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ABSTRACT

This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and
SQIRV models, considering the delay in converting susceptible individuals into infected ones. The significant
delays eventually resulted in the pandemic’s containment. To ensure the safety of the host population, this concept
integrates quarantine and the COVID-19 vaccine. We investigate the stability of the proposed models. The
fundamental reproduction number influences stability conditions. According to our findings, asymptomatic cases
considerably impact the prevalence of Omicron infection in the community. The real data of the Omicron variant
from Chennai, Tamil Nadu, India, is used to validate the outputs.
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1 Introduction

Since COVID-19 is a newly discovered virus, little is known about how it spreads. As a result,
health authorities must thoroughly understand the incubation and recovery periods to implement
more efficient quarantine procedures for those suspected of carrying the virus. As of November 24,
2021, Omicron has been found in countries, and it continues to be the most popular variant all over
the world. The transmission dynamics and the potential roles of various intervention strategies have
been better understood by recent COVID-19 studies [1–7]. These methodologies incorporate relief and
concealment to dial back the spread of the pandemic, decreasing pinnacle medical care to safeguard
the people who are most in danger from contaminations, lessening the number of infective cases to a
low level, implementing lockdown to a district of exceptionally infective cases, confining suspect cases
at home, isolating those residing in a similar family at home. Some authors developed an Omicron
variant model with variable population size [8–14].

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.030286
https://www.techscience.com/doi/10.32604/cmes.2023.030286
mailto:kumarsaraswatpk@gmail.com


2266 CMES, 2024, vol.139, no.3

After becoming infected, a strengthening of the immune system may cause a delay in entering the
infectious stage, and a significant amount of delay may even result in the disease being stopped at
the exposure level. As a result, the effect of time delay on studying the dynamics of disease spread is
significant. In addition, the effect of quarantine on preventing disease spread and the transmission of
infection from both the exposed and infected groups are taken into consideration. On the one hand,
people who were exposed have the virus, but unlike an asymptomatic patient, they do not show any
symptoms right away. There is a latency period before an exposed person becomes infected, and it can
take up to 14 days for some people to become infected. By developing the integer model, the current
study aims to investigate the effects of the latency period. Using the delay differential equations model,
newly infected individuals are given some time before contracting the disease.

To prevent COVID-19 infection in the host population, some authors developed delay-type
models. Liu et al. proposed a time delay model and utilised the methodology to analyse the COVID-19
pandemic in China [15]. A new form of disease model based on a time delay dynamics was developed in
[16]. They fitted model parameters based on the total number of reported cases in Beijing and Wuhan,
China. Using mathematical and statistical modelling, Sedighe et al. developed a model to determine
the epidemic trend and forecast the number of patients hospitalised due to COVID-19 in Iran [17].
The SEIQR COVID-19 propagation model with two delays was investigated by Fangfung et al. in
[18]. Their model took supply chain transmission and hierarchical quarantine rate into account. A
modified SIR model which combines suitable delay parameters and generates a more reliable forecasts
of COVID-19 real-time data was proposed in [19]. Where the authors compared the predictions of the
recently constructed SIR model to actual data collected from Germany, Italy, Kuwait, and Oman.
Shidong et al. created a delay SEIR model based on the feedback linearization technique to manage
the effects of COVID-19 [20]. The authors in [21] proposed a SIRDV model to investigate the impact of
vaccination campaigns during the pandemic in Israel and Great Britain. In [22], the authors introduced
a time delay model considering the migration of individuals from susceptible to infected class. The
Omicron model can be mathematically modeled in a way that is reasonably accurate to the occurrences
that have been observed when delay factors are included in the system of differential equations.

In this paper, two delay mathematical models are proposed. The work is significant, because it
contains the mathematical modeling with a real-data of the Omicron variant from Chennai, Tamil
Nadu, India. In the form of sections, the delayed SQIRV model is proposed and its stability is examined
in Section 2. The delayed SEIQIc RVW model is proposed and steady-state solution existence is tested
in Section 3. In order to confirm and strengthen our theoretical findings regarding Omicron B.1.1.529
SARS-Cov-2, computational simulations are carried out from the real data which is collected from
Tamilnadu in Section 4. In Section 5, we summarise our findings.

2 Delayed SQIRV Mathematical Model

Here we define the delay-type version of the integer-order SQIRV model proposed in [23]. The
disease is considered to have an incubation time of τ > 0, because the virus moved from the susceptible
phase to the incubation phase. The time between becoming susceptible to the virus and experiencing
its symptoms is referred to as the incubation period. Based on the policy decisions made by the
government, a set of parameters have been obtained to forecast the pandemic trend. Table 1 lists the
non-negative parameters that are used in this model.
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Table 1: Parameters and their descriptions

Parameters Descriptions

� Rate at which humans are recruited into the population
η1 The natural death rate applicable to all compartments
η2 Rate at which a certain fraction of susceptible individuals receives vaccination
η3 Effective infectious contact rate between the susceptible and infected individual
η4 The quarantine rate of the susceptible individuals
η5 The rate at which the recovered compartment loses its immunities to treatment
η6 The rate at which the vaccinated compartment loses its immunities to vaccination
η7 The treatment rate of the infected class
η8 The natural recovery rates due to quarantine
η9 The contact rate between Quarantined and Vaccinated people
η10 The death rate induced by infections of infected individuals
η11 The rate at which recovered individual moves to vaccinated compartment
η12 The natural recovery rates transfere from infected to recovered individuals

Considering the given aspects, the delay SQIRV mathematical model is derived as follows:

dS
dt

= � − η21S − η3S(t − τ)I(t − τ) + η4Q + η5R + η6V ,

dQ
dt

= η7I − η22Q − η9QV ,

dI
dt

= η3S(t − τ)I(t − τ) − (η23)I(t),

dR
dt

= η12I(t) + η8Q − η24R,

dV
dt

= η11R + η2S − η25V + η9QV , (1)

where η21 = η1 + η2, η22 = η1 + η4 + η8, η23 = η1 + η7 + η10 + η12, η24 = η1 + η5 + η11, and η25 = η1 + η6

Subject to initial conditions S(0) = S0, Q(0) = Q0, I(0) = I0, R(0) = R0
0, V(0) = V0.

As in the case of Omicron, a susceptible individual is assumed to interact with an infected indi-
vidual in the equation system but does not enter the infected compartment until after a predetermined
incubation period. The incubation period τ is just while moving from the powerless compartment to
the contaminated compartment.
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There are two steady-state solutions to the model under consideration. Time-independent solu-
tions are obtained when the model system (1) is made static. The steady-state solution, I = 0, when
there are no infections is given by

E0 = (S, Q, I , R, V) =
(

�(η1 + η6)

η1(η1 + η2 + η6)
, 0, 0, 0,

�η2

η1(η1 + η2 + η6)

)
(2)

Also, the steady-state solution when infection is persistent i.e., I �= 0 is given by

E∗ = (S∗, Q∗, I ∗, R∗, V ∗)

=
(ν33

η3

,
η7I ∗

η22 + η9V ∗ ,
η3� − η21ν33 + η6C

ν33 − η4A − η5B − η6C∗ ,
η8Q∗ + η12I ∗

η1 + η5 + η11

,
η2η11R∗ + η2η23

η2(η1 + η6 − η9Q∗)

)
(3)

where A = η7

η22 + η9V ∗ , B = η12

η1 + η5 + η11

+ η7η8

(η22 + η9V ∗)(η1 + η5 + η11)
, C = η11B

η1 + η6 − η9Q∗ .

The fundamental reproduction number R0 is calculated by using the next generation operator
matrix as folows [24,25]:

R0 is the largest eigenvalue of the spectral radius given by

R0(FV−1) = η3

(
�(η1 + η6)

η1(η1 + η2 + η6)

) (
1

(η1 + η10 + η12 + η7)

)
(4)

2.1 Stability Analysis of the Delayed SQIRV Model
The following theorem applies Rouche’s theorem [26] to characterise the local stability of the

SQIRV system (1) for the infection-free steady state solution (2). The output is determined by the
reproduction number R0.

Theorem 2.1. The infection free steady state E0 is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1 for τ ≥ 0.

Proof. The characteristic equation of system (1), for the equilibrium point E0, is given by

�(λ) = ∣∣λId5×5 − J1
00 − J1

01e
−τλ

∣∣ (5)

where J1
00

=

⎛
⎜⎜⎜⎜⎝

−(η1 + η2) η4 0 η5 η6

0 −(η1 + η4 + η8 + η9V) η7 0 0
0 0 −(η1 + η7 + η10 + η12) 0 0
0 η8 η12 −(η1 + η5 + η11) 0
η2 η9V 0 η11 −(η1 + η6)

⎞
⎟⎟⎟⎟⎠

and

J1
01 =

⎛
⎜⎜⎜⎜⎝

0 0 −η3Se−tτ 0 0
0 0 0 0 0
0 0 η3Se−tτ 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,
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C(λ) = (λ + (η1 + η4 + η7 + η8))(λ + (η1 + η4 + η11))(λ − η3Se−λτ + (η1 + η7 + η10 + η12))(
λ + 1

2

(
(η1 + η2) + (η1 + η6) ± √

(η1 + η2)2 + 4η2η6 − η1η2(η1 + η6) + (η1 + η6)2

))
. (6)

Then from the Jacobian matrix, the eigen values are −(η1 +η4 +η7 +η8), −(η1 +η4 +η11), η3Se−λτ −
(η1 +η7 +η10 +η12), and

1
2

(
− (η1 +η2)− (η1 +η6)±√

(η1 + η2)2 + 4η2η6 − η1η2(η1 + η6) + (η1 + η6)2

)
.

When τ = 0, the System (1) is stable iff η3S − (η1 + η7 + η10 + η12) < 0, and η1(η1 + η2 + η6) > 1.

Then clearly the infection free steady state E0 (2) is locally asymptotically stable if R0 < 1.

Let τ > 0. In this case, we will use Rouches s theorem to prove that all roots of the characteristic
Eq. (5) cannot intersect the imaginary axis, i.e., the characteristic equation cannot have pure imaginary
roots.

Suppose for the opposite, that is, suppose there exists w ∈ R such that λ = wi is a solution of (19).

Consider the term η3Se−iwτ − (η1 + η7 + η10 + η12) = 0

�⇒ wi + (η1 + η7 + η10 + η12) = η3Se−iwτ

�⇒ wi + (η1 + η7 + η10 + η12) = η3S(cos wτ − i sin wτ)

Equating the real and imaginary parts we get

w = −iη3S sin wτ , (η1 + η7 + η10 + η12) = η3S cos wτ

Squaring and adding we get �⇒ (w)2 + (η1 + η7 + η10 + η12)
2 = μsS2

�⇒ w2 = μsS2 − (η1 + η7 + η10 + η12)
2

If R0 < 1, then w2 < 0, which is a contradiction.

Thus the infection free consistent state E0 is locally asymptotically stable if R0 < 1 for τ ≥ 0.

The Ruth-Hurwitz stability theory and Rouche’s theorem are used in the following theorem to
characterize the local stability of the SQIRV system (1) for the infectious persistent steady state
solution (3). The consequence is determined by the reproduction number R0.

Theorem 2.2. The infection persistent steady state solution E∗ of (1) is locally asymptotically stable
if R0 > 1 for τ ≥ 0.

Proof.

The characteristic equation of system (1), for the equilibrium point E∗, is given by

�(λ) = ∣∣λId5×5 − J1
10 − J1

11e
−τλ

∣∣ (7)

where J1
10 =

⎛
⎜⎜⎜⎜⎝

−(η1 + η2) η4 0 η5 η6

0 −(η1 + η4 + η8 + η9V ∗) η7 0 −η9Q∗

0 0 −(η1 + η7 + η10 + η12) 0 0
0 η8 η12 −(η1 + η5 + η11) 0
η2 η9V ∗ 0 η11 −(η1 + η6) + η9Q∗

⎞
⎟⎟⎟⎟⎠
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and

J1
11 =

⎛
⎜⎜⎜⎜⎝

−η3I ∗e−tτ 0 −η3S∗e−tτ 0 0
0 0 0 0 0

η∗
3e−tτ 0 η3S∗e−tτ 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

The characteristic polynomial is

λ5 + (e−λτη3I ∗ + F0)λ
4 + (e−λτη3I ∗F1 + F2)λ

3 + (e−λτη3I ∗F3 + F4)λ
2

+ (e−λτη3I ∗F5 + F6)λ + (e−λτη3I ∗F7 + F8) = 0 (8)

where F0 = η21 − η9Q∗ + η22 + η9V ∗ + η24 + η25, F1 = η22 + η9V ∗ + η24 + η25 − η9Q∗, F2 = η21(η22 + η24 +
η25 + η9V ∗ − η9Q∗) − η2η6,

F3 = (η24 +η25 +η3S∗ −η9Q∗)(η22 +η9V ∗)−η4η7 −η3S∗η9Q∗ −η5η12 −η9Q∗η24 +η24η25 +η9Q∗η9V ∗ +
η3S∗η24 + η3S∗η25,

F4 = (η21 − η9Q∗)(η22 + η9V ∗)η24 − [η9Q∗((η21)(η22 + η9V ∗) + η21η24) + η2η6((η22 + η9V ∗) + η24)] +
η21((η22 + η9V ∗)η25 + η24η25 + η9Q∗η9V ∗) + η9Q∗(η2η4 + η8η11) + η24((η22 + η9V ∗)η25 + η9Q∗η9V ∗),

F5 = η5η9Q∗η12 − η3S∗η9Q∗(η22 + η9V ∗ + η24) + η4η7(η24 + η25) + η5η12(η22 + η9V ∗ + η25) + η5(η7η8 +
η6η9V ∗) + η6η12η11,

F5 = (η9Q∗(η8η11 +η24η9V ∗)+ (η22 +η9V ∗)η24(η25 −η9Q∗))− (η3S∗η9Q∗(η22 +η9V ∗ +η24)+η4η7(η24 +
η25) + η5η12(η22 + η9V ∗ + η25) + η5(η7η8 + η6η9V ∗) + η6η12η11),

F6 = (η9Q∗(η8η11 +η24η9V ∗)+ (η22 +η9V ∗)η24(η25 −η9Q∗))+η4η9Q∗(η5η7 +η2η24)+η5η9Q∗(η3I ∗η12 +
η2η8),

F7 = η5η9Q∗(η7η8 + η12(η22 + η9V ∗)) + η4η9Q∗η12η11,

F8 = (η8η9V ∗ + η24η9V ∗)(η3S∗η9Q∗ − η6η7) + η24(η9Q∗ + η25)(η4η7 − η3S∗(η22 + η9V ∗)) − [η12(η22 +
η9V ∗)(η6η24 + η5η25) + η5(η7η8η25 + η9Q∗η12η11)]

If τ = 0, then by using the rule of Descartes of sign, we can get there are no positive real roots.

Also by Routh-Hurwitz stability criterion, the real parts of the complex roots are also negative if
η3I ∗(Fi) + Fj > 0 for i = 1, 3, 5, 7; j = 0, 2, 4, 6, 8, (R0 − 1) > 0, R0 > 1. Then the infection persistent
steady state (S∗, Q∗, I ∗, R∗, V ∗) is locally stable when R0 > 1.

If τ > 0, then by using Rouch’s theorem, we have to prove that all roots of the characteristic
Eq. (6) cannot have pure imaginary roots.

Suppose that there exists w ∈ R such that λ = wi is a solution of (6).

Now Eq. (22) becomes

iw5 + (e−iwτη3I ∗ + F0)w4 − i(e−iwτη3I ∗F1 + F2)w3 − (e−iwτη3I ∗F3 + F4)w2 + i(e−iwτη3I ∗F5 + F6)w

− (e−iwτη3I ∗F7 + F8) = 0 (9)

Then

iw5 + F0w4 − iF2w3 − F4w2 + iF6w + F8

= η3I ∗(−w4 + iF1w3 + F3w2 − iF5w − F7)(cosτw − isinτw) (10)
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Equating the real and imaginary parts of (10) we get

F0w4 − F4w2 + F8 = η3I ∗(−w4 + F3w2 − F7)cosτw + (F1w3 − F5w)sinτw (11)

w5 − F2w3 + F6w = (F1w3 − F5w)cosτw − η3I ∗(−w4 + F3w2 − F7)sinτw (12)

Squaring both Eqs. (12), (12) and adding we get

w10 + (F 2
0 − 2F2 − η3I ∗2

)w8 + [F 2
2 + 2F6 − 2F0F4 − η3I ∗2

(F 2
1 − 2F3)]w6 + [F 2

4 + 2F0F8 − 2F0F6

− η3I ∗2
(F 2

3 − 2F1F5)]w4 + [F 2
6 − 2F7F8 − η3I ∗2

(F 2
5 − 2F3F7)]w2 + (F 2

8 − η3I ∗2
F 2

7 ) = 0.
(13)

Let z = w2 in (13)

F(z) = z5 + (F 2
0 − 2F2 − η3I ∗2

)z4 + [F 2
2 + 2F6 − 2F0F4 − η3I ∗2

(F 2
1 − 2F3)]z3 + [F 2

4 + 2F0F8 − 2F0F6

− η3I ∗2
(F 2

3 − 2F1F5)]z2 + [F 2
6 − 2F7F8 − η3I ∗2

(F 2
5 − 2F3F7)]z + (F 2

8 − η3I ∗2
F 2

7 ) = 0. (14)

If R0 > 1, then from Eq. (14) we can see that F 2
8 −η3I ∗2F 2

7 is strictly negtive which implies F(0) > 0.
Thus we can get atleast one positive real root. Hence, if R0 > 1 all the real parts of the roots of (8) are
negative. Thus the equilibrium position E∗ is stable when R0 > 1 for τ ≥ 0.

3 Delayed SEIQIcRVW Model Formulation

This section is focused on constructing delay SEIQIcRVW model for our problem formulation.
The delayed SEIQIcRVW model can be formulated from the integer-order model form given in [27].
It is considered that the disease has an incubation time of the virus τ > 0 transferred from susceptible
period to an incubation period. The incubation period is the delay time that passes between being
susceptible and showing symptoms of the virus. The suitable parameters are used to formulate the
Omicron delayed SEIQIcRVW Model, which are described in Table 2.

Table 2: Parameters and their descriptions

Parameters Descriptions

P The rate of human recruitment into the community
μs High seductive contact rate between the susceptible and sick people
αv The rate at which a given part of the recovering population is vaccinated
δn The average death rate across all classes
ρr The rate of losing medication immunity by recovered class
ρv The value at which the immune system of the vaccinated compartment deteriorates
δe The death rate caused by infected people’s contamination
δc The rate at which exposed people progress from unconfirmed to confirmed class
νr Because of several components, the regular recovery rates

(Continued)
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Table 2 (continued)

Parameters Descriptions

ζ The diseased class’s treatment rate
ζq Between confirmed and isolated people, there is a high rate of effective contact
ηv Rate of getting vaccination of a specific part of isolated individuals
γc The rate at which a particular subsection of confirmed people transitions to the

recovered class
γi The rate at which a particular subsection of exposed people becomes infected
γr Contact rate between infected and recovered classes
ζw Contact rate between the Confirmed people and reservoir
ωc Contact rate between the infected people and reservoir
k Rate at which exposed people move to isolated class

Considering the given aspects, the SEIQIcRVW delay mathematical model is derived as follows:

dS
dt

= P − δnS − μsS(t − τ)I(t − τ) + ρrR + ρvV ,

dE
dt

= μsS(t − τ)I(t − τ) − (ξ1)E,

dI
dt

= γiE − (ξ2)I ,

dQ
dt

= kE + ζ I + ζqIc − (ξ3)Q, (15)

dIc

dt
= δcE − (ξ4)Ic,

dR
dt

= νrI + γrQ + γcIc − (ξ5)R,

dV
dt

= ηvQ + αvR − (ξ6)V

dW
dt

= ωcI + ζwIc − δnW ,

where ξ1 = δn + k + γi + δc, ξ2 = δn + δe + νr + ζ + ωc, ξ3 = γr + ηv + δn, ξ4 = ζq + γc + ζw + δn,
ξ5 = δn + ρr + αv and ξ6 = δn + ρv.

Subject to initial conditions: S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0, Ic(0) = Ic0
, R(0) =

R0
0, V(0) = V0.
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3.1 Steady State Solutions the Delayed SEIQIcRVW Model
The system (15) is found static, i.e., the solutions of time independent are obtained. The steady

state solutions in the infection free state, when I = 0 is given by

E0
q = (S0, E0, I 0, Q0, I 0

c , R0, V 0, W 0) =
(

P
δn

, 0, 0, 0, 0, 0, 0, 0
)

. (16)

Also, when infection is persistent the steady state solutions, i.e., I �= 0 is given by

E∗
q = (S∗, E∗, I ∗, Q∗, I ∗

c , R∗, V ∗, W ∗) (17)

where

S∗ = ξ2

γi

(
Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)

)
, E∗ = ξ1ξ2

μsγi

(
Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)

)

I ∗ = Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)
= δnξ1ξ2(R0 − 1)

μs(ξ1ξ2 − ρvγiJ − γiG)

Q∗ = ξ2ξ4 + ζ ξ4γi + ζqδcξ2

ξ3ξ4γi

(
Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)

)

I ∗
c = δcξ2

ξ4γi

(
Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)

)

R∗ = νrγiξ3ξ4 + γr(ξ2ξ4 + ζ ξ4γi + ζqδcξ2) + γiδcξ2ξ3

γiξ3ξ4ξ5

(
Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)

)

V ∗ = ηvγiξ5(ξ2ξ4 + ζ ξ4γi + ζqδcξ2)

ξ3ξ4γiξ5

+ αv[νrγiξ3ξ4 + γr(ξ2ξ4 + ζ ξ4γi + ζqδcξ2) + γiδcξ2ξ3]
ξ3ξ4γiξ5

(
Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)

)

W ∗ = γiωcξ4 + ζwδcξ2

δnγiξ4

(
Pμsγi − δnξ1ξ2

μs(ξ1ξ2 − ρvγiJ − γiG)

)

with

J = νrγiξ3ξ4 + γr(ξ2ξ4 + ζ ξ4γi + ζqδcξ2) + γiδcξ2ξ3

γiξ3ξ4ξ5

,

G = ηvγiξ5(ξ2ξ4 + ζ ξ4γi + ζqδcξ2)

ξ3ξ4γiξ5

+ αv[νrγiξ3ξ4 + γr(ξ2ξ4 + ζ ξ4γi + ζqδcξ2) + γiδcξ2ξ3]
ξ3ξ4γiξ5

.
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The basic reproduction number R0 is

R0(GV−1) = Pμsγi

δn(δn + k + γi + δc)(δn + δe + νr + ζ + ωc)
. (18)

3.2 Stability Analysis of the Delayed SEIQIcRVW Model
The local stability of the SEIQIcRVW system (15) for the infection-free steady state solution (16)

is examined in the next theorem applying Rouche’s theorem. The reproduction number R0 determines
the result.

Theorem 3.1. The infection free consistent state E0 (16) is locally asymptotically stable if R0 < 1
and unstable if R0 > 1 for the time delay τ ≥ 0.

Proof. The characteristic equation of system 15, for the equilibrium point E0, is given by

�(λ) = ∣∣λId8×8 − J00 − J01e−τλ
∣∣ (19)

where

J00 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δn 0 0 0 0 ρr ρv 0
0 −ξ1 0 0 0 0 0 0
0 γi ξ2 0 0 0 0 0
0 k ζ −ξ3 ζq 0 0 0
0 δc 0 0 −ξ4 0 0 0
0 0 νr γr γc −ξ5 0 0
0 0 0 ηv 0 αv −ξ6 0
0 0 ωc 0 ζw 0 0 −δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

J01 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −μsS 0 0 0 0 0
0 0 μsS 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

C1(λ) = (λ + δn)(λ + δn)
(
λ + ξ1 + ξ2 +

√
ξ 2

1 + 4μsSγi − 2ξ1ξ2 + ξ 2
2

)
(λ + ξ1 + ξ2

−
√

ξ 2
1 + 4μsSγi − 2ξ1ξ2 + ξ 2

2 )(λ + ξ3)(λ + ξ4)(λ + ξ5)(λ + ξ6). (20)

When τ = 0, the eigenvalues are −δn, −δn,
1
2

( − ξ1 − ξ2 − √
ξ 2

1 + 4μsSγi − 2ξ1ξ2 + ξ 2
2

)
,

1
2

( − ξ1 −
ξ2 + √

ξ 2
1 + 4μsSγi − 2ξ1ξ2 + ξ 2

2

)
, −ξ3, −ξ4, −ξ5, −ξ6.

The given system (15) is stable when −ξ1 − ξ2 + √
ξ 2

1 + 4μsSγi − 2ξ1ξ2 + ξ 2
2 < 0

or
√

ξ 2
1 + 4μsSγi − 2ξ1ξ2 + ξ 2

2 < (ξ1 + ξ2) or ξ 2
1 + 4μsSγi − 2ξ1ξ2 + ξ 2

2 < (ξ1 + ξ2)
2

or μsSγi < ξ1ξ2. i.e.,
μsSγi

ξ1ξ2

< 1.
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That is R0 < 1. Clearly infection free steady state E0 is locally asymptotically stable if R0 < 1 when
τ = 0.

Let τ > 0. In this case, we will use Rouche’s theorem to prove that all roots of the characteristic
Eq. (19) cannot intersect the imaginary axis, i.e., the characteristic equation cannot have pure imagi-
nary roots.

Suppose for the opposite, that is, suppose there exists w ∈ R such that λ = wi is a solution of (19).

Consider the term wi + ξ1 + ξ2 − √
ξ 2

1 + 4μsSe−τwiγi − 2ξ1ξ2 + ξ 2
2 = 0

�⇒ wi + ξ1 + ξ2 = √
ξ 2

1 + 4μsSe−τwiγi − 2ξ1ξ2 + ξ 2
2 = 0

�⇒ (wi + ξ1 + ξ2)
2 = ξ 2

1 + 4μsSe−τwiγi − 2ξ1ξ2 + ξ 2
2 = 0

�⇒ (wi)2 + (ξ1 + ξ2)
2 + wi(ξ1 + ξ2) − ξ 2

1 + 2ξ1ξ2 − ξ 2
2 = 4μsS(cos τw − i sin τw)γi

�⇒ −w2 + wi(ξ1 + ξ2) + 4ξ1ξ2 = 4μsS(cos τw − i sin τw)γi

By equating the real and imaginary part, we get

4ξ1ξ2 − w2 = 4μsγiS cos τw, w(ξ1 + ξ2) = −4μsγiS sin τw

If R0 < 1, then μsSγi − ξ1ξ2 > 0. Hence w2 < 0, which is a contradiction.

Thus the infection free consistent state E0 is locally asymptotically stable if R0 < 1 for τ ≥ 0.

Now suppose that R0 > 1 from the characteristic polynomial (20), it is enough to consider the
term (λ + ξ1 + ξ2 − √

ξ 2
1 + 4μsSγi − 2ξ1ξ2 + ξ 2

2 ). It is easy to see that C1(0) < 0. On the other hand,
limλ→+∞ C1(λ) = +∞. Therefore, by continuity of C1(λ), there is at least one positive root of the
characteristic Eq. (20). Hence, we conclude that �1 is unstable, for any τ ≥ 0.

The local stability of the SEIQIcRVW system (15) for the infection’s persistent steady state solution
(17) is determined using Rouche’s theorem and the Routh-Hurwitz technique in the next theorem. The
result is governed by the reproduction number R0.

Theorem 3.2. If R0 > 1, then the endemic equilibrium point E∗ is locally asymptotically stable for
τ ≥ 0.

Proof. The characteristic equation of system 15, for the equilibrium point E∗ 17 is given by

�(λ) = ∣∣λId8×8 − J10 − J11e−τλ
∣∣ . (21)

Where the Jacobian matrices of the model at infection persistent steady state solution are

J(10) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δn 0 0 0 0 ρr ρv 0
0 −ξ1 0 0 0 0 0 0
0 γi ξ2 0 0 0 0 0
0 k ζ −ξ3 ζq 0 0 0
0 δc 0 0 −ξ4 0 0 0
0 0 νr γr γc −ξ5 0 0
0 0 0 ηv 0 αv −ξ6 0
0 0 ωc 0 ζw 0 0 −δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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and

J(11) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μsI ∗ 0 −μsS∗ 0 0 0 0 0
μsI ∗ 0 μsS∗ 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic equation is

(−δn −λ)(ρvμsI ∗e−λτ [(ξ2ξ4kξ5ηv +ξ2ζqδcξ5ηv +ξ4ηγiξ5ηv +ξ3ξ4γiνrs+ξ2ξ4kγrαv +ξ2ζqδcγrαv +ξ4ηγiγrαv +
ξ3ξ2δcγcαv) + (ξ2ξ4kηv + ξ2ζqδcηv + ξ4ηγiηv + ξ2kξ5ηv + ξ4kξ5ηv + ζqδcξ5ηv + ηγiξ5ηv + ξ3γiνrαv + ξ4γiνrαv +
ξ2kγrαv+ξ4kγrαv+ζqδcγrαv+ηγiγrαv+ξ3δcγcαv+ξ2δcγcαv)λ+(ξ2kηv+ξ4kηv+ζqδcηv+ηγiηv+kξ5ηv+γiνrαv+
kγrαv + δcγcαv)λ

2 + kηvλ
3] + (−ξ6 − λ)(−ρrμsI ∗e−λτ [(ξ3ξ4γiνr + ξ2ξ4kγr + ξ2ζqδcγr + ξ4ηγiγr + ξ3ξ2δcγc) +

(ξ3γiνr +ξ4γiνr +ξ2kγr +ξ4kγr +ζqδcγr +ηγiγr +ξ3δcγc +ξ2δcγc)λ+ (γiνr +kγr +δcγc)λ
2]+ (−ξ3 −λ)(−ξ4 −

λ)(−ξ5 − λ)(−γiμsS∗e−λτ (−δn − λ) + (−ξ2 − λ)(δnξ1 + ξ1μsI ∗e−λτ + (δn + ξ1 + μsI ∗e−λτ )x + λ2)))) = 0.

To check about the stability, consider the second term of the above characteristic equation

λ7 + (e−λτμsI ∗ + D0)λ
6 + (e−λτ [μsI ∗D1 − μsS∗D2] + D3)λ

5 + (e−λτ [μsI ∗D4 − μsS∗D5] + D6)λ
4

+ (e−λτ [μsI ∗D7 − μsS∗D8] + D9)λ
3 + (e−λτ [μsI ∗D10 − μsS∗D11] + D12)λ

2

+ (e−λτ [μsI ∗D13 − μsS∗D14] + D15)λ + (e−λτ [μsI ∗D16 − μsS∗D17] + D18) = 0

(22)

where D0 = δn +ξ1 +ξ2 +ξ3 +ξ4 +ξ5 +ξ6, D1 = ξ1 +ξ2 +ξ3 +ξ4 +ξ5 +ξ6, D2 = γi, D3 = δnξ3 +δnξ1 +ξ3ξ1 +
δnξ2+ξ3ξ2+ξ1ξ2+δnξ4+ξ3ξ4+ξ1ξ4+ξ2ξ4+δnξ5+ξ3ξ5+ξ1ξ5+ξ2ξ5+ξ4ξ5+δnξ6+ξ3ξ6+ξ1ξ6+ξ2ξ6+ξ4ξ6+ξ5ξ6,

D4 = ξ1ξ2 + ξ1ξ3 + ξ1ξ4 + ξ1ξ5 + ξ1ξ6 + ξ2ξ3 + ξ2ξ4 + ξ2ξ5 + ξ2ξ6 + ξ3ξ4 + ξ3ξ5 + ξ3ξ6 + ξ4ξ5 + ξ4ξ6 + ξ5ξ6,
D5 = γi[δn + ξ3 + ξ4 + ξ5 + ξ6], D6 = δn[ξ3ξ1 + ξ3ξ2 + ξ1ξ2 + ξ3ξ4 + ξ1ξ4 + ξ2ξ4 + ξ3ξ5 + ξ1ξ5 + ξ2ξ5 + ξ4ξ5 +
ξ2ξ6 + ξ3ξ6 + ξ1ξ6 + ξ4ξ6 + ξ5ξ6]+ ξ3ξ4ξ5 + ξ1ξ4ξ5 + ξ2ξ4ξ5 + ξ3ξ1ξ2 + ξ3ξ1ξ6 + ξ3ξ2ξ6 + ξ3ξ2ξ4 + ξ3ξ2ξ5 + ξ1ξ2ξ5 +
ξ1ξ2ξ4 + ξ3ξ1ξ4 + ξ1ξ2ξ6 + ξ3ξ1ξ5 + ξ3ξ4ξ6 + ξ1ξ4ξ6 + ξ2ξ4ξ6 + ξ3ξ5ξ6 + ξ1ξ5ξ6 + ξ2ξ5ξ6 + ξ4ξ5ξ6,

D7 = ξ3ξ1ξ2 + ξ3ξ1ξ2 + ξ3ξ2ξ4 + ξ1ξ2ξ4 + ξ3ξ1ξ5 + ξ3ξ2ξ5 + ξ1ξ2ξ5 + ξ3ξ4ξ5 + ξ1ξ4ξ5 + ξ2ξ4ξ5 + ξ3ξ1ξ6 +
ξ3ξ2ξ6 + ξ1ξ2ξ6 + ξ3ξ4ξ6 + ξ1ξ4ξ6 + ξ2ξ4ξ6 + ξ3ξ5ξ6 + ξ1ξ5ξ6 + ξ2ξ5ξ6 + ξ4ξ5ξ6 − ρrγiνr − ρrkγr − ρrδcγc − ρvkηv,
D8 = γi[ξ3ξ4 +δnξ5 +ξ3ξ5 +δnξ6 +ξ3ξ6 +ξ4ξ6 +ξ5ξ6 +δnξ3 +ξ4ξ5 +δnξ4], D9 = ξ3ξ1ξ2ξ4 +δnξ3ξ1ξ2 +δnξ3ξ1ξ4 +
δnξ3ξ2ξ4 + δnξ1ξ2ξ4 + δnξ3ξ1ξ5 + δnξ3ξ2ξ5 + δnξ1ξ2ξ5 + ξ3ξ1ξ2ξ5 + δnξ3ξ4ξ5 + δnξ1ξ4ξ5 + ξ3ξ1ξ4ξ5 + δnξ2ξ4ξ5 +
ξ3ξ2ξ4ξ5+ξ1ξ2ξ4ξ5+δnξ3ξ1ξ6+δnξ3ξ2ξ6+δnξ1ξ2ξ6+ξ3ξ1ξ2ξ6+δnξ3ξ4ξ6+δnξ1ξ4ξ6+ξ3ξ1ξ4ξ6+δnξ2ξ4ξ6+ξ3ξ2ξ4ξ6+
ξ1ξ2ξ4ξ6 +δnξ3ξ5ξ6 +δnξ1ξ5ξ6 +ξ3ξ1ξ5ξ6 +δnξ2ξ5ξ6 +ξ3ξ2ξ5ξ6 +ξ1ξ2ξ5ξ6 +δnξ4ξ5ξ6 +ξ3ξ4ξ5ξ6 +ξ1ξ4ξ5ξ6 +ξ2ξ4ξ5ξ6,

D10 = ξ3ξ1ξ2ξ4+ξ3ξ1ξ2ξ5+ξ3ξ1ξ4ξ5+ξ3ξ2ξ4ξ5+ξ1ξ2ξ4ξ5+ξ3ξ1ξ2ξ6+ξ3ξ1ξ4ξ6+ξ3ξ2ξ4ξ6+ξ1ξ2ξ4ξ6+ξ3ξ1ξ5ξ6+
ξ3ξ2ξ5ξ6 +ξ1ξ2ξ5ξ6 +ξ3ξ4ξ5ξ6 +ξ1ξ4ξ5ξ6 +ξ2ξ4ξ5ξ6 −ξ3ρrγiνr −ρrξ4γiνr −ρrξ2kγr −ρrξ2kγr −ρrζqδcγr −ρrηγiγr −
ξ3ρrδcγc−ρrξ2δcγc−ρvξ2kηv−ρvξ4kηv−ρvζqδcηv−ρvηγcηv−ρvkξ5ηv−ρvγiνrαv−ρvkγrαv−ρvδcγcαv−ρrγiνrξ6−
ρrkγrξ6 −ρrδcγcξ6, D11 = γi[δnξ3ξ4 +δnξ3ξ5 +δnξ4ξ5 +ξ3ξ4ξ5 +δnξ3ξ6 +δnξ4ξ6 +ξ3ξ4ξ6 +δnξ5ξ6 +ξ3ξ5ξ6 +ξ4ξ5ξ6],
D12 = δnξ3ξ1ξ2ξ4 + δnξ3ξ1ξ2ξ5 + δnξ3ξ1ξ4ξ5 + δnξ3ξ2ξ4ξ5 + δnξ1ξ2ξ4ξ5 + ξ3ξ1ξ2ξ4ξ5 + δnξ3ξ1ξ2ξ6 + δnξ3ξ1ξ4ξ6 +
δnξ3ξ2ξ4ξ6 +δnξ1ξ2ξ4ξ6 +ξ3ξ1ξ2ξ4ξ6 +δnξ3ξ1ξ5ξ6 +δnξ3ξ2ξ5ξ6 +δnξ1ξ2ξ5ξ6 +ξ3ξ1ξ2ξ5ξ6 +δnξ3ξ4ξ5ξ6 +δnξ1ξ4ξ5ξ6 +
ξ3ξ1ξ4ξ5ξ6 + δnξ2ξ4ξ5ξ6 + ξ3ξ2ξ4ξ5ξ6 + ξ1ξ2ξ4ξ5ξ6,

D13 = ξ3ξ1ξ2ξ4ξ5 + ξ3ξ1ξ2ξ4ξ6 + ξ3ξ1ξ2ξ5ξ6 + ξ3ξ1ξ4ξ5ξ6 + ξ3ξ2ξ4ξ5ξ6 + ξ1ξ2ξ4ξ5ξ6 − ξ3ρrξ4γiνr −ρrξ2ξ4kγr −
ρrξ2ζqδcγr −ρrξ4ηγiγr −ξ3ρrξ2δcγc −ρvξ2ξ4kηv −ρvξ2ζqδcηv −ρvξ4hγiηv −ρvξ2kξ5ηv −ρvξ4kξ5ηv −ρvζqδcξ5ηv −
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ρvηγiξ5ηv −ξ3ρvγiνrαv −ρvξ4γiνrαv −ρvξ2kγrαv −ρvξ4kγrαv −ρvζqδcγrαv −ρvηγiγrαv −ξ3ρvδcγcαv −ρvξ2δcγcαv −
ξ3ρrγiνrξ6 − ρrξ4γiνrξ6 − ρrξ2kγrξ6 − ρrξ4kγrξ6 − ρrζqδcγrξ6 − ρrηγiγrξ6 − ξ3ρrδcγcξ6 − ρrξ2δcγcξ6,

D14 = γi[δnξ3ξ4ξ5 + δnξ3ξ4ξ6 + δnξ3ξ5ξ6 + δnξ4ξ5ξ6 + ξ3ξ4ξ5ξ6], D15 = δnξ3ξ1ξ2ξ4ξ5 + δnξ3ξ1ξ2ξ4ξ6 +
δnξ3ξ1ξ2ξ5ξ6 + δnξ3ξ1ξ4ξ5ξ6 + δnξ3ξ2ξ4ξ5ξ6 + δnξ1ξ2ξ4ξ5ξ6 + ξ3ξ1ξ2ξ4ξ5ξ6,

D16 = ρvξ2ξ4kξ5ηv +ξ3ξ1ξ2ξ4ξ5ξ6 −ρvξ2ζqδcξ5ηv −ρvξ4ηγiξ5ηv −ξ3ρvξ4γiνrαv −ρvξ2ξ4kγrαv −ρvξ2ζqδcγrαv −
ρvξ4ηγiγrαv − ξ3ρvξ2δcγcαv − ξ3ρrξ4γiνrξ6 − ρrξ2ξ4kγrξ6 − ρrξ2ζqδcγrξ6 − ρrξ4ηγiγrξ6 − ξ3ρrξ2δcγcξ6, D17 =
γiδnξ3ξ4ξ5ξ6, D18 = δnξ1ξ2ξ2ξ4ξ5ξ6.

If τ = 0, then by using the rule of Descartes of sign, we can get there are no positive real roots.

Also by Routh-Hurwitz stability criterion, the real parts of the complex roots are also negative if
μsI ∗(ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6) − μsS∗γi + D3 > 0, (1 − R0) < 0, R0 > 1. Then the infection persistent
steady state (S∗, E∗, I ∗, Q∗, I ∗

c , R∗, V ∗, W ∗) is locally stable when R0 < 1.

If τ > 0, then by using Rouche’s theorem, we have to prove that all roots of the characteristic
Eq. (22) cannot have pure imaginary roots. Suppose that there exists w ∈ R such that λ = wi is a
solution of (22). Now Eq. (22) becomes

−iw7 − (e−iwτμsI ∗ + D0)w6 + i(e−iwτ [μsI ∗D1 − μsS∗D2] + D3)w5 + (e−iwτ [μsI ∗D4 − μsS∗D5] + D6)w4

− i(e−iwτ [μsI ∗D7 − μsS∗D8] + D9)w3 − (e−iwτ [μsI ∗D10 − μsS∗D11] + D12)w2

+ i(e−iwτ [μsI ∗D13 − μsS∗D14] + D15)w + (e−iwτ [μsI ∗D16 − μsS∗D17] + D18) = 0. (23)

Then,
E1 + iE2w − E3w2 − iE4w3 + E5w4 + iE6w5 − E7w6 − iw7

= (−E∗
1 − iE∗

2 w + E∗
3 w2 + iE∗

4 w3 − E∗
5 w4 − iE∗

6 w5 + E∗
7 w6)(cos τw − i sin τw)

(24)

where E1 = D18, E∗
1 = μsI ∗D16 − μsS∗D17, E2 = D15, E∗

2 = μsI ∗D13 − μsS∗D14, E3 = D12, E∗
3 = μsI ∗D10 −

μsS∗D11, E4 = D9, E∗
4 = μsI ∗D7 − μsS∗D8, E5 = D6, E∗

5 = μsI ∗D4 − μsS∗D5, E6 = D3, E∗
6 = μsI ∗D1 −

μsS∗D2, E7 = D0, E∗
7 = μsI ∗, Equating the real and imaginary parts of (24), we get

E1 − E3w2 + E5w4 − E7w6 = (−E∗
1 + E∗

3 w2 − E∗
5 w4 + E∗

7 w6) cos τw (25)

−(−E∗
2 w + E∗

4 w3 − E∗
6 w5) sin τw

E2w − E4w3 + E6w5 − w7 = (−E∗
2 w + E∗

4 w3 − E∗
6 w5) cos τw (26)

+(−E∗
1 + E∗

3 w2 − E∗
5 w4 + E∗

7 w6) sin τw.

Squaring both Eqs. (26), (27) and adding, we get

w14 + (E2
7 − E6 − E∗2

7 )w12 + (E2
6 + E2E6 + E∗

5 E∗
7 − E4 − E5E7 − E∗

2 E∗
6 − E∗2

6 )w10 + (E2
5 + E3E7 + E∗

4 E∗
6

− E2 − E4E6 − E∗
3 E∗

7 − E∗2

5 )w8 + (E2
4 + E∗

1 E∗
7 + E∗

3 E∗
5 − E1E7 − E3E5 − E∗2

4 )w6

+ (E2
3 + E1E5 + E∗

2 E∗
4 − E∗

1 E∗
5 − E2E4 − E∗2

3 )w4 + (E2 − E∗2

2 )w2 + (E2
1 − E∗2

1 ) = 0. (27)
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Let z = w2 in (27)

F(z) = z7 + (E2
7 − E6 − E∗2

7 )z6 + (E2
6 + E2E6 + E∗

5 E∗
7 − E4 − E5E7 − E∗

2 E∗
6 − E∗2

6 )z5 + (E2
5 + E3E7

+ E∗
4 E∗

6 − E2 − E4E6 − E∗
3 E∗

7 − E∗2

5 )z4 + (E2
4 + E∗

1 E∗
7 + E∗

3 E∗
5 − E1E7 − E3E5 − E∗2

4 )z3

+ (E2
3 + E1E5 + E∗

2 E∗
4 − E∗

1 E∗
5 − E2E4 − E∗2

3 )z2 + (E2 − E∗2

2 )z + (E2
1 − E∗2

1 ) = 0. (28)

If R0 > 1, then from Eq. (28), we can see that (E∗2

1 −E2

1 ) is strictly positive which implies F(0) < 0.
Thus, we can get atleast one positive real root. Hence, if R0 > 1 all the real parts of the roots of (22)
are negative. Thus, the equilibrium position E∗ is stable when R0 > 1 for τ ≥ 0.

4 Numerical Analysis

During the second wave of the Corona virus, India experienced a high infection rate. We
obtained data for this article from Tamilnadu, India. This current Omicron variant pandemic data
of Tamilnadu, India is validated with our theoretical findings. The source of the data is specified by
[28] and [23]. Tamil Nadu encountered its most memorable instance of the Omicron type of SARS-
CoV-2 on December 15, 2021, as indicated by a traveller from another country. Three weeks after the
first confirmed Omicron case was reported, Tamil Nadu was infected with the highly transmissible
and rapidly spreading form of SARS-Cov-2. The data for this study is gathered from the state of
Tamil Nadu (Chennai). As of March 11, 2022, there were 750606 positive cases, 750520 discharged
cases, 48 deaths, 499 active cases, 42 positive cases on March 11, 2022, 86 recovered cases, and 3373
vaccinated cases. The state of Tamilnadu achieves a zero-death rate and a safe position against the
spread of Omicron on March 11, 2022. We used Mathematica for plotting the solution. The values of
the variables and parameters are listed in the Tables 3 and 4 below.

Table 3: Values of the variables (SQIRV)

Parameters Values Parameters Values Parameters Values

S(0) 3233 η1 0.0870 η7 0.6707
Q(0) 744 η2 0.0104 η8 0.0580
I(0) 499 η3 0.1543 η9 0.2206
R(0) 86 η4 0.2301 η10 0.0002
V (0) 3373 η5 0.0266 η11 0.0255
� 5 η6 0.0096 η12 0.1723

Table 4: Values of the variables (SEIQIcRVW)

Parameters Values Parameters Values Parameters Values

S(0) 3233 μs 0.1543 ζ 0.6707
E(0) 3118 αv 0.0255 ζq 0.0565
I(0) 499 δn 0.0870 ηv 0.2206
Q(0) 744 ρr 0.0266 γc 0.4884

(Continued)
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Table 4 (continued)

Parameters Values Parameters Values Parameters Values

Ic(0) 42 ρv 0.0096 γi 0.1600
R(0) 86 δe 0.0002 γr 0.0580
V (0) 3373 δc 0.0135 ζw 0.0005
W (0) 821 νr 0.1723 ωc 0.0061
k 0.2386 R0 0.6634 P 5

The susceptible individual curves for the systems SEIQIcRVW and SQIRV are depicted in Figs. 1–
3, respectively. For the system SEIQIcRVW, we used the delay values (τ ) 0.11, 0.14, and 0.16, and for
the system SQIRV, we used the delay values (τ ) 0.002, 0.003, and 0.004.

Figure 1: Susceptible people S(t) against time t with various τ for SEIQIcRVW

Figure 2: Susceptible people S(t) against time t with various τ for SQIRV

Fig. 4 demonstrates that when the exposed population decreases, the population of other com-
partments also decreases, while when the exposed population rises, the population of all related
compartments rises.

Figs. 5–7 illustrate the possible reduction in the Omicron infection rate. Fig. 5 demonstrates that
when the Omicron variant was first discovered, its spread was rapid, and that the variant’s spread was
reduced to a safe level when the government implemented quarantine and vaccination at a high rate.
By adding more compartments from the models that came before it, the SEIQIcRVW model is able
to keep the increase in infected individuals under control at a moderate rate. The state of Tamilnadu
discovered on March 11, 2022, that Omicron’s death had not been caused by anyone. People were able
to avoid contracting the SARS Cov-2 Omicron variant through vaccination against COVID-19.
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Figure 3: Susceptible people S(t) against time t with τ = 0 for SEIQIcRVW and SQIRV

Figure 4: Exposed people E(t) against time t with various τ for SEIQIcRVW

Figure 5: Infected people I(t) against time t with various τ for SEIQIcRVW

Figure 6: Infected people I(t) against time t with various τ for SQIRV
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Figure 7: Infected people I(t) against time t with τ = 0 for SEIQIcRVW and SQIRV

The Quarantined individual level at time t is depicted in Figs. 8–10. When the government
implemented the quarantine in Chennai at a high range, the spread of the disease was contained,
and the situation in Chennai returned to normal.

Figure 8: Quarantined people Q(t) against time t with various τ for SEIQIcRVW

Figure 9: Quarantined people Q(t) against time t with various τ for SQIRV

According to Fig. 11, the population of these four districts experiences a high rate of illness during
the Omicron period, which begins on December 25 and ends on March 11, 2022. The infection rate
gradually decreased to a low level and there were no deaths when people were vaccinated in accordance
with government instructions.
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Figure 10: Quarantined people Q(t) against time t with τ = 0 for SEIQIcRVW and SQIRV

Figure 11: Confirmed people S(t) against time t with various τ for SEIQIcRVW

Reproduction numbers of 0.66, 0.92, 0.63, and 0.06 for SEIQIcRVW and 0.02, 0.05, 0.073, and
0.074 for SQIRV are shown in Fig. 12. Contaminations are being eliminated from the host population
when R0 < 1. However, if R0 > 1, the contaminations cause harm and become endemic, necessitating
appropriate clinical treatments to stop the spread of the disease. If the delay value τ = 0.014 for
the system SEIQIcRVW and τ = 0.003 for the system SQIRV, prominent oscillation is observed in
the infected population. This could be interpreted as indicating that even though people recover over
time, oscillations indicate that the exposed or asymptomatic population has a higher number of active
cases than the infected population.

Figure 12: Infected range about various reproduction numbers for the system SEIQIcRVW and SQIRV



CMES, 2024, vol.139, no.3 2283

The rise in recovered rates for both systems in Chennai is depicted in Figs. 13–15. By balancing
the recovered and infected rates with standard rates, the system SEIQIcRVW achieves stability.

Figure 13: Recovered people R(t) against time t with various τ for SEIQIcRVW

Figure 14: Recovered people R(t) against time t with various τ for SQIRV

Figure 15: Recovered people R(t) against time t with τ = 0 for SEIQIcRVW and SQIRV

The rapid rise in the number of people being vaccinated is depicted in Figs. 16–18. As a result,
the system’s infection rate significantly decreased, and the system became stable. The significance of
vaccination to the Omicron virus control strategy is demonstrated by these figures.

The effect of delayed SEIQIcRVW model construction is depicted in Fig. 19 as a decrease in
reservoir individuals over time t. Figs. 20 and 21 show the stability of the Omicron mathematical model
for the Chennai district at various delay values. The infection rate decreases for both the SEIQIcRVW
and SQIRV systems following a rapid spread over a considerable period, as shown in Fig. 22. These
systems control the infection and stop its spread within a few days.
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Figure 16: Vaccinated people V(t) against time t with various τ for SEIQIcRVW

Figure 17: Vaccinated people V(t) against time t with various τ for SQIRV

Figure 18: Vaccinated people V(t) against time t with τ = 0 for SEIQIcRVW and SQIRV

Figure 19: Reservoir people W(t) against time t with various τ for SEIQIcRVW
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Figure 20: Stability of the system SEIQIcRVW against time t with various τ

Figure 21: Stability of the system SQIRV against time t with various τ

Figure 22: Stability of the systems with τ = 0

5 Conclusions

Novel delayed mathematical models for the Omicron B.1.1.529 SARS-Cov-2 Variant were devel-
oped in this paper. The stability of the two models has been examined and validated, and the principles
of reproduction number calculated with this model are an outbreak threshold that determined whether
or not the disease would spread further in the district Chennai of Tamilnadu. As the figures show,
infection-free steady-state solutions are locally asymptotically stable when R0 < 1. The derived
solutions show that the systems are locally unstable and will never become stable when R0 > 1 for
an infection-free steady state. From all the data, we can say that the host community will be safe from
the Omicron variant if more people are isolated, recovered, and vaccinated. We also found that the
second wave of SARS Cov-2 Omicron variant spreads less if the intercessions are strictly followed.
Based on our mathematical models and the Chennai data, the Omicron variant infection appears to
have stabilized after approximately 25 days. This study will be beneficial for scientists who are working
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in the medical field. This work can be further extended to generalize with different fractional derivative
models.
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