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ABSTRACT

Federated Learning (FL), as an emergent paradigm in privacy-preserving machine learning, has garnered signif-
icant interest from scholars and engineers across both academic and industrial spheres. Despite its innovative
approach to model training across distributed networks, FL has its vulnerabilities; the centralized server-client
architecture introduces risks of single-point failures. Moreover, the integrity of the global model—a cornerstone
of FL—is susceptible to compromise through poisoning attacks by malicious actors. Such attacks and the potential
for privacy leakage via inference starkly undermine FL’s foundational privacy and security goals. For these reasons,
some participants unwilling use their private data to train a model, which is a bottleneck in the development and
industrialization of federated learning. Blockchain technology, characterized by its decentralized ledger system,
offers a compelling solution to these issues. It inherently prevents single-point failures and, through its incentive
mechanisms, motivates participants to contribute computing power. Thus, blockchain-based FL (BCFL) emerges as
a natural progression to address FL’s challenges. This study begins with concise introductions to federated learning
and blockchain technologies, followed by a formal analysis of the specific problems that FL encounters. It discusses
the challenges of combining the two technologies and presents an overview of the latest cryptographic solutions
that prevent privacy leakage during communication and incentives in BCFL. In addition, this research examines
the use of BCFL in various fields, such as the Internet of Things and the Internet of Vehicles. Finally, it assesses the
effectiveness of these solutions.
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1 Introduction

With the significant improvement in hardware computing and storage ability, the Machine
Learning (ML) and Artificial Intelligence (AI) approaches have triggered revolutions in many indus-
tries. It has been widely put into practical application in recent years [1], including E-commerce
recommendation [2], NLP [3] and sentiment analysis [4,5], healthcare [6] and COVID-19 pandemic
[7], etc., which facilitates people’s daily life. However, it takes a tremendous amount of data to train a
practical ML model and the number of parameters of the model can reach hundreds of millions, which
means it is almost impossible for a single-point system to accomplish the training tasks. Hence, only
several big companies or government institutions, which hold a huge amount of user data and have
the ability to build multi-machine computing architectures, can use ML to complete certain tasks. In
contrast, most business enterprises, research groups, and others who lack the ability to obtain large-
scale data and computing resources face the dilemma of low data capacity and quality, which makes
it difficult to develop well-performed ML models. Moreover, with the coming of the big data era,
more problems have appeared. First of all, though billions of personally held smart devices generate
unimaginable amounts of data, with the concern of personal privacy issues, it is hard for developers
to obtain high-quality and legal data because of the existence of the central server in the ML design.
Regardless of the privacy concern, it is also challenging to collect the data since it may consume a
tremendous amount of communication resources for the data transfer from the client’s end to the
central server.

Thus, architectures, protocols, and other technologies enabling collaborative private data sharing
and training are urgently needed. To address the above issues, in 2016, Google proposed a novel
ML framework termed Federated Learning [8], allowing the participants to train an ML model
collaboratively without uploading their own private dataset. The participants in FL can simply upload
local model parameters instead of the private local data, which can prevent the data from leaking to
others, and save a lot of communication resources meanwhile. FL has developed a lot in recent years
and achieved much success in various fields [9], such as healthcare [10], visual object detection [11],
drug discovery [12], Internet of Things (IoT) [13], and so on.

However, though FL is well studied in recent years, conventional FL frameworks have emerged
with more and more problems with the public awareness of privacy and data security rising. First of
all, the existence of a central aggregator which is designed to perform the integration of the uploaded
local model updates and update the global model may be a hidden problem of the system stability since
the central server is not always reliable. Once the central server is down or compromised, the whole
FL system will face the single-point failure problem, leaking participants’ private information or even
being unavailable for an unacceptable period of time. Even if we do not consider the worst case, in
the big data era, amount of participants in the FL system can sometimes be quite a large number that
reach the bottleneck of the central server’s network and thus bring the problem of connection delay
or failure. Moreover, attack techniques aimed at FL are proposed by researchers and industries [14]:
model-poisoning attack [15], which can affect the functionality of the model; membership inference
attack [16,17], which can infer the information about the training data from the model updates during
the process, etc. In the real-world scenario, there can also be malicious clients or data sneaking into
the FL system that affect the FL in a way that is hard to detect. Though developers can bring
some cryptographic techniques into FL, such as Differential Privacy (DP) [18], Secure Multiparty
Computation (SMC) [19,20], Hormographic Encryption (HE) [21,22], and so on, the FL framework
needs deeply customized. It cannot be suitable for all kinds of heterogeneous devices, not to mention
the problem of asynchrony.
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Another problem is a lack of incentives in the FL system. In conventional FL frameworks, the
scenario is that participants contribute their data without repayment, indicating it is hard to encourage
participants to execute predefined protocol honestly and provide reliable data. Some big companies
or research groups may have the ability to get enough data by themselves because of their sufficient
funds or good reputation. However, it is very hard for non-famous FL organizers to attract enough
data providers to engage the system, making their work hard to proceed since the FL need multiple
participants working collaboratively, especially for some data-intensive training tasks. Even if an
incentive mechanism was deployed in an existing FL system, it is still hard to extend the system
dynamically and easily, especially for individual data providers because of the problem of permission
management, network setup, and so on.

The aforementioned deficiencies of conventional FL are preventing FL systems from working
reliably and efficiently, it is critical to make essential progress to the conventional FL frameworks.
Considering the challenges the FL faces, a decentralized consensus system with a fair incentive mech-
anism, which reminds FL developers of the blockchain, can help to solve the problems. Blockchain
was first proposed in Bitcoin by Satoshi Nakamoto in 2008 [23], which is a decentralized ledger
maintained by all the participants according to a predefined consensus protocol. Due to its basic
design idea, it can provide several attractive features, such as decentralization, anonymity, auditability,
persistency, and so on. As a technique proposed for the digital payment system, blockchain also has
its own incentive mechanisms to simulate the process of currency issuance and transaction. Since its
appearance, blockchain has been put into application in various fields [24–26], and many variants of
the original blockchain in Bitcoin were proposed with a lot of new functional features. Hence, the
concept of Blockchain-based Federated Learning is proposed. The disadvantages mentioned above
can be solved easily by utilizing the blockchain in the conventional FL system. First, blockchain can
make FL decentralized, which means the central aggregator can be replaced by the blockchain network
and the aggregation job can be executed by the nodes. In addition, it is easier for a new data provider
to join the blockchain network and extend the scale of the participants since the procedure of granting
access is simplified and nearly no bottleneck of communication meanwhile. Moreover, some attacks,
such as fake data or a limited range of malicious nodes can be avoided. Even though facing more
complex attacks, the state-of-the-art modular blockchain platform can make it easier to design defense
tools in a form of plugins, which means the cryptographic algorithms and the FL algorithms can be
separated and do not interfere with each other. Furthermore, blockchain’s incentive mechanisms can
help FL systems to distribute rewards to nodes fairly to encourage their participation. The following
summarizes the advantages of the BCFL:

• Decentralized FL can be easily achieved, and the central server is no longer needed, thus
avoiding the single-point failure and making it easy to join the FL system.

• Higher attack resistance. Due to the validation mechanism and modular design of blockchain,
more cryptographic algorithms can be used to defend against different types of attacks.

• Incentive mechanisms can encourage participants in the network to obey the rules and attract
more data providers to join.

From the existing research, while the BCFL appears to be practical and efficient, some problems in
the conventional FL remain unsolved, such as communication delays and so on. Although blockchain
is not some kind of silver bullet to the challenges the FL system faces, it provides a new and practical
direction to solve them.
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The study contributions can be summarized as follows:

1. It compares the conventional FL with BCFL, discusses the motivation for integrating
blockchain and FL, and demonstrates the challenges that BCFL can face in future research.

2. It divides the existing research of BCFL into several types based on the cryptographic tools
they used and provides performance analysis.

3. It investigates the application scenarios of BCFL and analyzes its advantages.

The rest of this paper is organized as follows. Section 2 introduces the background knowledge of
blockchain and FL. Section 3 discusses the motivation for integrating blockchain and FL. Section 4
demonstrates the challenges that BCFL may face in future research. Section 5 investigates the state-
of-the-art BCFL research. Section 6 introduces the current application of BCFL. Section 7 presents
the performance analysis of the BCFL schemes mentioned in the above sections. Section 8 draws the
conclusion.

2 Background

In this section, we will briefly introduce basic knowledge and principles of Federated Learning
(FL) and Blockchain.

2.1 Brief Introduction to FL
With the rapid development of computer storage capacity and progress ability, smart devices have

become smaller and cheaper, which means devices, such as laptops, smartphones, tablets, and so on
can be used or installed by most people [27] and can be connected to the network from anywhere at any
time. This leads to an apparent consequence that a massive amount of data is being generated every
day, and we can find that this data which may be privately sensitive is perfect to be fed to Machine
Learning (ML) models to solve real-life tasks [28]. Though in recent years, artificial intelligence (AI)
algorithms have been developed considerably, it is still a problem to process such vast amounts of
non-independent and identically distributed (Non-IID) decentralized data on a centralized algorithm
training facility [29–32], let alone the issue of data privacy and security. Thus, Google proposed a
distributed ML framework termed FL to solve the issues mentioned above [8,33–35].

FL is a distributed ML technique that allows clients in the framework to contribute to the
model without uploading their raw private data. The local devices can train data locally and then
upload the model updates, such as the gradients. FL consists of several roles, which are shown in
Fig. 1. In practical application protocol [35], there exists N clients (C1, C2, ..., Cn) which hold their own
dataset (D1, D2, ..., Dn), and they are not willing to share the raw data and can not access others’ data
meanwhile, and there is a central server which also termed aggregator. The basic workflow of each
round in a traditional FL can be summarized as below [8]:

1. Clients Selection. A subset of existing clients is selected, each downloading the current model
from a central server.

2. Clients Train Model Locally. Selected clients train the model locally based on their own private
data with the pre-selected algorithm.

3. Upload Local Training Updates. Clients upload the local model updates to the central server
to aggregate.

4. Global Model Aggregation. The central server aggregates these uploaded models (typically by
averaging) to update the global model.
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Figure 1: Traditional FL architecture

Various FL frameworks are usually divided by how data is distributed among various parties in the
feature and sample ID space. The basic workflow of these frameworks can have differences due to the
data distribution. They can be divided into the categories as follows, and Fig. 2 shows the difference
between these three classifications [36]:

• Horizontal FL. In this case, clients’ data have the same structure, in other words, the data
sets share the same feature space but are different in samples. In horizontal FL, clients’
private information may be leaked during the progress of uploading local model updates
or aggregation, and there are advanced schemes using cryptographic techniques, such as
Differential Privacy (DP) [37–39], Homomorphic Encryption (HE) [21,40] and so on.

• Vertical FL. This type of FL suits the case that the datasets share the same sample space
but vary in feature space. Under this mechanism, the federated system needs to aggregate
different features from these datasets and build a model with a “commonwealth” strategy in
a privacy-preserving manner. Algorithms for vertical partitioned data were proposed including
classification [41], gradient descent [42], secure linear regression [43–45], cooperative statistic
analysis [46] and so on.

• Federated Transfer Learning (FTL). FTL is applied to the case that datasets differ not only in
samples but also in feature space. In this case, transfer learning [47,48] can be used to overcome
the lack of data or labels without slicing the data. Frameworks of FTL have been proposed in
recent years to solve various problems, e.g., [49–51], and extend the typical two-party protocol
to multi-party.

Though FL sounds like a pretty good technique since it can handle scenarios of different
data distributions, it faces several challenges [52]. Currently presented, FL focuses on improving
communication efficiency, compatibility with heterogeneous systems and networks, and privacy-
preserving problems [31]. What we can not deny is that these are core challenges for FL, but there
are still other concerns if FL is applicable for real-life deployment. These concerns are part of the
motivation for integrating blockchain and FL, and a discussion about them will be presented in detail
in Section 3.
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Figure 2: Categories of federated learning [36]

2.2 Brief Introduction to Blockchain
In 2008, Satoshi Nakamoto published Bitcoin [23], a peer-to-peer payment system that is totally

decentralized and transparent. Today, Bitcoin is the world’s largest cryptocurrency. The underlying
technology blockchain has attracted great interest and has developed a lot since then. Fig. 3 shows a
classic structure of a block in the blockchain.

Figure 3: Classical structure of a block in blockchain
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Blockchain is a distributed ledger, in which the participants who generate their Proof-of-
Contribution are termed miners. Each miner keeps one replica of the whole ledger on its local device.
A block consists of two parts: block header and block body. The block header contains information,
such as the hash value of the previous block header, timestamp, the consensus protocol this blockchain
uses, etc. The block body stores the transactions package, of which the hash values are computed in
the form of a Merkle tree and the root is stored in the header as well. A blockchain starts from
the genesis block where the initial parameters of this blockchain are set and stored, for example, the
incentive mechanism and the total number of tokens. Then the miners compete to win the opportunity
to generate a new candidate block, which is broadcast to all miners to reach a consensus according
to a chosen protocol. Once the candidate block is confirmed, the block is appended to the end of the
blockchain and the miner can get rewards, such as tokens if an incentive mechanism is set.

Since the advent of blockchain, many blockchain variants have been created to solve problems
under different scenarios [53]. The original bitcoin organized data as a single “chain” by utilizing
the block hash values, but later proposed blockchain architectures have extended to parallel chains
[54,55] and graphs [56,57]. What is not changing is the characteristic of decentralization. Typically,
blockchain can be categorized into 3 types [58] based on what kind of permission the user needs to
join the blockchain network:

• Public Blockchain. Public blockchain is open to everyone without permission. It is totally
decentralized and free of third-party authority institutions, every user in the blockchain network
can access the ledger and participate in the progress of consensus, which means every node is
equal in the network as shown in Fig. 4. In this case, there may be a large number of transactions
that need proceeding while the speed of new block generation is limited, thus appearing to have a
low throughput rate. Bitcoin and Ethreum [59] are two well-known public blockchain platforms.

• Private Blockchain. In contrast to the public blockchain, participants in the private blockchain
network are under some supervision; only authorized clients can join the blockchain network
and access the ledger. Inside the private blockchain, it is similar to the public blockchain.
Usually, a private blockchain is a private deployment of the public blockchain, or the source
code of the blockchain may be slightly customized to fulfill certain requirements. As the
participants are much fewer than in the public blockchain network, it has a high performance
of transaction processing speed.

• Consortium Blockchain. Consortium blockchain is a specific type of private blockchain. It is
partially centralized, the network is controlled by several chosen participants. Only the selected
participants can reach a consensus among themselves and generate new blocks. Other users can
only access the ledger by the provided service interfaces, as it is shown in Fig. 5. Hyperledger
[60] (proposed by IBM, hosted by the Linux Foundation) and Libra (proposed by Facebook)
[61,62] are both consortium blockchain platforms.

Because of the architecture, blockchain naturally has these characteristics:

1. Decentralization. In a conventional distributed system, state-changing operations or transac-
tions need to be validated by a trusted central authority. In the blockchain, due to the utilization
of the P2P network, all participants are equal, and transactions can be conducted between any
two peers without authentication according to the consensus protocol.

2. Anonymity. Generally, the participants use long bits random numbers as the address in the
blockchain network, and one user can have many addresses. Moreover, no central authority
monitors the transactions or asks for the users’ private information, the real-world identity
and the blockchain identity can be separated in most cases.
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3. Auditability. All transactions conducted in the blockchain are recorded to the distributed ledger
and validated with a digital timestamp. Every user in the network can audit and trace every
transaction, which brings transparency to the flow of the tokens.

4. Persistency. Due to the “chained block” design, all blocks are linked by a one-way hash func-
tion. Suppose a malicious user wants to modify any recorded information on the blockchain,
which can significantly change the hash value of the block. In that case, it has to change all
subsequent blocks along the chain, and this problem is considered to be extremely difficult.
In addition, as a distributed system, other participants must confirm block generation so the
network can easily detect data falsification. Blockchain is usually considered tamper-proof and
immutable for this reason.

Figure 4: Network of public blockchain

Figure 5: Network of consortium blockchain

3 Motivation

Although FL provides a new solution for machine learning, there are several issues to be addressed
when applying it to practical problems.

Single Point of failure In the original version of FL, participants upload their local model updates
to a central aggregator, and then the aggregator executes the predefined aggregation algorithm to
update the global model. After the aggregation, participants need to download the latest global model
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to update. The network communication and request processing load are heavy when there is a large
number of participants thus the bottleneck of the server can be reached and affect the performance to a
lower level. In a worse case, if the central aggregator fails, so will the whole FL system. Meanwhile, if the
central server is compromised, the behavior of the central server is unpredictable and untrustworthy,
which also fails the system or even leads to the leakage of participants’ private information. So we
should adapt mechanisms into the FL systems to avoid single-point failure and audit the behavior of
the aggregator.

Privacy breach The main purpose of FL is to protect the privacy of participants and to avoid
uploading their private data directly. However, some studies have found that the transmission of
gradients can compromise private information [40,63–65]. Though cryptographic techniques, such as
HE, DP, ZKP, etc., can be used to avoid privacy leakage, it costs a lot of work to customize the FL
system and may make it hard to be compatible with more types of devices.

Malicious client and data Except for a compromised aggregator that can affect the FL system
directly, malicious or compromised clients can also affect the global model using constructed data
[15,66,67]. Though mechanisms to detect malicious clients are proposed by researchers, such as [68]
and [69], they burden the system load since they use another model to check whether the data is fake
or not.

Lack of incentive mechanism In conventional FL systems, there is no incentive mechanism and all
the system cares about is data collection and model aggregation. It is appropriate for a self-organized
FL system in which all the data provider is under the organizer’s control. However, in the real-world
scenario, it is nearly impossible to implement a well-performing FL model without any outer data
provider. Hence, rewards need to be set as an incentive to attract more devices to participate in
the system. Research has been conducted to design suitable incentive mechanisms for FL [70,71],
approaches include Deep Reinforcement Learning (DRL), Stackelberg Game, etc.

With the above challenges, the FL system needs to be deeply customized which makes it hard
to deploy, meanwhile raising the complexity for devices to contribute to the system. As introduced
in Section 2.2, blockchain can provide with several attractive features: decentralization, anonymity,
auditability, and persistency, which are indeed what the conventional FL needs. Blockchain is naturally
decentralized, and by deploying FL on a blockchain platform, the FL system can also achieve
decentralization easily and be free of central aggregator which avoids the single point failure problem.
In a blockchain network, clients are all anonymous thus avoiding the leakage of clients’ private
information. Moreover, with the auditability and persistency provided by the blockchain, malicious
clients and data can be detected and recorded, which can help the FL system gain attack resistance. The
lack of incentive, which is the most important problem preventing FL from being applied to practical
scenarios, is easily solved since the cryptocurrency based on blockchain has gained great success and
developed a set of fair incentive mechanisms.

Moreover, with the massive interest in blockchain technology due to cryptocurrencies that have
significantly impacted on the world economic system over the past few years, blockchain is evolving to
become more and more sophisticated and practical. Techniques like blockchain-based smart contracts
[72,73] and modular blockchain are developed and put into application. With these blockchain
techniques, it can be fast to transplant a conventional FL system to a blockchain platform, and
cryptographic tools that are used to defend against attacks can be adapted to the system as a plugin,
which means developers can solve one problem at a time instead of changing the whole system. With
the above-mentioned development of blockchain technology, the potential combination of blockchain
and federated learning can be achieved.
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4 Challenges of BCFL

Blockchain seems to provide a perfect solution for improving FL, but it still faces many challenges.
An ideal practical BCFL framework should achieve relatively high-security protection ability and
privacy-preserving ability while retaining the training efficiency of conventional FL frameworks.
However, in real-world scenarios, we always have to make trade-offs between these two goals. The
challenges BCFL faces can be summarized below.

Training Efficiency To build a practical FL framework, besides the accuracy of the training model,
the indicator of training efficiency is also very important. However, in a blockchain network, many
factors can delay the process of training. For example, the physical distance between clients can be
extremely large which can cause a high latency of communication thus making the training process
very slow. Moreover, in an untrustworthy network environment, it can cost clients a major part of time
on data verification. In addition, in some frameworks that adopt cryptographic tools, the efficiency
of the current implementation of these tools can be very low, especially for complex cryptographic
primitives, such as zero-knowledge proof and homomorphic encryption. All these factors can make a
BCFL framework become unpractical in some ways.

System Security and Privacy Though blockchain can provide some great security features natu-
rally, problems still may lower the system’s security. Firstly, in some BCFL frameworks based on public
blockchain platforms, it is hard to trace the malicious clients since there are no access restrictions and
there is no relevance between clients’ addresses and their real-world identities. Secondly, the training
data is shared on the blockchain, and all participants can access it without any permission, which may
cause potential privacy leakage. The blockchain can help achieve data traceability and connect new
participants to the system, but it also hinders us from managing the whole system easily.

Reasonable Incentive Mechanisms Bitcoin and Ethereum have shown us successful digital payment
systems based on blockchain, but in an FL framework, we can not spend that much computation
resources to generate proof of works. While applying incentive mechanisms on a blockchain network, it
is essential to design reasonable strategies to distribute the incentives. Several factors must be taken into
consideration when considering the characteristics of FL. For example, the amount of data that the
client contributes, the training round the client participates in, the data quality of the client’s training
set, and so on. Algorithms need to be carefully designed since these factors can be highly sensitive.

5 State-of-the-Art BCFL

The possibility of combining blockchain and federated learning has been increasingly investigated
by scholars in recent years because of the various shortcomings of federated learning and the
problems encountered in solving practical problems. Blockchain is decentralized and blockchain-
based applications are mainly immune to single points of failure. Ethereum [74] first implemented
smart contracts on the blockchain, where users can execute Turing-complete code, which ensures that
the code in question can be executed correctly. So smart contracts on the blockchain can replace the
role of central aggregator in the traditional FL.

However, there are practical problems that are not addressed, such as privacy breaches, and mali-
cious clients. In most of the existing BCFL schemes, the solution to these problems is introducing some
cryptographic tools into the system. We can categorize these schemes according to the cryptographic
tools they use in Section 5.1.

The lack of incentive mechanisms is also an important challenge of the traditional FL. We will
make a brief introduction about the existing incentive mechanisms in BCFL schemes in Section 5.2.
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5.1 Cryptographic Tools in BCFL
Many studies have applied some cryptographic tools to BCFL, and we will focus on the

application of HE (Homomorphic Encryption) and ZKPK (Zero-knowledge Proof of Knowledge),
in the current study.

5.1.1 Homomorphic Encryption

Homomorphic encryption is an advanced form of encryption that allows the user to manipulate
the ciphertext directly without prior decryption, and the result of manipulating the ciphertext should
be the same as the result of decrypting and then manipulating the plaintext before manipulating the
ciphertext, which is like equation below. Partial homomorphic encryption is only supported for circuits
with only one gate composition in the evaluation circuit, and fully homomorphic encryption supports
circuits composed of multiple types of gates and unbound depth.

E (m1 + m2) = E (m1) · E (m2)

The most widely used homomorphic encryption method is the Paillier encryption method [75],
which is used by [76–79]. The steps of homomorphic encryption can be summarized as follows:

1. Genkey() → {(n0, g), (λ, μ)}, where (n0, g) is the public key and (λ, μ) is the secret key. p, q are
two large prime number, set n0 = pq, λ = lcm(p − 1, q − 1). Let L(x) = (x − 1)/n0, and select
a base g, such that gcd(L(gλ mod n2

0), n0) = 1

2. Enc(m) → c = gm · rn0

3. Dec(m) → m = L(cλ mod n2
0)/L(gλ mod n2

0)

In the scenario used in BCFL, partial homomorphic encryption is sufficient in most cases, only
the encrypted gradient needs to be added to the encrypted gradient. If the gradients or distances of
models submitted by clients to the blockchain are published, then this data can potentially be used
by attackers to infer private data. A naive approach would be to encrypt the data submitted by the
client in the form of homomorphic encryption and then aggregate the data in ciphertext form, with
[76,77,80,81] encrypting the gradient to be submitted in homomorphic encryption and [78] encrypting
the difference between the local model and the global model in homomorphic encryption.

However, the use of homomorphic encryption in BCFL needs to solve a problem, that is, the
aggregated gradient value is in the form of ciphertext, which needs to be decrypted before it can
be updated to the global model. Decrypting the aggregated gradient requires a private key, which
can neither be stored in the general client nor on the blockchain. Reference [77] used secret sharing
technology to distribute the private key to all clients. After the aggregation is completed, all clients
need to jointly decrypt the aggregated gradient (at least t clients are required to participate) as shown
in Fig. 6. As another solution, Wang et al. [78] stored the private key on the CA node. Although this
solves the problem, if the CA node fails, the entire network will not work. At the same time, if the CA
is malicious, then it can decrypt all gradient values, which may lead to privacy leakage. Even though
fully homomorphic encryption is not practical due to its computational and expansion ciphertext,
novelty work [81] still adopts it to aggregate gradients. In [81], the authors used the CKKS scheme [82]
to encrypt the local gradient in parallel in order to ameliorate the computational efficiency, and they
proved that fully homomorphic encryption is more efficient and more suitable than Paillier in their
circumstances.
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Figure 6: Homomorphic encryption with secret sharing

In addition to safely aggregating gradient values, homomorphic encryption can also be used
to build two-party secure computations for neural networks. Reference [83] proposed a method to
securely make a label prediction for neural networks that do not require the model owner to reveal
the weight value of the model and the sample owner to reveal the value of the sample. Every node
in a neural network can be represented as f (x) = σ(z), z = xTw + b, where σ(·) is a nonlinear
activation function and x, b are weight and bias of this node. The label prediction process is performed
interactively, layer by layer. The label prediction process is executed interactively layer by layer, in
each layer, the data owner sends E (x) to the model holder, and the model holder computes E (z)
homomorphically and sends it to the data holder. The data holder computes σ(z) after decrypting
it, thus obtaining the output of this neural network node. The above process is shown in Fig. 7.

Figure 7: Neural network evaluation in [84]
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5.1.2 Zero-Knowledge Proof

In cryptography, Zero-knowledge Proof of Knowledge is a method that allows one party (the
prover) to prove to the other party (the verifier) that a statement is correct, without revealing any
information other than that the statement is correct.

1. Completeness If the statement is true, an honest prover will convince the honest verifier with a
very high possibility.

2. Soundness If the statement is false, no malicious prover can convince the honest verifier in
polynomial time.

3. Zero-knowledge A verifier can learn nothing else besides the statement being true.

In recent years, more and more non-interactive zero-knowledge proof frameworks have been
proposed, including Bulletproof [85], STARKs [86], and domain-specific languages, such as Circom
and Zokrates have emerged that can compile programs into arithmetic circuits. In 2016, Ben Sasson
[87] first introduced zk-SNARKs to the blockchain, a technology that greatly protects the privacy
of traders. From there, zero-knowledge proof technology is a natural fit with blockchain technology
because all data is public in a blockchain, and if zero-knowledge proofs are used, both participants’
privacy is protected. All other participants can verify the generated proofs.

According to [88], a malicious client may interfere with the accuracy of the global model or plant a
backdoor in the model by submitting a false gradient. In this case, we need to prove without revealing
the real samples that the gradients submitted by the client were indeed generated by the real samples
through correct computation.

In this case, many BCFLs choose to use zero-knowledge proofs to prove that the gradient
submitted by the client was indeed obtained by the sample through the correct algorithm, a process
mostly similar to the one shown in Fig. 8.

Figure 8: Zero-knowledge proof of knowledge in FL

Both references [89–91] used zero-knowledge proof methods to ensure that the submitted gradient
values are from the real dataset, reference [90] used zero-knowledge proof techniques to construct a
zk-Trainer to output gradient values as well as proofs simultaneously; reference [91] mentioned many
computational details on this basis, including how to efficiently compute matrix operations in the
gradient solution process, how to introduce auxiliary variables to simplify the computational process,
and how to trade-off computational accuracy with computational complexity. Both solutions mention
the problem that needs to be solved when applying zk-SNARK to BCFL. zk-SNARK’s arithmetic
operations are performed in a finite field, which means that the numbers involved in the operations
must be positive integers, but the numbers handled in machine learning are generally floating-point
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numbers. The general solution is to scale the floating point number by a specific multiple and then
round it to simulate a floating point number. Also, a boolean variable is employed to indicate the
positive or negative of the value.

The existing schemes only guarantee that the generated gradient is honestly generated according
to the predefined machine learning algorithm on a confidential dataset, which ensures that the client
cannot carry out a model poisoning attack. But this can not prevent data poisoning attacks, which
require proof that the source of the dataset is trustworthy. Reference [91] mentioned that this can be
achieved by further proving that the data comes from a certified sensor.

5.1.3 Differential Privacy

Differential privacy is a commonly used method to protect privacy in federation learning, where
the derived local differential privacy is a random perturbation added to the gradient submitted by the
client to the central node, which can effectively protect the client’s privacy from being compromised.
If when a random function M , its input value x, and output value v∗ that is a perturbed value for x
satisfy:

Pr[M (x) = v∗] ≤ eε · Pr[M (x′) = v∗] + δ

where M is a random algorithm M : X → V which domain is X and range V ⊆ X, two inputs
x, x′ ∈ X, output v∗ ∈ V, Pr[·] is the conditional probability density function, ε represents the privacy
budget, and δ is a positive small number, then this random function M is an (ε, δ)-LDP. The lower the
value of the privacy budget, the better the privacy protection and the less accuracy is retained.

In the application scenario of BCFL, if cryptographic methods, such as HE are not applied to
protect the gradients, the gradients submitted by all participants are exposed on the blockchain. In
this case, if an attacker applies inference attacks on these exposed gradients, there is an obvious risk
of participants’ privacy leakage.

Many schemes, such as references [86,91–94] used LDP to add noise to the submitted gradients,
where references [84,91,92] added Laplace noise to the gradients and references [93,94] added Gaussian
noise to the gradients. Fig. 9 depicts the DP-based federal learning scheme. The overall scheme consists
of five steps, two of which are optional and are shown as dashed lines. According to the two optional
steps, LDP and central DP are two classical methods. The former aims to protect the gradient of the
local models, while the latter tends to protect the gradient of the global model. Since the core principles
and ideas are very similar for both methods, and the main difference is merely the location where the
perturbation is added in, we take LDP as an exmaple to discuss the problem in DP. The problem that
needs to be solved with LDP is how to determine the privacy budget, which is a trade-off between
privacy protection and data accuracy. To determine the privacy budget, an adaptive LDP algorithm
was implemented using the RMSProp optimization algorithm [94]; the WGAN algorithm was used to
determine the appropriate privacy budget [92].

5.2 Incentive in BCFL
The earliest blockchain to be proposed was Bitcoin [23], and incentives were an important factor

in Bitcoin’s ability to succeed; the probability that an honest participant would be rewarded was
higher than the probability that they would be able to get by faking. All proposed public chains need
corresponding incentives to reward honest participants so that the majority of participants are honest
and thus the blockchain system can function properly. If federated learning is applied to the public
chain, then we also need to address the incentive problem of the participants. On the one hand, only by
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giving enough incentives to honest participants can we encourage them to continue contributing to FL;
on the other hand, we need corresponding penalties to punish falsifying and dishonest participants.

Figure 9: Differential privacy in federated learning

In blockchains, such as Bitcoin, the method of verifying client behavior is deterministic and only
requires checking that the hash in the block is legitimate and that the execution of business logic, such
as Bitcoin scripts and smart contracts contained within it is correct. But for BCFL, we do not have a
natural way to determine whether the client is honest or not. So how to determine whether a client is
honest or not, and how to compare the differences in contributions between different clients will be
crucial issues that need to be addressed.

Reference [84] combined multi-KRUM [95] and reputation-based incentive protocols [96] to
propose incentive protocols that can resist poisoning attacks and motivate honest participants. In
the protocol, the multi-KRUM algorithm is first executed on all submitted ladders, thus proposing
malicious ladders, then each participant is scored based on the Euclidean distance between the ladder
submitted by each participant and the ladders submitted by others, and finally the reputation of each
participant is adjusted based on the scoring results. Reference [97] proposed a mechanism design,
which is a method of designing economic mechanisms or incentives to achieve desired goals in a
strategic environment where participants act rationally. A competitive model updating approach is
introduced so that any rational worker follows the agreement and maximizes their profits. In each
round, participants select the best one of the models submitted by all participants in the previous
round, update it based on this model, and submit it. The benefit to the participant will be determined
by the votes received for the submitted model in the next round. If an honest participant wants to
receive the highest benefit, he or she will honestly vote for the best model and honestly update the
model to receive the next round of voting. Reference [98] used a simpler strategy, only checking whether
the wrong masking gradient has been uploaded or other dishonest behavior has been performed. In
[83], all participants will form mining pools, each pool maintains its own model, and all participants in
each pool update and optimize this model through FL. After each training round, the models trained
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by all pools will be evaluated, and the pool to which the best model belongs will be incentivized. To
this end, model validation without exposing the model and validation dataset was also proposed in
[83] outside the FL process. Moreover, different mining pools in [84] are able to auction their models
to obtain rewards.

6 Application of BCFL

Since the idea of BCFL was proposed by researchers, the joint technique has attracted interest
from various fields and has been applied to real-life applications. In this section, we will introduce the
applications of BCFL in some fields according to the current research. To the best of our knowledge,
all schemes are designed to function under certain circumstances and there is no general framework
for the BCFL yet.

6.1 BCFL in Internet of Things (IoT)
Nowadays, IoT devices can be found everywhere ranging from road monitors to smart furniture.

By 2030, according to a prediction, the number of IoT devices may be about 125 million [99]. Billions
of people interact with IoT devices every day and a tremendous amount of data is generated, which
is a perfect scenario for FL. However, the conventional FL has several disadvantages, and the BCFL
can make the data more secure. Most of the BCFL schemes in IoT fields focus on the issues of privacy,
resource allocation, communication efficiency, and failure detection.

Reference [100] proposed a blockchain-enabled FL scheme for fog computing, which aims to
address the privacy and communication cost issues of the existing works. In [101], it proposed the
digital twin edge networks (DITENs) which integrate the digital twins with edge networks to connect
the physical edge networks and digital system. It then proposed a blockchain-based FL scheme
in DITEN to improve privacy, data protection, and communication efficiency. The work in [102]
proposed a scheme for FL in IoT settings based on a chameleon hash scheme with a changeable
trapdoor, and instantiate the scheme as a redactable medical blockchain. Reference [103] proposed
a blockchain-based FL system for failure detection in the IoT industry, and to solve problems, such as
data heterogeneity, it designs algorithms to calculate the distance between data from different clients.
This scheme implements failure detection while ensuring the clients’ privacy [104].

In addition, federated learning faces the poisoning attack [105]; several works focus on analyzing
participants’ behavior using blockchain. Reference [106] introduced a blockchain-based hierarchical
federated learning for cyber-physical systems, which employs the blockchain to verify and validate the
trained models on the edge. Similarly, Al Mallah et al. [107] devised a BCFL scheme, in which the
miner in blockchain not only exchange local model update but also monitoring the behavior of all the
participants to select reliabel devices. There are many other jobs like this, such as [108,109], etc.

6.2 BCFL in Internet of Vehicle (IoV)
IoV is a key part of IoT, which is composed of lots of in-vehicle sensors and road infrastructure.

As a real-time system, security and reliability are the most important features, otherwise, people’s lives
would be in great danger or even cause death. The data generated in IoV is also valuable and it can
help us improve daily traffic, making it safer and more convenient for people to travel, thus schemes
proposed in the form of BCFL are prevalent in this field.

Reference [110] proposed a secure FL framework termed SFAC for Unmanned Aerial Vehicles
(UAVs) assisting Mobile Crowdsensing (MCS), and designed privacy-preserving algorithms to protect
the UAV’s privacy while maintaining the model accuracy. Reference [111] highlighted the problem of
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data sharing among vehicles, and to relieve the communication load and meanwhile protect individual
privacy, a new architecture was proposed based on federated learning, in which blockchain technique
was adopted to enhance security and reliability of the data. In the work of [112], a BCFL framework
with features of privacy-aware and efficiency was proposed, and researchers performed a detailed
simulation and analysis on the framework to find out the advantages and challenges. Reference
[113] proposed a heterogeneous blockchain-based hierarchical trust evaluation strategy named BHTE,
which could utilize federated learning for 5G-enabled intelligent transporting systems. Many similar
frameworks or schemes were proposed for IoV to solve the problem of data sharing and aggregation
problem, such as [114–117], etc.

6.3 BCFL in Healthcare
FL has been widely used in healthcare fields in recent years for disease diagnosis, pandemic

prediction, and so on. The data of patients are sensitive because the leakage of private information
may cause potential discrimination issues. Hence, the idea of BCFL is quite welcomed in healthcare
applications, since it can make use of data while protecting patients’ privacy.

Reference [118] proposed a blockchain-enabled privacy-preserving FL architecture for smart
healthcare, in which users could obtain a well-performing model without uploading their data to a
central server. There is also some similar research, such as [119–123] and so on. Reference [124] pro-
posed an architecture based on blockchain and FL for multi-agent systems and provided a new model
of agents that could be implemented as a real-time medical data processing system. Lakhan et al. [125]
designed a framework termed FL-BETS, which was a BCFL-enabled task scheduling framework, to
identify fraud of data and protect privacy at a low resource cost. In [126], BCFL was used to diagnose
COVID-19 while protecting patients’ privacy, and it could also deal with heterogeneous data.

6.4 BCFL in Finance
As blockchain was first proposed for Bitcoin, a digital payment system, it was originally designed

to solve finance-related problems. In recent years, there emerges a lot of types of cryptocurrency,
and the trading market of cryptocurrency has become very large. Except for pure blockchain-enabled
payment systems, there are also BCFL schemes. For example, Liu et al. [127] proposed FedCoin, which
is a P2P blockchain-based payment system for FL. It enables a practical profit distribution solution
based on Shapley Value (SV).

BCFL can also be used to solve trading problems in the market [128]. Moreover, BCFL can be
applied to address trust issues when several financial institutions need to work collaboratively. In the
scenarios of financial investment, customers’ information is usually confidential and companies do
not want to share it with others. Thus, since BCFL can train models without disclosing the raw data,
it can be used in this case and make it easier for the companies to work together.

7 Performance Analysis of Existing BCFL Schemes

We choose some existing BCFL schemes which provide their source code in the works we
mentioned in the previous sections and transform their result according to a uniform standard so
that we can make comparisons more clearly.

Most of the papers on BCFL do not contain source code, and the source code that we can run
successfully contains only simulation experiments, which only shows the results generated by the
federated learning models, such as model accuracy and so on, but do not provide the running efficiency
of the schemes in the real applications.
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Of course, many solutions also demonstrate capabilities beyond the completion of federated
learning, such as combating poisoning attacks, discovering and disabling malicious users, preventing
single points of failure, and so on. But on the one hand, not all solutions provide the ability to
detect malicious users, and on the other hand, they use different methods of poisoning attacks and
different means to counteract them. Therefore, it is difficult to compare the other capabilities of
these schemes horizontally, and this section only compares the accuracy of the derived models under
different schemes.

We want to test all schemes using the same criteria as much as possible. We use the EMNIST [129]
dataset for our tests, which is a dataset consisting of 28 ∗ 28 pixel grayscale images of handwritten
characters, extended from the classic dataset MNIST [130], and the LEAF project [131], which is an
FL benchmark project. For each scheme, we train the model for 40 rounds and output the accuracy of
the model for each round. For each round, 20 participants are added to the training (in some schemes
these participants may be divided into different roles). For parameters, such as model, learning rate,
etc., we use the default settings in the code of each scheme, and we consider these parameters to be the
best configurations obtained by the authors, which are part of the scheme, all with integrity.

For the experiments using CPU for training, an 8-core Intel(R) Xeon(R) Gold 6133 CPU is
used, and for the experiments using GPU for training, a Tesla T4 is employed. This study employs
Ubuntu 22.02 as the host operating system, and docker is utilized if necessary to simulate the software
environment for the experiments.

This study compares VBFL [132] (VBFL in the legend) and a DAG-based FL [133] (“FL Dag” in
the legend) and depicts the accuracy of the models (Fig. 10) produced by each of these two schemes
over 40 rounds of training. In addition, since FL-Dag is Dag-based, there is no global model, but only
a model in each node, and we show the distribution of model accuracy of the nodes in FL-Dag in each
training round in Fig. 11. This research records the running time of these two schemes, which is shown
in Fig. 12. We calculate the average running time of each training round, it is 90.963 s per round for
VBFL, and 19.796 s per round for FL-Dag. The result shows that the chosen schemes can accomplish
a relatively high level of accuracy, which means they are practical in real-world scenarios.

Figure 10: Accuracy per round
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Figure 11: Accuracy per round of [133]

Figure 12: Running time

8 Conclusions

In this paper, we first introduce the basic principles and features of FL and blockchain technology
and explain what problems of FL can be solved by combining blockchain technology with it. And we
also analyze the problems that still have to be solved in BCFL. We then summarize the state-of-the-
art BCFL according to the cryptographic tools it used to utilize solving these problems and their
incentive mechanisms. Moreover, we briefly describe real-world applications of BCFLs and conclude
with a brief evaluation of some BCFLs.

As a promising collaborative ML training technique, FL is quite promising for the features
mentioned in the previous sections, and many developers have already been working collaboratively
using FL to solve real-life problems. Blockchain and FL are both recently emerging technologies, and
the combination of these two has become a hot research topic today. We believe this technology will
become even more promising as people become more concerned about privacy and digital security.
We hope this article will serve as a reference for other researchers in this field.
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