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ABSTRACT

Negative Poisson’s ratio (NPR) metamaterials are attractive for their unique mechanical behaviors and potential
applications in deformation control and energy absorption. However, when subjected to significant stretching,
NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR per-
formance. To address this issue, this study aims to design metamaterials maintaining a targeted NPR under
large deformation by taking advantage of the geometry nonlinearity mechanism. A representative periodic unit
cell is modeled considering geometry nonlinearity, and its topology is designed using a gradient-free method.
The unit cell microstructural topologies are described with the material-field series-expansion (MFSE) method.
The MFSE method assumes spatial correlation of the material distribution, which greatly reduces the number
of required design variables. To conveniently design metamaterials with desired NPR under large deformation,
we propose a two-stage gradient-free metamaterial topology optimization method, which fully takes advantage
of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique. Initially,
we use homogenization to find a preliminary NPR design under a small deformation assumption. In the second
stage, we begin with this preliminary design and minimize deviations in NPR from a targeted value under large
deformation. Using this strategy and solution technique, we successfully obtain a group of NPR metamaterials
that can sustain different desired NPRs in the range of [−0.8, −0.1] under uniaxial stretching up to 20% strain.
Furthermore, typical microstructure designs are fabricated and tested through experiments. The experimental
results show good consistency with our numerical results, demonstrating the effectiveness of the present gradient-
free NPR metamaterial design strategy.
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1 Introduction

Metamaterials [1,2] are artificial materials with unique and unusual properties not commonly
found in natural materials. These unusual properties mainly arise from their microstructure geometry.
Negative Poisson’s ratio (NPR) or auxetic materials [3–5] belong to the class of metamaterials with a
distinct mechanical property that allows them to expand laterally when stretched, unlike most other
materials that contract laterally under similar conditions. NPR metamaterials possess mechanical
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properties that are suitable for various applications, such as deformation control [6,7], vibration and
noise reduction [8,9], energy absorption [10–12], etc.

With the rapid development of additive manufacturing and other advanced techniques, fabricating
metamaterials, such as NPR materials [13–15], has become more convenient and accessible. Additive
manufacturing enables precise and customizable fabrication of complex geometries [16], which is
essential for the design and production of metamaterials. This increased design freedom allows for
the development of new attainable metamaterials that are tailored to specific applications.

Topology optimization [17,18] is a powerful design technique that can optimize material dis-
tribution and structural performance while considering multiple constraints. This field has seen
rapid development over the past three decades since Bendsøe and Kikuchi’s seminal work [19] on
structural topology optimization using homogenization. Today, various methods are widely adopted
in the topology optimization community, such as the Solid Isotropic Material with Penalization
(SIMP) method [20,21], the level set method [22,23], and the evolutionary structural optimization
(ESO) method [24,25]. Over time, topology optimization has expanded its focus from developing
basic methods for structural mechanical design [26] problems to addressing other challenging design
problems in different fields, including the metamaterial design problem. In the case of designing
metamaterials, optimization is employed to determine the optimized topology of the periodic unit cell
microstructure. Currently, research on metamaterial design covers a wide range of material properties,
such as elasticity [27,28], viscoelasticity [29], extreme thermal expansion [30], photonic bandgap [31],
thermal exchange [32], phononic bandgap [33–35], and negative permeability [36], etc. Also, several
methods [37–41] are developed to design and distribute metamaterial microstructures in multiscale
structures.

In recent years, there has been growing interest in the design of NPR materials using
topology optimization. Different methods and formulations have been developed to achieve NPR
microstructures, showing typical geometrical features such as re-entrance or chirality. For example,
Andreassen et al. [13] used the SIMP method to investigate the design of 3D isotropic elastic
microstructures with NPR, incorporating a robustness formulation to ensure a minimum size
constraint. Wang et al. [42] employed the parametric level set method to design the material
microstructures that attain a negative Poisson’s ratio as prescribed by an effective stress-strain matrix.
Zheng et al. [43] developed optimization strategies using the bi-directional evolutionary structural
optimization method to obtain orthogonal materials with auxetic properties. By combining the
independent point-wise density interpolation (iPDI) model [44] with a bi-material interpolation
scheme, Zhang et al. [45] studied the design of chiral auxetic metamaterials. Utilizing isogeometric
analysis, Gao et al. [46] investigated the design of multi-material NPR microstructures in both 2D
and 3D settings. De Lima et al. [47] achieved auxetic microstructures through compliant mechanisms
topological design at the microscale using polygonal finite element meshes. Wu et al. [48] explored
robust topological design of NPR metamaterial designs under hybrid uncertainties. Besides the NPR
behavior itself, studies [49] have also been carried out to optimize the energy absorption of NPR
metamaterials.

As pointed out in [50], when metamaterials designed under the assumption of infinitesimal strain
are subjected to large stretches, their NPR may rapidly attenuate or even become positive. Clausen and
colleagues [50] designed 2D material microstructure topologies with analytical sensitivities to attain
programmable negative Poisson’s ratios in the context of finite strain design. Their design strategy
also includes a parameter optimization procedure for fabricating microstructures with uniform
width members using 3D printing. Wang [51] extended this method by considering the hyperelastic
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constitutive behavior of the base material, resulting in designs for three-dimensional programmable
negative Poisson’s ratio microstructures under finite strain. Based on nonlinear homogenization,
Zhang et al. [52] proposed a computational framework for designing auxetic metamaterials composed
of single- or multi-phase hyperelastic constituents at finite deformations using topology optimization.
The above studies rely on sensitivity analysis and gradient-based algorithms to update the design.
However, it may be challenging for engineers to derive the sensitivities when considering geometry
or other nonlinearities. With prescribed and fixed auxetic microstructure topology configurations,
researchers [53,54] have also explored genetic algorithms to study shape or size designs of the
microstructures.

The present paper introduces a gradient-free topology optimization strategy for generating
mechanical metamaterial microstructures. These materials are designed to achieve the desired NPR
when subjected to up to 20% strain in a uniaxial loading case. The current method utilizes the
finite element method to model and design a periodic representative unit cell. It considers geomet-
ric nonlinearity and incorporates periodic boundary conditions. The metamaterial microstructure
topology is described with the material-field series expansion (MFSE) method [55], which can greatly
reduce the number of required design variables by assuming a spatial correlation in the material
distribution. This enables the adoption of a series of Kriging surrogate models to approximately solve
the original optimization problem [56]. To address the large deformation NPR metamaterial design
problem with this method, a two-step optimization strategy is suggested. Firstly, the homogenization
method is employed to generate preliminary NPR metamaterial designs under the small deformation
assumption. In the second step, these preliminary designs will undergo further optimization in order
to achieve the desired negative Poisson’s ratio when subjected to large deformations. The focus of the
second optimization stage is on minimizing deviations of the design’s Poisson’s ratio from a targeted
value. With this two-stage optimization strategy and the Kriging surrogate model-based solution
technique, we have successfully obtained a group of metamaterials that can maintain different targeted
NPRs within the range of [−0.8, −0.1] under 20% strain in uniaxial tension. Furthermore, several
optimized microstructures were fabricated and their effective Poisson’s ratio was measured through
experiments. The experimental results show good consistency with our numerical results.

The present paper is organized as follows: Section 2 introduces the geometry nonlinear finite
element analysis of the metamaterial unit cell. Section 3 presents the MFSE method, the suggested
two-step optimization strategy, and the optimization problems’ solution techniques. In Section 4,
numerical examples are given. The conducted uniaxial tensile experiment is introduced in Section 5.
Finally, conclusions are drawn.

2 The Finite Element Analysis of the NPR Metamaterial Unit Cell with Geometry Nonlinearity under
Large Deformation

Our study focuses on the design of metamaterials with periodic microstructures that exhibit 1/4
geometry symmetries. Specifically, we design the metamaterial’s effective Poisson’s ratio μE

12 under large
deformation, which is determined as the negative ratio of the unit cell’s y-directional engineering strain
to its applied x-directional engineering strain.

To evaluate this effective Poisson’s ratio, we employ finite element analysis on the square unit cell’s
microstructure, taking into account periodic boundary conditions and uniaxial stretching. Consider-
ing the symmetries of the unit cell, these boundary conditions ensure that during deformation, the unit
cell’s right edge remains vertical and the top edge remains horizontal. The specific applied boundary
conditions are as follows: the displacement in the x-axis (i.e., u) on the left edge of the unit cell is set
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to zero, displacement in the y-axis (i.e., v) on the bottom edge is also set to zero, v on all the top edge
nodes are constrained to one unknown value to be solved for, and a prescribed u is applied on all the
nodes on the right edge. These boundary conditions are illustrated in Fig. 1. Denoting the edge length
of the square unit cell by L, and the metamaterial’s effective Poisson’s ratio μE

12 is expressed as

μE
12 = −ε2

ε1

= −
(
vtop/L

)(
uright/L

) = − vtop

uright

. (1)

Figure 1: Schematic illustration of the studied unit cell’s boundary conditions

The finite element analysis takes into account the geometry nonlinearity due to significant
deformation. Once the quantities from time 0 to time t have been calculated, the virtual work principal
can be built on the deformed configuration at time t + �t as∫

t+�tV

t+�tτ ijδt+�teij
t+�tdV =

∫
t+�tV

t+�tf iδui
t+�tdV +

∫
t+�tS

t+�ttiδui
t+�tdS, (2)

where the superscript t + �t refers to quantities at this time, the subscript t + �t denotes the
configuration at which time is referenced, t+�tτ ij is the Cauchy stress, ui is the incremental displacement
defined as ui = t+�tui − tui, δui stands for the virtual displacement and δt+�teij represents the virtual
infinitesimally small strain computed from δui, t+�tf i and t+�tti are the applied body force and surface
traction, respectively.

To account for the unknown configuration at time t+�t, we utilize the total Lagrange formulation
[57]. This involves transforming Eq. (2) into expressions that reference the configuration at time 0. By
using linearization and finite element discretization, the following typical Newton-Raphson iterative
formulations can be derived as
t
0K�U(k) = t+�t

0 Fext − t+�t
0 Fk−1

int , (3)

in which t
0K represents the tangent stiffness matrix, �U(k) is the incremental structural displacement

in iteration k from time t to time t + �t so that the nodal displacement can be expressed as t+�tUk =
t+�tUk−1 + �U(k) (t+�tU0 = tU), t+�t

0 Fext is the external nodal force, and t+�t
0 Fk−1

int is the internal nodal
force computed with t+�tUk−1. The iterative solution procedure in Eq. (3) is repeated until internal and
external nodal forces are equivalent, at this point, the displacement t+�tU is obtained.
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3 The Design Methodology of the Metamaterial Microstructures with Desired NPR under Large
Deformation

This section introduces the unit cell’s microstructural topology description method and the
interpolation model for material properties, both of which are based on the material-field series-
expansion (MFSE) method [55]. The suggested optimization formulation and two-stage solution
strategy are discussed in detail thereafter.

3.1 The Metamaterial Unit Cell Microstructural Topology Description with the Material-Field Series-
Expansion Method

Our study utilizes the MFSE method for topology optimization, which can efficiently describe
the microstructural topologies using only a few design variables. A brief introduction to this method
is given here for completeness.

The MFSE method uses a bounded material field function ϕ (x) whose value is between [0, 1]
to describe the base material’s distribution within the unit cell. The definition of the microstructural
topology is as follows:

x ∈
{

�solid, if 0 ≤ ϕ (x) ≤ 1,
�void, if − 1 ≤ ϕ (x) < 0,

(4)

where x is a spatial point within the design domain, �solid and �void respectively denote the solid and
void phase.

This method assumes a correlation between the material field values at any two points within the
design domain by specifying a correlation length lc. The exponential form correlation formulation
adopted in this study reads.

c (ϕ(xa), ϕ (xb)) = exp
(

−||xa − xb||2

lc
2

)
, (5)

where xa and xb are two spatial points, and the operator ||·|| computes the Euclidean distance between
these two points. Eq. (5) indicates that the correlation between material field functions on two points
depends on their distance from each other. When the distance is zero, the correlation equals one; as
it approaches infinity, the correlation approaches zero. Based on Eq. (5), the MFSE method further
distributes a certain number of material-field points x1, x2, · · · , xNpt within the design domain and
builds the correlation matrix C whose expression reads

C =

⎡⎢⎢⎢⎣
c (ϕ (x1), ϕ (x1)) c (ϕ (x1), ϕ (x2)) · · · c

(
ϕ (x1), ϕ

(
xNpt

))
c (ϕ (x2), ϕ (x1)) c (ϕ (x2), ϕ (x2)) · · · c

(
ϕ (x2), ϕ

(
xNpt

))
...

...
. . .

...
c
(
ϕ

(
xNpt

)
, ϕ (x1)

)
c
(
ϕ

(
xNpt

)
, ϕ (x2)

) · · · c
(
ϕ

(
xNpt

)
, ϕ

(
xNpt

))
⎤⎥⎥⎥⎦ . (6)

It should be noted that when designing periodic unit cell microstructures, Eq. (5) should also
consider the periodic arrangement of neighboring unit cells to compute the minimum distance between
the material-field points, as illustrated in Fig. 2.
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Figure 2: The computation of correlation matrix entries for periodic unit cells based on the material-
field points

Then, by employing the series expansion technique for bounded fields with correlation [55], a
material field function ϕ (x) with correlation length lc can be expressed with the eigenvalues λk and
eigenvectors ψk of the correlation matrix C as

ϕ (x) =
Npt∑
k=1

(
ηk

1√
λk

ψk
TCd (x)

)
, (7)

in which Npt is the number of the material-field points, and Cd (x) is a vector defined as

Cd (x) = [
c (ϕ (x), ϕ (x1)), c (ϕ (x), ϕ (x2)), · · · , c

(
ϕ (x), ϕ

(
xNpt

))]T
, (8)

whose entries are the correlation (Eq. (5)) between the point x and all the material field points. It
should also be noted that the eigenvalue analysis of the matrix C is only required once during the
optimization process.

Eq. can be rearranged in descending order of eigenvalues and truncated accordingly to reduce the
number of parameters needed to describe the field function. This process neglects the contribution
corresponding to small eigenvalues by keeping the first M largest eigenvalues to fulfill a criterion with

given error ε, i.e.,
(∑M

m=1λm

)
/
(∑Npt

k=1λk

)
≥ 1 − ε. Once truncated, the material field function can be

expressed as

ϕ (x) ≈
M∑

k=1

(
ηk

1√
λk

ψk
TCd (x)

)
. (9)

The MFSE method utilizes the expansion coefficients ηk in Eq. (9) as design variables. Fig. 3
illustrates the composition of eigenvectors of a correlation matrix to describe a typical microstructure
topology. The expression in Eq. (9) greatly reduces the number of design variables while keeping the
capability to describe relatively complex structural topologies. Reducing the number of design variables
is vital for adopting gradient-free optimization solution methods adopted in this study.

Although the MFSE method provides a clear boundary description, it differs from the level set
method in several ways. The most obvious difference is that the MFSE method considers material
distribution correlation and uses basis function coefficients as design variables, while the level set
method relies on boundary evolution.
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Figure 3: Schematic illustration of the topological description of a unit cell microstructure using the
MFSE method

3.2 The Two-Stage Topology Optimization Strategy for Metamaterials with Desired NPR under Large
Deformation

Describing the unit cell microstructural topologies using the MFSE method, the material proper-
ties interpolation scheme within the microstructure reads.

Ee = Emin +
(

1 + ϕ̃ (xe)

2

)p

(E0 − Emin), e = 1, . . . , ne, (10)

where Emin is a small positive value to avoid singularity in the finite element analysis, E0 and Ee represent
Young’s modulus of the base material and that of element e respectively, p is the penalty parameter (p =
3 in this study), xe denotes the center of element e, and ϕ̃ (xe) is the projected material field function
used to reduce the amount of non-solid/non-void material. The adopted projection formulation [58]
reads

ϕ̃ (x) =
{

ϕ(x)e−β + 1 − e−βϕ(x), if ϕ(x) ≥ 0,

ϕ(x)e−β − 1 + eβϕ(x), if ϕ(x) < 0,
(11)

in which the parameter β controls the steepness of the projection function.

To obtain metamaterials with a desired NPR under large deformation, a two-stage gradient-free
topology optimization strategy is proposed. This optimization strategy builds upon Latin super-cubic
sampling and the series Kriging surrogate model optimization solution techniques [56].

As the optimized NPR microstructure is unknown, we typically start our search with initial config-
urations that have a positive effective Poisson’s ratio. For example, microstructures with uniform base
material distribution. However, we observed that directly minimizing the value of effective Poisson’s
ratio through sampling and surrogate models often results in local minima with discontinuous base
material distribution and near-zero Poisson’s ratio values. To overcome this, we suggest a two-stage
optimization framework. In Stage-I, we adopt an objective function of deviation from a prescribed
stress-strain matrix to induce a preliminary NPR design. Then in Stage-II, this preliminary design is
elaborately designed while considering the objective function of effective Poisson’s ratio under large
deformation.

Optimization Stage I: this stage aims to search the design space for a preliminary NPR microstruc-
tural design under infinitesimal strain. In this stage, topology optimization is achieved by minimizing
the deviation of the homogenized stress-strain matrix from a given one expressed with a specific neg-
ative Poisson’s ratio. This initial design then serves as a starting point for optimizing the metamaterial
microstructure under large deformation in optimization Stage II. The optimization formulation for
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this stage can be expressed using the MFSE method as

min
η

f1

(
DH

ij (ϕ̃ (η), χ q)
)

= (
DH

11 − Dref
11

)2 + (
DH

12 − Dref
12

)2 + (
DH

21 − Dref
21

)2 + (
DH

22 − Dref
22

)2

s.t. Kχ q = Fq, q = 1, 2, 3,

vol (ϕ̃ (η)) =

ne∑
e=1

(
1 + ϕ̃ (xe,η)

2
Ve

)
VD

− V frac1 ≤ 0,

−1 ≤ ϕ(xj, η) ≤ 1, j = 1, 2, · · · , Npt,

(12)

where the design variable vector, consisting of the expansion coefficients in Eq. (9), is denoted by η. The
first group of constraints represents the equilibrium equations corresponding to the three load cases
applied in the numerical homogenization method, followed by the microstructural volume constraint
and upper/lower bound constraints on the material field points. It should be noted that only the first
2 × 2 entries in the homogenized stress-strain matrix are considered in objective function f1, since they
sufficiently describe the NPR under small deformation for the considered orthogonal metamaterial.

Optimization Stage II: This stage builds upon the preliminary designs obtained in optimization
Stage I. It specifically considers large deformation and aims to achieve a desired NPR. The optimiza-
tion formulation for this stage is as follows:

min
η

f2

(
tiμE

12 (ϕ̃ (η), ti U)
) = ∑ti

ti∈Tc
w

(
tiμE

12 − μref
12

)2

s.t. ti R = ti
0 Fext − ti

0 Fin (ϕ̃ (η), ti U) = 0,

g
(
DH

ij (ϕ̃ (η))
) = Dlower − min

(
DH

11, DH
22

) ≤ 0,

vol (ϕ̃ (η)) =

ne∑
e=1

(
1 + ϕ̃ (xe,η)

2
Ve

)
VD

− V frac2 ≤ 0,

−1 ≤ ϕ(xj, η) ≤ 1, j = 1, 2, · · · , Npt.

(13)

In Eq. (13), Tc represents a set of selected time steps corresponding to different applied uniaxial
strains. The objective function f2 aims to minimize the deviation between the design’s effective Poisson’s
ratio (calculated with Eq. (1)) and a desired value μref

12 , based on displacements evaluated on deformed
configurations in set Tc with weights tiw. The first group of constraints denotes the equilibrium
equations at different time steps. As will be shown in numerical Example 4.1 that the minimum member
size in the microstructure affects the achievable NPR. Thus, the second constraint indirectly controls
the minimum member size in the metamaterial microstructure by setting a lower limit on diagonal
elements of the homogenized stress-strain matrix. It is important to note that we do not mean to
measure or constrain the stiffness of the metamaterial; rather, this constraint merely serves as a means
to impose a size control using the MFSE method. To minimize the occurrence of nonconvergence in
the nonlinear finite element analysis due to mesh distortion, elements with material field values of −1
(i.e., void phase) are deleted from the finite element model during optimization process.

The solution of both topology optimization stages involves transforming the optimization for-
mulations Eqs. (12) and (13) into unconstrained optimization formulations using the penalty method,
i.e., minη f (η) + ∑m

i=1λi max (gi(η), 0), where f (η) denotes the objective function, gi (η) represent the
inequality constraints, λi are the penalty parameters. Then, the unconstrained optimization problem
is solved by constructing and solving a series of Kriging surrogate models within sub-domains of the
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design space [56]. To begin this process, the first sub-optimization problem is to solve the Kriging
model constructed within the sub-domain centered at the initial design η0 using sampling and the EI
criterion. This yields an updated design η1. The second subdomain is then chosen to be centered at
η1, and the constructed sub-optimization therein further yields an updated design η2. This procedure
continues until reaching a maximum number of allowed sub-optimizations as shown in Fig. 4.

Figure 4: Schematic illustration of the Kriging-based optimization solution technique

The two-stage metamaterial microstructural topology optimization flowchart for achieving a
targeted negative Poisson’s ratio under large deformation is depicted in Fig. 5.

Figure 5: The flowchart of the two-stage NPR metamaterial topology optimization strategy
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The two-stage optimization method in this paper is based on Kriging surrogate models with
sampling. In Stage I, a linear finite element procedure is needed for each sample, while in Stage II, a
non-linear finite element procedure that takes into account geometry nonlinearity is required for each
sample. The efficiency of the two-stage method depends on the number of sub-optimization problems
in the series Kriging model and the number of samples in each sub-problem.

Although a number of samples are needed in the present method, it does not require the sensitivity
information which may be non-trivial to derive for the considered non-linear design problem. In
addition, the optimization efficiency can be improved by sampling in a parallel manner.

4 Numerical Examples

This section presents numerical examples, with the focus on the mechanism of geometry non-
linearity and the design of metamaterial with 1/4 geometry symmetrical microstructure. During the
design process, we adopt a linear elastic material constitutive model and assume a Young’s modulus
of 1 and a Poisson’s ratio of 0.3 for the base material composing these microstructures. For nonlinear
finite element analysis, an entire unit cell with an edge length of 70 is modeled. It is noted that when
considering only geometry nonlinearity, the edge length does not affect the optimization process. The
unit cell is discretized using 140 by 140 plane stress elements. Due to the symmetry, only one-fourth
of the unit cell’s microstructure is described using MFSE method, by uniformly distributing 35 by
35 material-field points therein. According to [55], we set the correlation length as 0.3 times the unit
cell length. The material field function expansion is truncated at the first 60 terms, resulting in a total
number of design variables being equal to 60 in both optimization stages. The projection parameter β is
gradually increased from 0 up to a maximum value of 40 by increasing it by 1.5 for each Kriging model
used in the series surrogate model solution technique. In optimization Stages I and II, the maximum
number optimization sub-problem is set to 16 and 24, respectively. The number of samples is set to
210 for each sub-problem. Among them, 180 samples are used to construct the Kriging surrogate
model, and 30 samples are added according to the EI criterion to further improve the accuracy of the
surrogate model. The initial design in Stage I is chosen as uniform material distribution correspond
to the specified volume fraction. The weights in the objective function f2 for optimization Stage II in
Eq. (13) are all set to 1.

4.1 Designing Metamaterials to Achieve NPRs of −0.6 and −0.8 with 20% Applied Uniaxial Strain
4.1.1 The First Topology Optimization Stage for Metamaterial Design with Targeted NPRs of −0.6 and
−0.8

This numerical example explores the design of metamaterial microstructures to achieve NPRs of
−0.6 and −0.8. These metamaterials are designed to withstand a maximum applied uniaxial strain of
20%.

During the first optimization stage for NPR metamaterials, effective reference stress-strain
matrixes that achieve targeted NPRs under infinitesimal strain are first provided. For the design
scenarios with Poisson’s ratio of −0.6 and −0.8, these matrices are given as follows:

Dref
−0.6 =

⎛⎝0.080 −0.048 0.000
−0.048 0.080 0.000
0.000 0.000 0.050

⎞⎠, (14)
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Dref
−0.8 =

⎛⎝0.080 −0.064 0.000
−0.064 0.080 0.000
0.000 0.000 0.050

⎞⎠ . (15)

The matrixes presented in Eqs. (14) and (15) represent the properties of orthogonal materials,
with Poisson’s ratios of −0.6 and −0.8, respectively. By using the formulation described in Eq. (12)
with a volume fraction constraint of 0.4, two optimized microstructures are obtained with the Kriging
model-based solution technique. The optimized designs are listed in Table 1. The volume fractions
for the −0.6 and −0.8 Poisson’s ratio designs are 0.3995 and 0.3873, respectively. It is seen from
Table 1 that although the topologies of both designs are similar, their member sizes differ to achieve
different homogenized Poisson’s ratios under infinitesimal strain assumption. Also, it is seen that the
boundary description of the microstructures using the MFSE method is clear and smooth. The first
2 by 2 entries in the homogenized stress-strain matrixes DH

−0.6 and DH
−0.8 closely match those in the

corresponding reference constitutive matrices, while also achieving homogenized Poisson’s ratios close
to their targeted values (−0.6 and −0.8). This illustrates the effectiveness of the first stage optimization
formulation used here.

Table 1: Optimized metamaterial microstructures with −0.6 and −0.8 Poisson’s ratio assuming
infinitesimal strain

Unit cell microstructural design in optimization
Stage I

Homogenized constitutive matrix and
Poisson’s ratio

Dref
−0.6 =

⎛⎜⎝0.080 −0.048 0.000
−0.048 0.080 0.000
0.000 0.000 0.050

⎞⎟⎠

DH
−0.6 =

⎛⎜⎝0.080 −0.048 0.000
−0.048 0.080 0.000
0.000 0.000 0.003

⎞⎟⎠
μH

12 = −0.600

Dref
−0.8 =

⎛⎜⎝0.080 −0.064 0.000
−0.064 0.080 0.000
0.000 0.000 0.050

⎞⎟⎠

DH
−0.8 =

⎛⎜⎝0.080 −0.064 0.000
−0.064 0.080 0.000
0.000 0.000 0.003

⎞⎟⎠
μH

12 = −0.800

Note that the reference matrixes in Eqs. (14) and (15) are used to specify a desired NPR value,
which helps in finding a feasible NPR design with the surrogate model under small deformation. That
is, only the ratio of Dref (1, 2) /Dref (1, 1) is important. As the first optimization stage aims to provide
a preliminary NPR design, the diagonal entries Dref (1, 1) and Dref (2, 2) can be specified according to
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the designer. However, it should be noted that excessively large values for these diagonal entries may
not achieve the desired NPR value.

Further, we assess the effective NPR (Eq. (1)) values for small strain designs listed in Table 1 under
large deformation. To perform this evaluation, we applied periodic boundary conditions as explained
in Section 2 and subjected these optimized microstructures to up to 20% uniaxial strain. The results
are presented in Figs. 6 and 7, which show that the NPR value varies rapidly with increasing applied
strain.

Figure 6: The effective NPR values of the −0.6 Poisson’s ratio design assuming infinitesimal strain
under 20% uniaxial stretching

Figure 7: The effective NPR values of the −0.8 Poisson’s ratio design assuming infinitesimal strain
under 20% uniaxial stretching

To quantify the deviation between the effective NPR of the optimized design and its targeted value,
we suggest a mean deviation expression as

E =
√∑

ti∈TE

(
tiμE

12 − μref
12

)2

n
, (16)

where TE is a set of time steps during the loading process. For instance, for the design case with a
maximum applied strain of 20%, TE includes time steps corresponding to 0.1%, 2.5%, 5%, 7.5%, 10%,
12.5%, 15%, 17.5%, and 20% applied strains. Based on this expression, we found the mean NPR
deviation for the −0.6 and −0.8 Poisson’s ratio metamaterial designs assuming infinitesimal strain
are respectively equal to 0.1306 and 0.2652 under applied uniaxial strain up to 20%. These deviations
are quite large compared with the targeted NPR value.
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4.1.2 The Second Topology Optimization Stage for Metamaterial Design with Targeted NPRs of −0.6
and −0.8

In this optimization stage, the small deformation designs obtained in Section 4.1.1 are chosen as
the initial designs considering a maximum applied uniaxial strain of 20%. Specifically, the optimized
design variable values (i.e., the expansion coefficients in Eq. (9)) from Stage I are used as the design
variable initial values for this optimization stage. The projection parameter β in the continuation
scheme is reset to a value of 8 to begin with. The volume fraction constraint is set to 0.4. The parameter
Dlower in Eq. (13) is set to 0.03, which indirectly controls the minimum member size in the optimized
microstructures.

To optimize the design, we employed a specific search approach. First, we searched for NPR
designs with applied uniaxial strain ranging from 0% to 15%. Then, we continue to search for designs
with applied strain in the range from 0% to 20%. Our numerical experience suggests that this approach
yielded better results compared to directly searching for designs within the entire range of [0%, 20%].
This is because the first search procedure allows for an easier identification of feasible designs before
moving on to a wider applied strain range.

Using the second stage optimization formulation (Eq. (13)), we obtained optimized designs
with Poisson’s ratios of −0.6 and −0.8 under large deformation. Table 2 presents the initial design,
intermediate optimized design with applied strain in range of [0%, 15%], and the optimized designs
with applied strain in range of [0%, 20%]. The volume fractions of these optimized designs are
0.3789 and 0.3904. It can be observed that as the applied strain increases, certain locations in the
optimized microstructures exhibit thinner and curved local member sizes. These features enhance
their deformation capability for large stretches, as demonstrated by the finite element analysis
on a reconstructed metamaterial microstructure with −0.8 Poisson’s ratio using conformal mesh
considering geometry nonlinearity (see Fig. 8). Here the colormap represents the principal strain. As
can be seen in Fig. 8, as the applied strain increases, the curved members rotate to provide capability
to achieve NPR under large deformation.

Table 2: Initial design, intermediate optimized design and optimized design in topology optimization
Stage II

Targeted NPR Microstructural initial
design

Intermediate optimized
design under [0%, 15%]
applied strain

Optimized design
under [0%, 20%]
applied strain

−0.6

(Continued)
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Table 2 (continued)

Targeted NPR Microstructural initial
design

Intermediate optimized
design under [0%, 15%]
applied strain

Optimized design
under [0%, 20%]
applied strain

−0.8

Figure 8: The finite element analysis of the reconstructed metamaterial microstructure with −0.8
Poisson’s ratio using conformal mesh

To evaluate the effective NPR of the designed metamaterials without the gray elements, we
manually project the optimized designs to “0–1” designs. This is done by applying a threshold of 0
material field value for projection. This threshold is equivalent to an elemental density of 0.5, and we
remove the elements located in the void region. We then re-conduct non-linear finite element analysis
on these manually projected designs and depict their effective NPR values computed with Eq. (1) in
Figs. 9 and 10. As can be seen from these figures, both optimized designs can sustain the targeted
NPR well for an applied uniaxial strain from 0% to 20%. This is also illustrated by the mean deviation
computed with Eq. (16), where TE involves time steps correspond to 9 equally distributed applied strain
values ranging from 0.1% to 20%. Compared to designs assuming infinitesimal strain, our second-stage
optimization formulation and search approach effectively reduces mean NPR deviation under large
deformation. Specifically, for the −0.8 Poisson’s ratio design, we observed a decrease in mean NPR
deviation from 0.2652 to 0.0318, while for the −0.6 design, there was a decrease from 0.1306 to 0.0198.
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Figure 9: The effective NPR values of the optimized metamaterial microstructure with targeted NPR
of −0.6 under 20% uniaxial stretching

Figure 10: The effective NPR values of the optimized metamaterial microstructure with targeted NPR
of −0.8 under 20% uniaxial stretching

At the end of this sub-section, we check the impact of the parameter Dlower in Eq. (13) on the large
deformation microstructural design in the second optimization stage by setting its value to 0.05 and
0.01 and re-run the design process for the −0.8 Poisson’s ratio design case. The optimized designs with
these parameters are depicted in Fig. 11. By comparing these designs with those Dlower = 0.03 shown in
Table 2, it is seen that as the value of Dlower decreases, the minimum member size in the optimized design
becomes thinner. Again, we analyze and illustrate the effective NPR values of manually projected
optimized designs under a maximum 20% uniaxial strain in Fig. 12. It can be observed that as the
value of Dlower decreases from 0.05 to 0.01, the deviation of the effective NPR values from the targeted
value becomes smaller and smaller. This observation can also be verified by the mean NPR deviation
computed with Eq. (16), which yields 0.0625, 0.0318, 0.0253 for Dlower values of 0.05, 0.03 and 0.01,
respectively. It is noted that though a low minimum member size can match the desired NPR value
more closely under large deformation, it also makes manufacturing these designs more challenging and
may lead to lower stiffness. Therefore, for all subsequent numerical examples presented hereafter, the
value of Dlower is set to be 0.03 as a compromise between the manufacturability and NPR performances.
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(a)

(b)

Figure 11: Optimized −0.8 Poisson’s ratio metamaterial microstructure (left) and its 3 by 3 array (right)
using parameter setting (a) Dlower = 0.05 and (b) Dlower = 0.01

Figure 12: The effective NPR values of the optimized −0.8 Poisson’s ratio metamaterial using
parameter setting (a) Dlower = 0.05 and (b) Dlower = 0.01
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4.2 Design of a Group of Metamaterials with Targeted NPRs in Range of [−0.8, −0.1] with 20%
Uniaxial Applied Strain

This example investigates the design of a group of metamaterials with targeted NPRs in range of
[−0.8, −0.1], under applied uniaxial strain between 0% and 20%.

As is known, designing large deformation NPR metamaterials is a highly non-linear process,
which may result in multiple local minima with comparable NPR values. In numerical Example 4.1,
we observed that optimized designs with −0.6 and −0.8 Poisson’s ratio had similar microstructural
topologies. This suggests that similar topologies with differences in member shape and size can lead
to different desired NPRs under large deformation. Based on these findings, our focus in this example
is to design a group of metamaterials with similar microstructural topologies but different NPRs.
To achieve this, we start by choosing the optimized microstructure with a −0.8 Poisson’s ratio (from
Section 4.1) as an initial design for optimization Stage II, aiming to generate an optimized design with
a −0.7 Poisson’s ratio. Then, the resulting −0.7 NPR design serves as the initial design for obtaining a
metamaterial with an NPR of −0.6. This process continues until we obtain the optimized design with
an NPR of −0.1.

Table 3 presents the optimized metamaterial microstructures. We also re-analyze the manually
projected “0–1” designs without the void phase to examine their NPR behaviors, as depicted in
Fig. 13. From both Table 3 and Fig. 13, it is seen that by adjusting the curvature and local size
of microstructural members, the present method successfully generates a group of metamaterial
microstructures that closely match the targeted NPR values in the range of [−0.8, −0.1]. Moreover,
as the value of the targeted NPR value increases, a general decrease in deviations computed using
Eq. (16) is observed, indicating that higher NPR value designs are relatively easier to achieve with the
present topology optimization approach. Notably, the maximum mean NPR deviation for all these
group of designs occurs at the −0.8 Poisson’s ratio design case, which yields a mean NPR deviation of
0.0318. This mean deviation is relatively small from the targeted NPR value of −0.8, illustrating the
effectiveness of the present method.

Table 3: Optimized microstructures, their 3 by 3 array and the mean deviation from the targeted NPR
under 20% uniaxial stretching

Targeted NPR Optimized
microstructure

3 by 3 microstructures Mean NPR
deviation

−0.8 0.0318

(Continued)
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Table 3 (continued)

Targeted NPR Optimized
microstructure

3 by 3 microstructures Mean NPR
deviation

−0.7 0.0126

−0.6 0.0106

−0.5 0.0200

−0.4 0.0052

−0.3 0.0045

(Continued)
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Table 3 (continued)

Targeted NPR Optimized
microstructure

3 by 3 microstructures Mean NPR
deviation

−0.2 0.0042

−0.1 0.0029

Figure 13: The effective NPR values of the optimized metamaterial microstructures under 20% uniaxial
stretching

Regarding the large deformation metamaterial design with −0.6 Poisson’s ratio, the optimized
microstructure in this example is obtained by using the large deformation metamaterial design with
−0.7 Poisson’s ratio as an initial design. An optimized design is also successfully obtained using a
homogenized NPR initial design in Example 4.1. Both of these optimized microstructures are local
minima for the current design problem. In this specific case, the former has a slightly lower mean NPR
deviation compared to the latter (i.e., 0.0106 vs. 0.0198).
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5 The Experimental Tests on the Fabricated NPR Optimized Designs

To examine the NPR values of the optimized metamaterial microstructures, we fabricate the
optimized designs with targeted NPRs of −0.8, −0.6, and −0.4 using the Thermoplastic Polyurethane
(TPU) material. The manufacturing process involves 3D printing an array of the optimized microstruc-
tures, immersing the printed object in the silicone liquid to solidify and get a silicone mold, and then
injecting TPU material into the mold to fabricate the TPU metamaterial microstructural array.

To determine the material properties of TPU, we conducted uniaxial tensile tests on standard dog-
bone-shaped specimens. The dimensions of these specimens are depicted in Fig. 14. Three specimens
were fabricated and then tested using the Instron 34TM-10 testing machine with an applied tensile
displacement of 180 mm and a loading rate of 3.6 mm/min. The resulting engineering stress-strain
curve is shown in Fig. 15.

Figure 14: The dimension of the dog-bone-shaped TPU specimens

Figure 15: The engineering stress-strain curves of three TPU specimens

For tests on the metamaterial microstructure specimens, they are clamped at both ends using
fixtures during experiments. To accommodate deformation perpendicular to the tension direction,
a fixture with vertical displacement fixation and lateral sliding is used. The length of this fixture is
300 mm. An 8 by 4 microstructure array specimen is fabricated due to manufacturing capability. Each
cell has dimensions of 42 mm by 42 mm with a thickness of 5 mm. The overall size of the test specimen is
383 mm by 183 mm as shown in Fig. 16. Several tabs are placed at both the upper and lower boundaries
of the metamaterial specimen and connected to sliding fixtures through bolt connections as shown in
Fig. 16.
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Figure 16: Schematic illustration of the tensile test setting

During testing, a maximum tensile displacement corresponding to 20% unit cell strain is applied
to the upper boundary at a rate of 3.6 mm/min. The lower boundary is clamped to fix its vertical
displacement. To facilitate measurement of longitudinal and lateral displacements for each individual
cell, circular through-holes with a diameter of 1.5 mm are positioned at the four corners of each unit
cell for marking purposes. Due to the limited number of microstructures in the fabricated metamaterial
specimen, the free edges may not maintain a perfectly straight-line shape. To reduce the impacts of
boundary effects, we measured the horizontal displacements of the two middle column microstructures
in Fig. 16 using a vernier caliper. These measurements were then averaged to determine the horizontal
displacement of the metamaterial microstructure. The displacements were recorded at deformed
configurations corresponding to eight evenly distributed applied tensile strains, ranging from 2.5%
to 20%.

The metamaterial specimens with targeted NPRs of −0.8, −0.6, and −0.4 were fabricated and
tested. Fig. 17 shows the tensile experiment conduced on the specimen with the −0.8 Poisson’s ratio
microstructural design. The experimental measured Poisson’s ratios for all these three specimens are
shown in Fig. 18, along with the effective NPR values from finite element analysis for comparison
purposes. As can be seen in Fig. 18, the experimental measured NPRs show good consistency with
the numerical results. This verifies the effectiveness of the present method. Also, from Figs. 15 and
17, it is seen that material nonlinearity has a relative low impact on this optimized design for this
particular material, as the maximum strain occurs at localized positions and this maximum local strain
does not lead to significant changes in material stiffness. The slight deviation shown in Fig. 18 could
also potentially be attributed to manufacturing geometry errors and the limited number of fabricated
microstructures.
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Figure 17: Experimental measured unit cell deformations and the corresponding simulation results
under different applied strains

Figure 18: The experimental measured Poisson’s ratios of three metamaterial array specimens and their
corresponding finite element analysis results under a 20% uniaxial applied strain

6 Conclusions

This paper investigates the topological design of NPR metamaterial microstructures under up to
20% uniaxial tension strain, with a focus on using a gradient-free method. The unit cell microstructural
topology is described using the MFSE method, which greatly reduces the number of required design
variables. To achieve targeted NPR under large deformation, a two-stage metamaterial topology
optimization strategy is proposed. In the first design stage, the homogenization method is used to
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search for a preliminary NPR design assuming infinitesimal strain. In the second stage, the design
is continuously updated by minimizing deviation from the desired NPR value considering large
deformation. Due to dimension reduction in the design space with the MFSE method, the design in
each optimization stage is obtained by solving a series of sub-optimization problems through sampling
and Kriging surrogate models.

With the present NPR metamaterial optimization strategy, we have obtained a group of optimized
metamaterial microstructures. These microstructure designs share similar topology but differ in local
member size and curvature, achieving targeted NPR values ranging from −0.8 to −0.1 when subjected
to up to 20% uniaxial strain. We have also fabricated and tested some of these optimized designs
through experiments, which yielded results consistent with our numerical analysis, demonstrating the
effectiveness of this method. Our study focuses on utilizing the geometry nonlinearity mechanism
in achieving targeted NPR under large deformation, while other nonlinearities, such as material
nonlinearity and contact nonlinearity can be explored in further studies concerning metamaterial
design, to fully take advantage of the gradient-free feature of this approach.
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