 472.9 4.7 1.71
0.91 9.97 0 0 0 595.5 472.9 4.7 1.78
0.91 10.85 0 0 0 636.7 472.9 4.7 1.91
0.91 11.28 0 0 0 935.1 472.9 4.7 1.82
0.91 12.52 0 0 0 868.2 472.9 4.7 1.59
1.11 9.14 6.2 0 0 95.9 483.8 2.4 1.16
1.11 10.89 65.1 0 0 185.7 483.8 2.4 1.18
1.11 13.21 24.8 0 0 68.5 483.8 2.4 1.17
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Table A1 (continued)

1.11 10.2 0 49.6 0 6.4 530.4 97.9 1.2
1.11 12.33 0 0 0 154.3 530.4 97.9 1.17
1.11 14.35 0 0 0 0 530.4 97.9 1.18
1.11 16.38 0 0 0 112.7 530.4 97.9 1.21
1.74 9.03 15.5 12.4 0 0 374.1 19.5 2.68
1.74 9.52 3.1 105.4 0 656.6 374.1 19.5 2.34
1.77 17.04 8.52 4.26 0 141.6 51.8 28.2 1.8
1.05 8.25 0 0 0 13.6 1460 54.5 1.21
0.98 6.01 0 0 0 0 1434.9 59.2 1.01
1.88 12.03 0 76 0 78.9 355.3 46.8 2
1.09 5.61 0 0 0 0 107.1 17.9 1.13
1.09 6.68 0 0 0 232.2 107.1 17.9 1.17
1.09 8.68 0 0 0 103.3 107.1 17.9 1.15
1.09 11.23 0 0 0 58.1 107.1 17.9 1.14
1.69 12.38 0 3 0 0 49.7 80.3 1.73
1.69 13.43 0 0 0 562.1 49.7 80.3 1.74
1.69 15.43 0 0 0 438.6 49.7 80.3 1.73
1.69 18.23 0 6 0 692.1 49.7 80.3 1.75
1.62 6.37 0 0 0 0 97.9 41.6 1.68
1.62 7.44 0 0 0 193.4 97.9 41.6 1.7
1.62 9.43 0 0 0 32.2 97.9 41.6 1.69
1.62 12.23 0 0 0 219.3 97.9 41.6 1.73
1.01 11.61 0 0 0 0 17.8 54.9 1.19
1.01 15.65 0 0 0 0 17.8 54.9 1.25
1.76 18.05 0 43.4 0 0 1000 61.4 2.98
1.85 10.12 0 9 0 0 703.2 49.8 2.14
2.59 12.1 3 0 0 737.7 600.8 64.5 2.95
1.08 8.02 0 0 0 0 622.2 65.1 1.21
0.86 18.13 0 70.3 4.6 711.2 664 89.8 2.37
1.36 18.13 0 0 0 0 26.4 88.1 2.1
1.36 22.08 0 0 0 86.4 26.4 88.1 2.26
2.25 30.82 3 9 0 0 54.8 41.3 2.36
2.25 33.71 15 6 3.9 219.3 54.8 41.3 2.37
1.43 19.19 42 0 0 265.8 268.3 30.2 1.71
0.62 14.64 21 3 0 490.1 259.7 35.8 1.91
0.62 14.99 21 3 0 0 259.7 35.8 2.12
0.62 15.24 18 3 0 1367.3 259.7 35.8 1.88
0.62 16.64 0 102 0 812.7 259.7 35.8 2.09
0.62 17.02 3 99 0 551.5 259.7 35.8 2.09
0.62 17.05 0 60 0 529 259.7 35.8 2.05
0.62 17.43 27 0 0 322.6 259.7 35.8 1.93
1.82 6.92 0 12.5 0 26.3 214.5 18.1 2.01
1.82 12.19 0 20 2.6 229.5 214.5 18.1 2.16
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0.96 6.88 0 2.5 0 145.5 408.5 18 0.99
1.29 5.4 52.5 2.5 0 81.1 480.1 25.9 1.56
1.29 5.95 0 0 0 81.1 191.8 38.4 1.68
0.74 20.03 0 11.5 0 463.1 49.3 25.4 1.83
0.89 11.05 0 0 0 206.2 137.1 80.2 1.2
0.43 28.98 12 3 0 1083.6 25.7 26.8 2.08
0.43 29.32 9 6 0 1109.4 25.7 26.8 2.09
0.43 29.58 9 15 0 1257.7 25.7 26.8 2.03
0.43 29.73 9 0 0 1189.5 25.7 26.8 2.05
0.43 29.92 12 24 0 0 25.7 26.8 2.07
0.43 30.1 15 24 0 0 25.7 26.8 2.06
0.82 15.97 2.3 0 0 333.8 196.8 8.5 1.22
1.01 10.1 0 64.26 0 1902.3 595.8 74.2 4.18
1.01 10.1 0 64.26 0 1902.3 595.8 74.2 4.18
1.01 10.59 3.06 97.92 2 1589.7 595.8 74.2 4.03
1.01 10.59 3.06 97.92 2 1589.7 595.8 74.2 4.03
0.49 16.12 0 77.48 0 590.8 549.1 55.4 2.46
1.24 8.43 0 31 0 404.5 806.9 5 1.31
1.05 10.69 3.1 21.7 0 636.7 731.8 39.6 2.74
1.05 16.16 3.1 0 0 1341.9 731.8 39.6 3.6
0.51 8.46 0 0 0 396.1 1862.8 91.6 2.75
0.51 8.98 0 33 0 0 1862.8 91.6 2.89
0.51 9.58 3 96 0 499.6 1862.8 91.6 3.04
0.51 11.13 0 66 0 568.9 1862.8 91.6 3.45
0.51 11.81 0 66 0 504.4 1862.8 91.6 3.63
0.51 12.05 0 99 15.1 564.9 1862.8 91.6 3.7
1.13 15.18 5.8 92.8 11.2 1302.9 881 26.3 3.17
2.18 19.29 3.1 65.1 58.6 683.2 1020 14 2.57
2.18 20.13 3.1 52.7 52 694.6 1020 14 2.55
1 9.72 7.88 102.44 15.1 89.8 1227.7 2.9 1.92
1 9.95 11.82 102.44 50 77.1 1227.7 2.9 1.96
1 10.79 0 98.5 33.6 141.3 1227.7 2.9 1.73
1 12.22 0 23.64 143.4 106.9 1227.7 2.9 1.81
1 12.72 0 31.52 168.4 76.5 1227.7 2.9 1.75
1 13.07 0 82.74 114.5 160.3 1227.7 2.9 1.98

(b) CRCP

AGE (year) IRII (m/km) TC PUNCH PATCH FI (oC/day) P200 (%) IRI (m/m)

17.9 0.91 0 0 0 35.2 47.9 0.93
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AGE (year) IRII (m/km) TC PUNCH PATCH FI (oC/day) P200 (%) IRI (m/m)

19.6 0.91 6.6 0 0 35.2 47.9 0.93
3.9 1 0 0 0 0 51 1.05
6.1 1 0 0 0 0 51 1.07
19.9 0.95 0 0 0 49.6 45 1.41
22.6 0.95 0 0 0 49.6 45 1.48
22.2 1.09 66 0 0 0.4 53.7 1.16
24 1.09 118.8 0 0 0.4 53.7 1.17
19.8 1.39 0 0 0 13.3 1.7 1.42
21.7 1.39 6.6 0 0 13.3 1.7 1.42
10.8 0.75 39.6 0 0 512.6 68.6 1.38
13.9 0.75 79.2 0 0 512.6 68.6 1.56
27.3 1.06 6.6 0 0 473.1 9.9 1.12
25.2 1.17 66 0 0 428.8 80.7 1.39
23.6 1.17 13.2 0 1 428.8 80.7 1.37
15 1.53 6.6 0 0 305.4 66 1.71
16.7 1.53 19.8 0 0 305.4 66 1.73
23.5 1.51 0 0 0 228.6 91.4 2.08
25.3 1.51 6.6 0 0 228.6 91.4 2.12
11.9 1.34 132 6.6 0 468.5 79.8 2.45
13.6 1.34 231 13.2 1 468.5 79.8 2.6
17.6 1.27 6.6 0 1 664.4 32.9 1.57
17.6 1.54 6.6 0 0 807.3 45.7 1.69
20.6 1.54 13.2 0 0 807.3 45.7 1.72
20.6 1.27 6.6 0 4 664.4 32.9 1.62
4.1 1.19 0 0 0 337.4 89.9 1.31
7.2 1.19 0 0 0 337.4 89.9 1.4
16.6 0.99 0 0 0 643.7 12.7 1.91
18.6 0.99 6.6 0 2 643.7 12.7 2.02
14.7 0.83 79.2 0 0 62.3 19.2 1.17
17.5 0.83 85.8 0 0 62.3 19.2 1.24
13.7 1.17 6.6 0 0 23.1 79.7 1.5
13.3 1.19 79.2 0 1 19.3 12 1.67
17.6 1.29 145.2 0 0 14.2 2.8 1.33
20.4 1.29 303.6 0 0 14.2 2.8 1.33
16 1.19 138.6 6.6 1 19.3 12 1.77
21.5 1.34 19.8 0 0 369.3 96.2 1.55
24.5 1.34 19.8 0 0 369.3 96.2 1.58
20 0.93 0 0 0 91.9 36.4 1.08
23.3 0.93 46.2 0 0 91.9 36.4 1.1
24.6 0.76 0 0 0 658 39.5 1
23 0.76 33 0 0 658 39.5 0.98

(Continued)
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Table A2 (continued)

AGE (year) IRII (m/km) TC PUNCH PATCH FI (oC/day) P200 (%) IRI (m/m)

4.4 1.08 0 0 0 441.7 75.6 1.07
7 1.08 0 0 0 441.7 75.6 1.06
27.4 0.81 33 0 0 70.3 20.4 0.92
30.6 0.81 39.6 0 0 70.3 20.4 0.93
4.8 0.76 0 0 0 350.7 13.6 0.79
6.7 0.76 6.6 0 0 350.7 13.6 0.8
8.8 0.9 46.2 0 0 16.8 50.7 1.02
10.6 0.9 79.2 0 0 16.8 50.7 1.05
7.8 1.05 0 0 0 127.6 35.4 1.16
9.6 1.05 6.6 0 0 127.7 35.4 1.19
22 1.19 52.8 0 0 193 41 1.39
20.1 1.19 79.2 0 0 193 41 1.37
17.9 1.33 33 0 0 398.4 29.4 1.69
15 1.32 171.6 0 0 250.7 54.4 1.9
17.7 1.32 303.6 0 0 250.7 54.4 2
20.8 1.33 59.4 0 2 398.4 29.4 1.74
17.1 1.2 0 0 0 12.7 29.8 1.26
20.3 1.2 13.2 0 0 12.7 29.8 1.28
17.5 1.35 0 0 0 11.9 24.1 1.46
20.8 1.35 0 0 0 11.9 24.1 1.49
21.2 0.76 13.2 0 0 615.7 21 0.99
23.9 0.76 217.8 0 0 615.7 21 1.02
5.3 1.05 0 0 0 26.7 63.6 1.18
7.3 1.05 19.8 0 0 26.7 63.6 1.23
22.5 1.21 0 0 0 121.4 69.8 1.11
25 1.21 33 0 0 121.4 69.8 1.1
21.7 1.35 6.6 0 0 6.3 45.2 1.59
23.7 1.35 19.8 0 0 6.3 45.2 1.61
11.6 1.42 19.8 0 0 97.5 75.3 1.45
9.2 1.42 26.4 0 0 97.5 75.3 1.44
17.4 1.52 6.6 0 0 28.3 26.9 1.68
19.8 1.52 26.4 0 0 28.3 26.9 1.7
13.5 1.62 19.8 0 0 129.1 71.5 1.78
20 1.66 0 0 0 30.2 88.9 1.64
7.3 1.66 46.2 0 0 3.7 96.1 1.69
9.3 1.66 59.4 0 0 3.7 96.1 1.7
15.9 1.62 72.6 0 0 129.1 71.5 1.81
22 1.66 79.2 0 0 30.2 88.9 1.64
19.5 1.68 0 0 1 31.3 57.5 1.92
13.5 1.71 0 0 1 25.1 61.7 1.8
15.5 1.71 0 0 1 25.1 61.7 1.81

(Continued)
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Table A2 (continued)

AGE (year) IRII (m/km) TC PUNCH PATCH FI (oC/day) P200 (%) IRI (m/m)

11 1.69 33 0 1 33.2 63.2 1.64
21.6 1.68 39.6 0 1 31.3 57.5 1.95
13 1.69 99 0 1 33.2 63.2 1.63
4.4 1.52 0 0 0 66.5 97.3 1.57
7.8 1.52 13.2 6.6 0 66.5 97.3 1.62
19.7 1.19 52.8 0 0 1095.9 1.9 1.15
22.9 1.19 66 0 0 1095.9 1.9 1.14
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