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ABSTRACT

In this article, multiple attribute decision-making problems are solved using the vague normal set (VNS). It is
possible to generalize the vague set (VS) and q-rung fuzzy set (FS) into the q-rung vague set (VS). A log q-rung
normal vague weighted averaging (log q-rung NVWA), a log q-rung normal vague weighted geometric (log q-rung
NVWG), a log generalized q-rung normal vague weighted averaging (log Gq-rung NVWA), and a log generalized
q-rung normal vague weighted geometric (log Gq-rung NVWG) operator are discussed in this article. A description
is provided of the scoring function, accuracy function and operational laws of the log q-rung VS. The algorithms
underlying these functions are also described. A numerical example is provided to extend the Euclidean distance
and the Humming distance. Additionally, idempotency, boundedness, commutativity, and monotonicity of the
log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify
conceptualization. We chose five anemia patients with four types of symptoms including seizures, emotional shock
or hysteria, brain cause, and high fever, who had either retrograde amnesia, anterograde amnesia, transient global
amnesia, post-traumatic amnesia, or infantile amnesia. Natural numbers q are used to express the results of the
models. To demonstrate the effectiveness and accuracy of the models we are investigating, we compare several
existing models with those that have been developed.
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Abbreviations

DM Decision-making
MADM Multiple-attribute decision-making
MCDM Multi-criteria decision-making
TOPSIS Technique for order of preference by similarity to ideal solution
FS Fuzzy set
IFS Intuitionistic fuzzy set
PyFS Pythagorean fuzzy set
PyIVFS Pythagorean interval-valued fuzzy set
NSS Neutrosophic set
SFS Spherical fuzzy set
VS Vague set
TMG Truth membership grade
IMG Indeterminacy membership grade
FMG False membership grade
ED Euclidean distance
HD Hamming distance
AO Aggregating operator
q-ROFS q-rung orthogonal pair fuzzy set
q-ROFWABM q-rung orthopair fuzzy weighted Archimedean Bonferroni mean
q-ROFABM q-rung orthopair fuzzy Archimedean Bonferroni mean
q-ROFPA q-rung orthopair fuzzy power averaging
q-ROFPWA q-rung orthopair fuzzy power weighted average
q-ROFPWMSM q-rung orthopair fuzzy power weighted Maclaurin symmetric mean
q-ROFWA q-rung orthopair fuzzy weighted average
q-ROFWG q-rung orthopair fuzzy weighted geometric
log q-rung VNN log q-rung vague normal number
log q-rung NVWA log q-rung normal vague weighted average
log q-rung NVWG log q-rung normal vague weighted geometric
log G q-rung NVWA log generalized q-rung normal vague weighted average
log G q-rung NVWG log generalized q-rung normal vague weighted geometric

1 Introduction

Decision-makers find it increasingly difficult to identify the optimal solution as real-world systems
become increasingly complex. Selecting the best option is possible difficulty of deciding between the
alternatives. Opportunities, objectives, and viewpoint constraints are challenging to create for many
firms. In line with this, when decisions making (DM), individuals or groups should consider multiple
objectives at the same time. A wide variety of MADM-related issues are dealt with every day. Our
DM abilities need to be improved as a result. This field of study has been studied by a variety of
researchers using a variety of methods. There are several uncertain theories proposed by them to deal
with the uncertainties, including fuzzy set (FS) [1], intuitionistic fuzzy set (IFS) [2], interval valued
FS (IVFS) [3], vague set [4], Pythagorean fuzzy set (PFS) [5], IVPFS [6], spherical FS (SFS) [7]. A
membership grade (MG) indicates how well an FS fits into the specified set with ranging from 0 to
one. An IFS was defined by Atanassov [2] as having a total of membership grade (MG) and non-
membership grade (NMG) less than one. The sum of the MG and NMG is sometimes greater than
one when a DM method is applied. Yager [5] developed PFS, which is characterized by a square sum
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of its MG and NMG not exceeding one. In order to generalize IFS, Yager used PFS to build a model.
A new concept has been proposed by Yager [8] in light of society’s continuous complexity and theory
development. The MG and NMG in the q-rung orthogonal pair FS (q-ROFS) have power q, but the
sum can never exceed one. The IFSs and PFSs can all be considered special cases of q-ROFSs, therefore
they are general. There are more orthopairs that meet the bounding constraint as rung q increases, and
as rung q increases, the space of acceptable orthopairs increases. The use of q-ROFSs can thus express
fuzzy information in a broader range. Because the parameter q can be adjusted, q-ROFSs are flexible
and better suited to uncertain environments. An increase in q can be made as ambiguity in decision
information increases. It is possible that some experts are influenced by both their own desires and
their surroundings. Therefore, they may have an MDG of 0.95 and an NMG of 0.55 when evaluating
certain decision-making things. The fuzzy information cannot be described by IFNs and PFNs, but
q-ROFNs can be described if parameter q is increased. Due to this, the q-ROFS is more flexible and
suitable for describing uncertain data.

A discussion of the q-Rung Orthopair fuzzy weighted Archimedean Bonferroni mean (q-
ROFWABM) and q-Rung Orthopair fuzzy Archimedean Bonferroni mean (q-ROFABM) operators
was given in Liu et al. [9]. Liu et al. [10] proposed a concept of q-rung orthopair fuzzy power averaging
(q-ROFPA), q-rung orthopair fuzzy power weighted average (q-ROFPWA), q-ROFPMSM and q-
rung orthopair fuzzy power weighted MSM (q-ROFPWMSM) operators for q-ROFNs, describing
their properties. Liu et al. [11] discussed the q-rung orthopair fuzzy weighted average (q-ROFWA)
and q-rung orthopair fuzzy weighted geometric (q-ROFWG) operators are introduced and their basic
properties are discussed. The concept of an incomplete probabilistic linguistic preference relation
(InPLPR) was introduced by Wang et al. [12]. In 2013, Liu et al. [13] presented the concept of unit cost
consensus adjustment based on a group consensus decision model based on InPLPR that takes into
account social trust networks, consistency, and social trust networks. In a recent study, Zhang et al. [14]
discussed three types of multi-granularity q-rung orthopair fuzzy preference relations (PRS) as well
as their interesting properties. With the MAGDM algorithm based on q-ROF multi-attribute rules,
the MG-3WD approach can also be applied to q-ROF complex information systems. Zhang et al. [15]
analyzed a UCI dataset using MGq-ROF PRSs, the MULTIMOORA method, and the TPOP method
using the MAGDM method. Zhang et al. [16] discussed neutosophic fusion of RST based on basic
models and soft sets models. Based on fuzzy granularity spaces with properties that correspond to
fuzzy knowledge distances, Lian et al. [17] discussed fuzzy relative knowledge distances. Furthermore,
it has been demonstrated that fuzzy knowledge distances contain different structure information
than precise knowledge distances. The hybridization of archimedean copulas and generalized MSM
operators, based on q-rung probabilistic dual hesitant fuzzy sets, was discussed by Anusha et al. [18].
Multi-attribute decision-making (MADM) [19,20] offers an efficient means of evaluating multiple
alternatives based on their evaluation values. Usually, MADM problems can be solved in one of
two ways. Traditional approaches, such as TOPSIS, VIKOR, ELECTRE, are examples. Information
integration problems are more effectively solved by AOs than by traditional approaches. In contrast
to traditional approaches, AOs provide comprehensive values of all alternatives, rather than ranking
results only. In his article, Bairagi [21] used extended TOPSIS to select homogeneous groups of robotic
systems.

This is insufficient for demonstrating neutrality (neither favor nor disfavor). It was developed by
Cuong et al. [22] with a total grade no higher than one for three pointers such as positive, neutral,
and negative. As a result, it would be appropriate for the DM method to use this set over IFS or
PFS for selective applications. Liu et al. first presented the concept of an aggregation operator (AO)
in generalized PFS [23]. A PIVFS algorithm for the problem of identifying truth membership grades
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(TMGs), indeterminacy membership grades (IMGs) and false membership grades (FMGs) with AOs
[6,24–26] have the feature that the sum of the three grades (TMG, IMG, and FMG) is greater than
one. It has been suggested by Ashraf et al. [7] that the SFS should contain the following graph: this
diagram shows that the sum of the squares of the TMG, IMG and FMG should be not exceeds one. To
analyze the idea of SFS, Fatmaa et al. [27] used the TOPSIS technique as part of their study. There have
been several different concepts of q-Rung picture FS with AO for DM that have been demonstrated
by Liu et al. [28]. In addition to Biswas [4], there is a concept of VSs VS is called to the two functions
TMG Tv and FMG Fv as well as a set of transformations. Suppose that Tv(x) is the total likelihood
estimate of x, derived from the evidence for x and Fv(x) is the total likelihood estimate for x derived
from the evidence against x. It can be noted that these functions fall into the interval [0,1], where
their sum is less than one. Various extensions have been made to the VS such as the IVFS and the FS
[29–31]. Zhang et al. [32] was first introduced that suggested PFS can be extended to multi-criteria
decision making (MCDM) using TOPSIS. The application of the bipolar fuzzy soft set (BFSS) was
explored by Jana et al. [33] for the purpose of discovering how to broaden the set of bipolar fuzzy
terms. Ullah et al. [34] described how pattern recognition applications can be used to estimate PFS
distances using complex separation algorithms. It has been discussed that MCDM can be utilized
using the neutrosophic set as well as the Dombi power AOs [35]. A number of algebraic structures and
their applications have been investigated by Palanikumar et al. [36,37]. The notion of fuzzy c-number
clustering procedures for fuzzy data was discussed by Yang et al. [38,39].

As an alternative to algebraic operations, a log q-rung arithmetic operation can provide a smooth
estimate quality that is similar to that of a continuous algebraic operation when compared with its
smoothness. Compared to the log q-rung arithmetic operations on the IFS and PFS only a limited
research has been done on log q-rung arithmetic operations. Our method of VS is based on log q-rung
arithmetic AOs within VSs rather than using log q-rung arithmetic operations. The use of spherical
fuzzy q-rung arithmetic AOs based on entropy in DM, as well as their real-life application to the
problem, were introduced by Jin et al. [40]. Ashraf et al. [41] proposed by that linear-logarithmic
hybrid AOs be used for single-valued neutrosophic sets. Palanikumar et al. have examined the new
type Pythagorean fuzzy set with AO [42]. Yager [5] has also presented an average and geometric AO
using PFS weighted and weighted power cases. A number of basic PFS features were discussed by
Peng et al. [43]. A generalized PFS under AO has been developed by Liu et al. [23]. Adak et al. dicussed
the concept of spherical distance measurement method for solving MCDM problems under PFS [44].
Some picture fuzzy mean operators and their applications in DM is discussed by Hasan et al. [45].
Mishra et al. [46] discussed the new concept of Pythagorean and Fermatean fuzzy sub-group redefined
in context of T-norm and S-conorm. DM analysis of minimizing the death rate due to COVID-
19 by using q-rung orthopair fuzzy soft bonferroni mean operator discussed by Abbas et al. [47].
Yaman et al. [48] discussed the new approach for warehouse location decisions changed in medical
sector after pandemic study. Recently, FS and its extension including q-rung orthopair fuzzy set, T-
spherical fuzzy set based on decision making approach [49–55]. The log q-rung information about
the VNS was obtained utilizing OAs. Section 2 explains the given information about the FS and VS
components. Section 3 explains the definition of q-rung vague sets as well as the different operations
involved with them. There is a discussion on ED and HD in Section 4 using the log q-rung vague
normal number (log q-rung VNN). A MADM connection is established through the Section 5 using
log q-rung VNNs. Section 6 contains a numerical example and a description of log q-rung VS as well as
the insert algorithm and log q-rung VS application. We provide a conclusion in Section 7. An overview
of the key things that were taken into account during the research process is given below:

1. As a result of log-rung VNSs, ED and HD were introduced.
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2. The log q-rung VNVWA, log q-rung VNVWG, log Gq-rung VNVWA, and log Gq-rung
VNVWG operators were suggestions.

3. A log-rung VNS is used in order to explore the MADM technique.

4. We evaluate log q-rung VNVWA, log q-rung VNVWG, log Gq-rung VNVWA and log Gq-rung
VNVWG in order to establish optimal value parameters.

5. An analysis of the proposed and early investigations is presented along with a comparative
analysis.

6. DM outcomes for natural numbers with a value of q.

2 Basic Concepts

We will introduce some basic literature on Pythagorean fuzzy set, Pythagorean interval-valued
fuzzy set, vague set and spherical fuzzy set in the section, which will be useful in later section.
Additionally, the basic operating rules and zero vague and unit vague set of these concepts are
discussed.

Definition 2.1. [5] Let U be the universal, PFS M in U is M =
{
ρ,
〈
ηT

M(ρ), ηF
M(ρ)
〉∣∣ρ ∈ U

}
, ηT

M , ηF
M :

U → [0, 1] denote MG and NMG of ρ ∈ U , respectively and 0 � (ηT
M(ρ))2 + (ηF

M(ρ))2 � 1. For
M = 〈ηT

M , ηF
M

〉
is represents a Pythagorean fuzzy number (PFN).

Definition 2.2. [6] The PIVFS M in U is M =
{
ρ,
〈
η̃T

M(ρ), η̃F
M(ρ)
〉∣∣∣ρ ∈ U

}
, where η̃T

M , η̃F
M : U →

Int([0, 1]) denote MG and NMG of ρ ∈ U , respectively, and 0 � (ηTU
M (ρ))2 + (ηFU

M (ρ))2 � 1.

For M =
〈[

ηTL
M , ηTU

M

]
,
[
ηFL

M , ηFU
M

]〉
is represent a PIVFN.

Definition 2.3. [4] (i) A VS M in U is a pair (MT , MF), MT , MF : U → [0, 1] are mappings such
that MT(ρ) + MF(ρ) � 1, ∀ρ ∈ U , MT and MF are called the TMG and FMG, respectively.

(ii) M(ρ) = [MT(ρ), 1 − MF(ρ)] is represent the vague value of � in M.

Definition 2.4. [4] (i) A VS M is contained in VS M1, M ⊆ M1 if and only if M(ρ) � M1(ρ). That
is, MT(ρ) � TM1

(ρ) and 1 − MF(ρ) � 1 − FM1
(ρ), ∀ρ ∈ U .

(ii) Union of M and M1, as X = M ∪ M1, TX = max{MT , TM1
} and 1 − FX = max{1 − MF , 1 −

FM1
} = 1 − min{MF , FM1

}.
(iii) Intersection of M and M1 as X = M ∩ M1, TX = min{MT , TM1

} and 1−FX = min{1−MF , 1−
FM1

} = 1 − max{MF , FM1
}.

Definition 2.5. [4] A VS M of U , ∀ρ ∈ U . Then

(i) MT(ρ) = 0 and MF(ρ) = 1 is represent a zero VS of U .

(ii) MT(ρ) = 1 and MF(ρ) = 0 is represent a unit VS of U .

Definition 2.6. [38] The fuzzy number M(x) = exp
− (x−χ)2

ψ2 , (ψ > 0) and M = (χ , ψ) is represent a
normal fuzzy number (NFN), here R is a real numbers.

Definition 2.7. [39] Let L1 = (χ1, ψ1) ∈ N and L2 = (χ2, ψ2) ∈ N, (ψ1, ψ2 > 0), then their distance

is ϒ(L1, L2) =
√

(χ1 − χ2)2 + 1
2
(ψ1 − ψ2)2.
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3 log q-rung NVN and Its Basic Operations

In this section, we develop some novel logarithmic operational laws for normal vague numbers
and discuss their properties. The main purpose of this section is to propose novel logarithmic
aggregation operators based on normal vague information. The logarithmic function offers versatility
in supporting the decision experts choices during object appraisal due to its periodic and symmetric
character. An important fundamental operation of the log q-rung normal number is defined.

Definition 3.1. The log VS M in U is M =
{
ρ,
〈[

log MT(ρ), log (M1−F(ρ))
]
,[

log MF(ρ), log (M1−T(ρ))
]〉∣∣∣ ρ ∈ U

}
, η̃T

M : U → Int([0, 1]) and η̃F
M : U → Int([0, 1]) denote the

TMG, IMG and FMG of ρ ∈ U to M, respectively and 0 � (log�i
M1−F(ρ))q + (log�i

M1−T(ρ))q � 1,

where �i = ∏[MT , M1−F ], [MF , M1−T ]. For, M =
〈[

log�i
MT , log�i

(M1−F)
]
,
[

log�i
MF , log�i

(M1−T)
]〉

is called a log q-rung vague number.

Definition 3.2. Let (χ , ψ) ∈ N, M =
〈
(χ , ψ); [log MT , log (M1−F)], [log MF , log (M1−T)]

〉
be a log q-rung normal vague number (NVN). The TMG, IMG and FMG are defined as[

log�i
MT , log�i

(M1−F)
] =
[

log�i
MT · exp

− (x−χ)2

ψ2 , log�i
(M1−F)· exp

− (x−χ)2

ψ2
]
,
[

log�i
MF , log�i

(M1−T)
] =[

1−(1−log�i
MF
)· exp

− (x−χ)2

ψ2 , 1−(1−log�i
(M1−T)

)· exp
− (x−χ)2

ψ2
]

respectively,
[

log� MT , log� (M1−F)
]

and

0 � ( log� (M1−F)(ρ)
)q + ( log� (M1−T)(ρ)

)q � 1, where � =∏[MT , M1−F ], [MF , M1−T ], where x ∈ X is
a non-empty set.

Definition 3.3. Let M =
〈
(χ , ψ);

[
log MT , log (M1−F)

]
,
[

log MF , log (M1−T)
]〉

be the log q-
rung NVN.

The score function of M is S(M) =
χ

2

(
X1

2
+ 1 − Z1

2

)
+ ψ

2

(
X2

2
+ 1 − Z2

2

)
2

, where

−1 � S(M) � 1.

The accuracy function of M is A(M) =
χ

2

(
X1

2
+ 1 + Z1

2

)
+ ψ

2

(
X2

2
+ 1 + Z2

2

)
2

, where

0 � A(M) � 1.

where X1 = (log MT)q,Z1 = (log MF)q and X2 = (log (M1−F))q,Z2 = (log (M1−T))q.

Definition 3.4. Let M =
〈
(χ , ψ); [log MT , log (M1−F)], [log MF , log (M1−T)]

〉
,

M1 =
〈
(χ1, ψ1); [log MT

1 , log (M1−F
1 )], [log MF

1 , log (M1
1−T

)]
〉

and

M2 =
〈
(χ2, ψ2); [log MT

2 , log (M1−F
2 )], [log MF

2 , log (M2
1−T

)]
〉

be the three log q-rung NVNs, q is a natural

number and � =∏[TMi , M1−F
i ], [FMi , M1−T

i ], then
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1. M1

⊕
M2 =

⎡⎢⎢⎢⎢⎢⎣
(χ1 + χ2, ψ1 + ψ2);⎡⎣ q

√
(log�i

MT
1 )q + (log�i

MT
2 )q − (log�i

MT
1 )q · (log�i

MT
2 )q,

q

√
(log�i

(M1−F
1 ))q + (log�i

(M1−F
2 ))q − (log�i

(M1−F
1 ))q · (log�i

(M1−F
2 ))q

⎤⎦ ,[
log�i

MF
1 · log�i

MF
2 , log�i

(M1
1−T

) · log�i
(M2

1−T
)
]

⎤⎥⎥⎥⎥⎥⎦ ,

2. M1

⊗
M2 =

⎡⎢⎢⎢⎢⎢⎣
(χ1 · χ2, ψ1 · ψ2);[

log�i
MT

1 · log�i
MT

2 , log�i
(M1−F

1 ) · log�i
(M1−F

2 )
]
,⎡⎣ q

√
(log�i

MF
1 )q + (log�i

MF
2 )q − (log�i

MF
1 )q · (log�i

MF
2 )q,

q
√

(log�i
(M1

1−T
))q + (log�i

(M2
1−T

))q − (log�i
(M1

1−T
))q · (log�i

(M2
1−T

))q

⎤⎦

⎤⎥⎥⎥⎥⎥⎦ ,

3. 	 · M =

⎡⎢⎢⎣
(	 · χ , 	 · ψ);[

q
√

1 − (1 − (log�i
MT)q

)q
, q
√

1 − (1 − (log�i
(M1−F))q

)q ]
,[

(log�i
MF)q, (log�i

(M1−T))q
]

⎤⎥⎥⎦ ,

4. M	 =
⎡⎣ (χ	, ψ	);

[
(log�i

MT)q, (log�i
(M1−F))q

]
,[

q
√

1 − (1 − (log�i
MF)q

)q
, q
√

1 − (1 − (log�i
(M1−T))q

)q ]
⎤⎦ .

4 Distance between log q-rung Normal Vague Numbers

The Euclidean distance and Hamming distance are useful technique for calculating the distance
between two elements, two sets, etc. In order to define the Euclidean distance and Hamming distance,
first, we will define a distance measure. Basically, a distance measure has to accomplish the following
properties. This study examined the mathematical properties of log q-rung NVNs and measured the
expectation of ED and HD.

Definition 4.1. Let M1 =
〈
(χ1, ψ1); [log MT

1 , log (M1−F
1 )], [log MF

1 , log (M1
1−T

)]
〉

and

M2 =
〈
(χ2, ψ2); [log MT

2 , log (M1−F
2 )], [log MF

2 , log (M2
1−T

)]
〉

be any two log q-rung NVNs. Then ED

between M1 and M2 is

ϒE

(
M1, M2

)

= 1
2

√√√√√√√√√√√√√√√√√√√

⎡⎢⎢⎢⎣
(log�i

MT
1 )2 + 1 − (log�i

MF
1 )2 + (log�i

(M1−F
1 ))2 + 1 − (log�i

(M1
1−T

))2

2
χ1

−(log�i
MT

2 )2 + 1 − (log�i
MF

2 )2 + (log�i
(M1−F

2 ))2 + 1 − (log�i
(M2

1−T
))2

2
χ2

⎤⎥⎥⎥⎦
2

+1
2

⎡⎢⎢⎢⎣
(log�i

MT
1 )2 + 1 − (log�i

MF
1 )2 + (log�i

(M1−F
1 ))2 + 1 − (log�i

(M1
1−T

))2

2
ψ1

−(log�i
MT

2 )2 + 1 − (log�i
MF

2 )2 + (log�i
(M1−F

2 ))2 + 1 − (log�i
(M2

1−T
))2

2
ψ2

⎤⎥⎥⎥⎦
2
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and HD between M1 and M2 is defined as

ϒH

(
M1, M2

)
=

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣∣∣
(log�i

MT
1 )2 + 1 − (log�i

MF
1 )2 + (log�i

(M1−F
1 ))2 + 1 − (log�i

(M1
1−T

))2

2
χ1

−(log�i
MT

2 )2 + 1 − (log�i
MF

2 )2 + (log�i
(M1−F

2 ))2 + 1 − (log�i
(M2

1−T
))2

2
χ2

∣∣∣∣∣∣∣∣∣
+1

2

∣∣∣∣∣∣∣∣∣
(log�i

MT
1 )2 + 1 − (log�i

MF
1 )2 + (log�i

(M1−F
1 ))2 + 1 − (log�i

(M1
1−T

))2

2
ψ1

−(log�i
MT

2 )2 + 1 − (log�i
MF

2 )2 + (log�i
(M1−F

2 ))2 + 1 − (log�i
(M2

1−T
))2

2
ψ2

∣∣∣∣∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Theorem 4.1. Let M1 =

〈
(χ1, ψ1); [log MT

1 , log (M1−F
1 )], [log MF

1 , log (M1
1−T

)]
〉
,

M2 =
〈
(χ2, ψ2); [log MT

2 , log (M1−F
2 )], [log MF

2 , log (M2
1−T

)]
〉

and

M3 =
〈
(χ3, ψ3); [log MT

3 , log (M3
1−F

)], [log MF
3 , log (MT

1−F
)]
〉

be any three log q-rung NVNs, then

1. ϒE(M1, M2) = 0, if and only if M1 = M2.

2. ϒE(M1, M2)=ϒE(M2, M1).

3. ϒE(M1, M3) � ϒE(M1, M2) + ϒE(M2, M3).

Corollary 4.1. Let M1 =
〈
(χ1, ψ1); [log MT

1 , log (M1−F
1 )], [log MF

1 , log (M1
1−T

)]
〉
,

M2 =
〈
(χ2, ψ2); [log MT

2 , log (M1−F
2 )], [log MF

2 , log (M2
1−T

)]
〉

and

M3 =
〈
(χ3, ψ3); [log MT

3 , log (M3
1−F

)], [log MF
3 , log (MT

1−F
)]
〉

be any three log q-rung NVNs. Then

1. ϒH(M1, M2) = 0 if and only if M1 = M2.

2. ϒH(M1, M2) = ϒH(M2, M1).

3. ϒH(M1, M3) � ϒH(M1, M2) + ϒH(M2, M3).

5 log q-rung Normal Vague Number Using AOs

We will introduce the novel concepts of log q-rung NVWA, log q-rung NVWG, log G q-rung
NVWA, and log G q-rung NVWG operators utilizing log q-rung NVN.

5.1 log q-rung NVWA Operator

Definition 5.1. Let Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i )], [log Mi

F , log M1−T
i )]
〉

be the family of log

q-rung NVNs, 
 = (
1, 
2, ..., 
n) be the weight of Mi, 
i 	 0 and 
n
i=1
i = 1 and

� =∏[TMi , M1−F
i ], [FMi , M1−T

i ], then log q-rung NVWA operator is log q-rung NVWA (M1, M2, ..., Mn) =

n

i=1
iMi.
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Theorem 5.1. Let Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i )], [log Mi

F , log M1−T
i )]
〉

be the family of log q-

rung NVNs, then log q-rung NVWA (M1, M2, ..., Mn) =⎡⎢⎢⎢⎢⎣
(


n
i=1 
iχi, 
n

i=1
iψi

)
;[

q

√
1 − ©n

i=1

(
1 − (log�i

Mi
T
)q

)
i

, q

√
1 − ©n

i=1

(
1 − (log�i

M1−F
i ))q

)
i
]

,[
©n

i=1 (log�i
Mi

F
)
i , ©n

i=1(log�i
M1−T

i ))
i

]
⎤⎥⎥⎥⎥⎦ .

Theorem 5.2. (idempotency property) If all Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i )],

[log Mi
F , log M1−T

i )]
〉
= M, then log q-rung NVWA (M1, M2, ..., Mn) = M.

Theorem 5.3. (boundedness property) Let Mi =
〈
(χij, ψij); [log Mij

T , log (Mij
1−F

)],

[log MF
ij , log (Mij

1−T
)]
〉

be the collection of log q-rung NVWA, where χ︸︷︷︸ = min χij,
︷︸︸︷
χ = max χij,

ψ︸︷︷︸ = max ψij,
︷︸︸︷
ψ = min ψij,

log�i
MT︸ ︷︷ ︸ = min log�i

Mij
T ,
︷ ︸︸ ︷
log�i

MT = max log�i
Mij

T , log�i
(M1−F)︸ ︷︷ ︸ = min log�i

(Mij
1−F

),

︷ ︸︸ ︷
log�i

(M1−F) = max log�i
(Mij

1−F
), log�i

MF︸ ︷︷ ︸ = min log�i
MF

ij ,
︷ ︸︸ ︷
log�i

MF = max log�i
MF

ij ,

log�i
(M1−T)︸ ︷︷ ︸ = min log�i

(Mij
1−T

),
︷ ︸︸ ︷
log�i

(M1−T) = max log�i
(Mij

1−T
).

Then,
〈
( χ︸︷︷︸, ψ︸︷︷︸); [log�i

MT︸ ︷︷ ︸, log�i
(M1−F)︸ ︷︷ ︸], [

︷ ︸︸ ︷
log�i

MF ,
︷ ︸︸ ︷
log�i

(M1−T)]
〉

� logq − rungNVWA(M1, M2, . . . , Mn)

�
〈
(
︷︸︸︷
χ ,
︷︸︸︷
ψ ); [

︷ ︸︸ ︷
log�i

MT ,
︷ ︸︸ ︷
log�i

(M1−F)], [log�i
MF︸ ︷︷ ︸, log�i

(M1−T)︸ ︷︷ ︸]
〉
.

where 1 � i � n and j = 1, 2, ..., ij.

Theorem 5.4. (monotonicity property) Let Mi =
〈
(χtij , ψtij); [log MT

tij
, log (M1−F

tij )
],

[log MF
tij

, log (M1−T
tij

)]
〉

and 
i =
〈
(χhij , ψhij); [log MT

hij
, log (M1−F

hij
)],

[log MF
hij

, log (M1−T
hij

)]
〉

be the families of log q-rung NVWAs. For any i, if there is χtij � ψhij ,(
log�i

MT
tij

)2

+
(

log�i
M1−F

tij

)2

�
(

log�i
MT

hij

)2

+
(

log�i
M1−F

hij

)2 (
log�i

MF
tij

)2

+
(

log�i
M1−T

tij

)2

	(
log�i

MF
hij

)2

+
(

log�i
M1−T

hij

)2

or Mi � Wi, then log q-rung NVWA (M1, M2, ..., Mn) � q-Rung log

q-rung NVWA (W1, W2, ..., Wn).
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5.2 log q-rung NVWG Operator

Definition 5.2. Let Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ], [log Mi

F , log M1−T
i ]
〉

be the family of log q-

rung NVNs. Then log q-rung NVWG (M1, M2, ..., Mn) = ©n
i=1M


i
i .

Theorem 5.5. Let Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ], [log Mi

F , log M1−T
i ]
〉

be the family of log q-rung

NVNs. Then log q-rung NVWG (M1, M2, ..., Mn) =⎡⎢⎢⎣
(

©n
i=1 χ


i
i , ©n

i=1ψ

i
i

)
;
[©n

i=1(log�i
Mi

T
)
i , ©n

i=1(log�i
M1−F

i ))
i
]

,[
q

√
1 − ©n

i=1

(
1 − (log�i

Mi
F
)q

)
i

, q

√
1 − ©n

i=1

(
1 − (log�i

M1−T
i ))q

)
i
]
⎤⎥⎥⎦ .

Theorem 5.6. If all Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ][log Mi

F , log M1−T
i ]
〉

= M, then log q-rung
NVWG (M1, M2, ..., Mn) = M.

Corollary 5.1. Boundness and monotonicity properties can be satisfied using the log q-rung
NVWG operator.

5.3 log G q-rung NVWA Operator

Definition 5.3. Let Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ], [log Mi

F , log M1−T
i ]
〉

be the family of log q-

rung NVN, then log G q-rung NVWA (M1, M2, ..., Mn) =
(


n
i=1 
iM	

i

)1/	

. Theorem 5.7. Let Mi =〈
(χi, ψi); [log Mi

T , log M1−F
i ], [log Mi

F , log M1−T
i ]
〉

be the family of log q-rung NVNs. Then log G q-rung

NVWA (M1, M2, ..., Mn) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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n

i=1 
iχ
	

i

)1/	

,
(


n
i=1 
iψ

	

i

)1/	
)

;[(
q

√
1 − ©n

i=1

(
1 −
(
(log�i

Mi
T
)q
)q
)
i )1/q

,
(

q

√
1 − ©n

i=1

(
1 −
(
(log�i

M1−F
i ))q

)q
)
i )1/q

]
,

⎡⎢⎢⎢⎢⎣
q

√
1 −
(

1 −
(

©n
i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i )q)1/q

,

q

√
1 −
(

1 −
(

©n
i=1

(
q

√
1 −
(

1 − (log�i
M1−T

i ))q

)q
)
i )q)1/q

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 5.8. If all Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ], [log Mi

F , log M1−T
i ]
〉
= M. Then log G q-rung

NVWA (M1, M2, ..., Mn) = M.

Corollary 5.2. By using log G q-rung NVWA operators, it is possible to satisfy bounding and
monotonicity properties.

5.4 log G q-rung NVWG Operator

Definition 5.4. Let Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ], log IM i], [log Mi

F , log M1−T
i ]
〉

be the family

of log q-rung NVNs. Then log G q-rung NVWG (M1, M2, ..., Mn) = 1
	

(
©n

i=1 (	Mi)

i

)
.
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Theorem 5.9. Let Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ], [log Mi

F , log M1−T
i ]
〉

be the family of log q-rung

NVNs. Then log G q-rung NVWG (M1, M2, ..., Mn) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1
	

©n
i=1 (	χi)


i , 1
	

©n
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i

)
;⎡⎢⎢⎢⎢⎢⎢⎣
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1 −
(

©n
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1 − (log�i
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T
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)
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(
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√
1 −
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1 − (log�i
M1−F
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)
i )q)1/q

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎣( q

√√√√√ 1 − ©n
i=1

(
1 −
(
(log�i

Mi
F
)q
)q
)
i )1/q

,
(

q

√
1 − ©n

i=1

(
1 −
(
(log�i

M1−T
i ))q

)q
)
i )1/q

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The log G q-rung NVWG operations are modified to be log q-rung NVWG operations with
q = 1.

Corollary 5.3. The log G q-rung NVWG operator is able to satisfy properties such as boundness
and monotonicity.

Corollary 5.4. If all Mi =
〈
(χi, ψi); [log Mi

T , log M1−F
i ], [log Mi

F , log M1−T
i ]
〉

= M. Then log
G q-rung NVWG(M1, M2, ..., Mn) = M.

6 log q-rung NVN Based on MADM

Let M = {M1, M2, ..., Mn} be the set of n-alternatives, γ = {e1, e2, ..., γm} be the set of m-attributes
and 
 = {
1, 
2, ..., 
m} be the weights, where 
i ∈ [0, 1] and

∑m

i 
i = 1.

Let Mij =
〈
(χij, ψij); [log�i

Mij
T , log�i

Mij
1−F ], [log�i

MF
ij , log�i

Mij
1−T ]
〉

represent log q-rung NVN of

alternative Mi in attribute γj, i = 1, 2, ..., n and j = 1, 2, ..., m.

Since
[

log�i
Mij

T , log�i
Mij

1−F
]
,
[

log�i
MF

ij , log�i
Mij

1−T
]

∈ [0, 1] and

0 � (log�i
Mij

1−F
(ρ))q + (log�i

Mij
1−T

(ρ))q � 1. Fig. 1 shows that an algorithm for the MADM process
using log q-rung NVS is followed by a flowchart.

6.1 Algorithm
Step-1: The log q-rung NVN values that can be input.

Step-2: Calculate the normalized values for the DM. The decision matrix n × m as ϒ =
(γ̃ij)n×m is normalized into

︷︸︸︷
ϒ = (γij)n×m; where γij =

〈
(
︷︸︸︷
χij ,
︷︸︸︷
ψij ); [

︷ ︸︸ ︷
log�i

Mij
T ,
︷ ︸︸ ︷
log�i

(Mij
1−F

)],

[
︷ ︸︸ ︷
log�i

MF
ij ,
︷ ︸︸ ︷
log�i

(Mij
1−T

)]
〉

and
︷︸︸︷
χij = �ij

maxi(χij)
,
︷︸︸︷
ψij = ψij

maxi(ψij)
· ψij

χij

,
︷ ︸︸ ︷
log�i

Mij
T = log�i

Mij
T ,︷ ︸︸ ︷

log�i
(Mij

1−F
) = log�i

(Mij
1−F

), where �i =∏[TMi , M1−F
i ], [FMi , M1−T

i ].
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Step-3: By utilizing log q-rung NVN, you can determine the aggregate values for all alternative

based on AOs, attribute γj in γ̃i, γij =
〈
(
︷︸︸︷
χij ,
︷︸︸︷
ψij ); [

︷ ︸︸ ︷
log�i

Mij
T ,
︷ ︸︸ ︷
log�i

(Mij
1−F

)], [
︷ ︸︸ ︷
log�i

MF
ij ,
︷ ︸︸ ︷
log�i

(Mij
1−T

)]
〉

is aggregated into

γi =
〈
(
︷︸︸︷
χi ,
︷︸︸︷
ψi ); [

︷ ︸︸ ︷
log�i

Mi
T ,
︷ ︸︸ ︷
log�i

M1−F
i )], [

︷ ︸︸ ︷
log�i

Mi
F ,
︷ ︸︸ ︷
log�i

M1−T
i )]
〉
.

Step-4: Calculate the positive and negative ideal values for each case as follows:

γ + =
[(

max1�i�n(
︷︸︸︷
χij ), min1�i�n(

︷︸︸︷
ψij )
)

;

[1, 1], [0, 0]

]
and γ − =

[(
min1�i�n(

︷︸︸︷
χij ), max1�i�n(

︷︸︸︷
ψij )
)

;

[0, 0], [1, 1]

]
Step-5: Determine the EDs between the alternatives with a positive and a negative ideal value so

as to determine the value of each alternative as ϒ+
i = ϒE

(
γi, γ +

)
; ϒ−

i = ϒE

(
γi, γ −

)
.

Step-6: It is possible to calculate the relative closeness values by using the following formula:

ϒ ∗
i = ϒ−

i

ϒ+
i + ϒ−

i

.

Step-7: The optimal value is max ϒ ∗
i .

Figure 1: Flowchart of the MADM algorithm

6.2 Selection of Amnesia Patients
A person with anemia has insufficient or malfunctioning red blood cells. A man is diagnosed with

anemia when his hemoglobin value is below 13.5 gm/dl, while a woman is diagnosed with anemia when
her hemoglobin value is below 12.0 gm/dl. There are a variety of normal values for children depending
on their age. Memory strategies are used to help deal with amnesia. Taking care of underlying diseases
that cause amnesia is also important. An occupational therapist may help the person learn new
information and replace what they have lost. Taking in new information may be based on intact
memories. Additionally, memory training can help organize information to make it easier to remember
and to better understand when you are speaking with others. Smartphones and hand held tablets are
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often used by people with amnesia. A simple electronic organizer can help even people who suffer from
severe amnesia stay on top of their daily activities with a little training and practice. A person with
amnesia may benefit from psychological therapy or cognitive behavioral therapy (CBT). When it comes
to recalling forgotten memories, hypnosis can be very effective. It is important to retrieve memories and
deal with psychological issues that may have contributed to amnesia as part of treatment for amnesia.
A person may be able to retrieve forgotten memories through meditation and related mindfulness
activities. It is also imperative to have your family’s support. Playing familiar music, showing them
photographs from the past, and exposing them to familiar scents may be helpful. Blood buildup in
the brain may cause amnesia in people who have been injured in head trauma. Anti-inflammatory
medications may be needed by people with encephalitis. If you cycle, skate, ski, or play contact sports,
you may be at greater risk of developing amnesia due to headgear. It is important to consume a diet rich
in leafy green vegetables and avoid saturated fats to prevent cardiovascular diseases that can negatively
affect memory. Brain regulation is achieved through the Bilateral Sounds method. As well as relieving
stress and symptoms of PCS and PTSD, it is excellent for reeducating the left and right hemispheres.
There are some commonly used bilateral sounds available for this purpose through Psych Innovations,
a web-based company.

1. Retrograde amnesia (A):
A person suffering from retrograde amnesia is incapable of recalling past events. Memory loss
usually affects memories made recently, not ones from years ago. You can experience amnesia if
you lose the ability to make, store, and retrieve memories. Memory formation prior to amnesia
onset is affected by retrograde amnesia. After a traumatic brain injury, a person may develop
retrograde amnesia, which prevents him or her from remembering what happened decades
earlier. A variety of brain regions can be damaged, causing retrograde amnesia to occur.

2. Anterograde amnesia (B):
The type of amnesia that causes this is when you forget anything that has happened since your
amnesia began. Even if you have a state of amnesia, you can still recall information you recall
before the amnesia occurred. Unlike retrograde amnesia, this occurs more frequently. During
an amnesia-inducing event, there is no memory creation after anterograde amnesia occurs. It
is possible to suffer from anterograde amnesia either to the extent of being unable to remember
events only partially or completely. In this case, a person with amnesia has retained long-term
memories from the time before the incident occurred. In anterograde amnesia, new memories
cannot be encoded (or possibly retrieved). As well as different severity levels of anterograde
amnesia, some individuals forget recent events such as meals or phone numbers, while others
forget what they were doing a few seconds ago. Memory is also affected by the difficulty of a
task, with more complex tasks being harder to remember than simpler tasks that do not require
as much mental energy.

3. Transient global amnesia (TGA) (C):
It tends to resolve within 24 h if it is a temporary amnesia. Adults over the age of middle age
and those who are older are more likely to experience it. It is rare for such amnesia to recur
once it has resolved. Someone who is otherwise alert may experience transient global amnesia,
which manifests itself suddenly as confusion. A person with transient global amnesia cannot
create new memories, so the memory of recent events is lost. This condition is not caused by
something more common, such as epilepsy or stroke. Neither you nor how you got here can be
recalled. What’s going on right now may not be clear to you. The answers you have just been
given may not stick in your memory, so you keep repeating the same questions. Similarly, it is
possible to lose track of events from a month ago if you are asked to recall them. People in their
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middle and older years are most likely to suffer from this condition. Transient global amnesia
also leaves you recognizing people you know and remembering who you are. There are always
a few hours of recovery time after an episode of transient global amnesia. Your memory may
begin to return during recovery. It is not dangerous, but transient global amnesia can still be
frightening.

4. Post-traumatic (D):
Amnesia can occur either anterogradely or retrogradely after an injury to the head. Post-
traumatic amnesia is a type of memory loss that occurs immediately after a traumatic brain
injury (TBI). This state is characterized by disorientation and inability to remember past events.
An individual may be incapable of stating their name, location, and time. It is considered that
PTA has been resolved when continuous memory returns. The memory is not able to store new
events during PTA. The memory of some incidents is only recalled by one third of patients with
mild head injuries. There is a “clouding” of consciousness experienced by the patient during
PTA. It has been proposed as an alternative term for PTA since it includes confusion along
with the memory loss typically associated with amnesia.

5. Infantile amnesia (E):
Children often have difficulty recalling early childhood memories, which is referred to as
childhood amnesia. The brains of young children are still developing, so they are incapable
of consolidating memories. The ailment of being unable to recall episodic memories in adults
younger than two to four years of age is known as childhood amnesia. During these years,
the recollection of early childhood memories may also be scarce or fragmented, especially if
they occurred between the ages of 2 and 6. Others believe that early memories are encoded
and stored differently when a cognitive self is developed. The onset of childhood amnesia has
differed between psychologists, but some research shows that children can recall things before
they are two years old. As children grow, their memories may decline. An individual can recall
their first memory at a certain age, according to some definitions. As a general rule, it occurs
at the age of two to four, but this can vary from child to child.

The four factors are

1. Seizures (e1):
The underlying mechanisms of seizures are poorly understood, which leads to retrograde
amnesia. It was determined whether seizures activate neurons that overlap with engrams of
spatial memory and if seizures saturate LTP in engram cells. Retrograde amnesia was caused
by a seizure for spatial memory tasks. Bilateral mesiotemporal lesions in humans can cause
anterograde amnesia, a severely disabling state. An episode of retrograde and/or anterograde
amnesia is characteristic of transient epileptic amnesia (TEA). In the event of a traumatic brain
injury (TBI), posttraumatic amnesia may result in confusion and memory loss. This period can
be characterized by seizures, but they are not common during this period. In general, seizures
are more common after a TBI, during the acute phase immediately after the injury. This stage of
the brain’s development is when significant changes are occurring, and seizure activity is more
likely to occur. Depending on the severity of the injury, seizures can also occur during the PTA
phase. Infantile amnesia is currently not believed to be caused or contributed to by seizures
during the period of infantile amnesia. The consequences of seizures on memory and cognition
can be severe, especially if they occur at critical periods in a person’s life. The consequences of
repeated seizures on the brain include changes in the structure and function of the brain that
can lead to mental impairments in the long run.
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2. Emotional shock or hysteria (e2):
Patients who cannot recall particular past events or those that occur during a particular period
of their lives suffer from one type of memory loss. There appears to be no connection between
retrograde amnesia and any particular brain disorder, past or present. A triggering event
for anterograde amnesia can be emotional shock or hysteria, which prevent the brain from
processing or retaining memories of the event. A ‘wandering womb’ is thought to be responsible
for hysteria, which is a set of symptoms common to women. Medical practitioners no longer
use it as a diagnosis due to its discreditation. There is no connection between hysteria and PTA,
which is caused by physical trauma to the brain. Hysteria and infantile amnesia do not have
any direct connection. The terms refer to different phenomena within the brain, though they
both involve the functioning of the brain. Hysteria is no longer used as a diagnosis because
infantile amnesia is a normal development stage. Discussing mental health and neurological
conditions requires accurate and current terminology.

3. Brain cause (e3):
Memory-storing areas of the brain in several brain regions can be damaged, resulting in
retrograde amnesia. There are numerous different causes of this type of damage, including
trauma, serious illnesses, seizures, strokes, and degenerative brain diseases. Alzheimer’s disease
and frontotemporal dementia are the two conditions that cause anterograde amnesia most
often. When your brain deteriorates and stops functioning, memory loss is extremely common.
An amnesia that lasts for several hours is known as transient global amnesia (TGA). A
temporary disruption of blood flow and oxygen to certain parts of the brain, particularly the
hippocampus, is thought to be the cause of TGA, but its exact cause is unknown. Located deep
within the brain, the hippocampus is a small seahorse-shaped structure that plays a crucial
role in forming new memories as well as retrieving old ones. There are several factors that can
interfere with the flow of blood and oxygen to this area. Post-traumatic amnesia (PTA) can
occur following trauma to the brain (TBI). When the brain is injured, it can disrupt the normal
functioning of the brain cells, known as neurons. Damage to the brain can occur as a result of
a direct impact on the head or from shaking the skull. During the processing of information
within the brain, neurons are responsible for transmitting information, and damage to them
causes the brain to lose function. Some people believe infantile amnesia is caused by the
underdevelopment of the infant brain, which would make consolidation of memory impossible,
or by memory retrieval deficits.

4. High fever (e4):
Memory loss and confusion are common symptoms of a high fever. Symptoms of high fever can
include retrograde amnesia, which is the loss of memory of events that occurred before the fever
began. High fevers, head trauma, strokes, and other medical conditions can cause retrograde
amnesia, which is a condition caused by damage to the brain. As a result of an incident or
injury, anterograde amnesia can occur. Confusion, delirium, and memory problems can all be
caused by high fever. In contrast, there is no association between anterograde amnesia and this
condition. A person experiencing anterograde amnesia is most likely suffering from damage
to the brain regions involved in forming and consolidating new memories. Memory problems
can occur as a result of high fevers, such as those caused by encephalitis or meningitis. TGA
is not known to cause fever, but high fevers are sometimes experienced by people with TGA.
It can take from minutes to weeks or even months to recover from a PTA injury, depending
on the severity. An individual with a TBI may experience a fever during the acute phase. The
body can fight off pathogens and promote healing when it experiences fever due to infection
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or injury. In contrast, a high fever or prolonged fever can cause further damage to the brain
and other complications if it is very high or prolonged. It is important to monitor infants and
young children closely when they have a fever. Medical attention should be sought if the fever
has an underlying cause. Infections caused by viruses or bacteria, teething, and immunizations
all contribute to fever in infants. Medications such as acetaminophen and ibuprofen may be
given to reduce fever, and hydration may be encouraged.

Suppose that five anemia patients as P = {A, B, C, D, E}. Four factors are considered as γ =
{e1, e2, e3, e4} and their weights are 
 = {0.4, 0.3, 0.2, 0.1}. First aid treatments should be selected for
each alternative.

Step 1: Table 1 represents the DM values.

Table 1: DM values

e1 e2 e3 e4

A

⎡⎣ (0.95, 0.75);
[0.75, 0.95],
[0.05, 0.25],

⎤⎦ ⎡⎣ (0.85, 0.8);
[0.7, 0.9],
[0.1, 0.3]

⎤⎦ ⎡⎣ (0.7, 0.65);
[0.65, 0.85],
[0.15, 0.35]

⎤⎦ ⎡⎣ (0.9, 0.8);
[0.9, 0.95],
[0.05, 0.1]

⎤⎦
B

⎡⎣ (0.8, 0.65);
[0.7, 0.85],
[0.15, 0.3],

⎤⎦ ⎡⎣ (0.8, 0.7);
[0.6, 0.7],
[0.3, 0.4],

⎤⎦ ⎡⎣ (0.75, 0.7);
[0.7, 0.8],
[0.2, 0.3],

⎤⎦ ⎡⎣ (0.8, 0.6);
[0.55, 0.6],
[0.4, 0.45]

⎤⎦
C

⎡⎣ (0.7, 0.6);
[0.75, 0.8],
[0.2, 0.25],

⎤⎦ ⎡⎣ (0.9, 0.7);
[0.9, 0.95],
[0.05, 0.1],

⎤⎦ ⎡⎣ (0.8, 0.7);
[0.6, 0.65],
[0.35, 0.4],

⎤⎦ ⎡⎣ (0.8, 0.65);
[0.75, 0.8],
[0.2, 0.25],

⎤⎦
D

⎡⎣ (0.9, 0.85);
[0.65, 0.8],
[0.2, 0.35],

⎤⎦ ⎡⎣ (0.55, 0.5);
[0.65, 0.75],
[0.25, 0.35],

⎤⎦ ⎡⎣ (0.9, 0.85);
[0.75, 0.8],
[0.2, 0.25],

⎤⎦ ⎡⎣ (0.9, 0.75);
[0.85, 0.9],
[0.1, 0.15],

⎤⎦
E

⎡⎣ (0.85, 0.75);
[0.75, 0.9],
[0.1, 0.25],

⎤⎦ ⎡⎣ (0.6, 0.55);
[0.8, 0.85],
[0.15, 0.2],

⎤⎦ ⎡⎣ (0.8, 0.75);
[0.8, 0.9],
[0.1, 0.2],

⎤⎦ ⎡⎣ (0.7, 0.65);
[0.8, 0.85],
[0.15, 0.2],

⎤⎦

Step 2: Obtain normalized decision matrix: Table 2 represents the normalized decision values.

Step 3: For every alternative (q = 1), the aggregated information will be derived using log q-rung
NVWA operators. Table 3 represents the weighted averaging values.

Step 4: Both of the ideal values for all alternative are as follows:

P+ = [(0.9389, 0.6563); [1, 1], [0, 0]
]

and

P− = [(0.8135, 0.8152); [0, 0], [1, 1]
]

.
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Table 2: Normalized decision values

e1 e2 e3 e4

A

⎡⎢⎣ (1, 0.6966);
0.75, 0.95],
[0.05, 0.25],

⎤⎥⎦
⎡⎢⎣ (0.9444, 0.9412);

[0.7, 0.9],
[0.1, 0.3]

⎤⎥⎦
⎡⎢⎣ (0.7778, 0.7101);

[0.65, 0.85],
[0.15, 0.35]

⎤⎥⎦
⎡⎢⎣ (1, 0.8889);

[0.9, 0.95],
[0.05, 0.1]

⎤⎥⎦
B

⎡⎢⎣ (0.8421, 0.6213);
[0.7, 0.85],
[0.15, 0.3],

⎤⎥⎦
⎡⎢⎣ (0.8889, 0.7656);

[0.6, 0.7],
[0.3, 0.4],

⎤⎥⎦
⎡⎢⎣ (0.8333, 0.7686);

[0.7, 0.8],
[0.2, 0.3],

⎤⎥⎦
⎡⎢⎣ (0.8889, 0.5625);

[0.55, 0.6],
[0.4, 0.45]

⎤⎥⎦
C

⎡⎢⎣ (0.7368, 0.605);
[0.75, 0.8],
[0.2, 0.25],

⎤⎥⎦
⎡⎢⎣ (1, 0.6806);

[0.9, 0.95],
[0.05, 0.1],

⎤⎥⎦
⎡⎢⎣ (0.8889, 0.7206);

[0.6, 0.65],
[0.35, 0.4],

⎤⎥⎦
⎡⎢⎣ (0.8889, 0.6602);

[0.75, 0.8],
[0.2, 0.25],

⎤⎥⎦
D

⎡⎢⎣ (0.9474, 0.9444);
[0.65, 0.8],
[0.2, 0.35],

⎤⎥⎦
⎡⎢⎣ (0.6111, 0.5682);

[0.65, 0.75],
[0.25, 0.35],

⎤⎥⎦
⎡⎢⎣ (1, 0.9444);

[0.75, 0.8],
[0.2, 0.25],

⎤⎥⎦
⎡⎢⎣ (1, 0.7813);

[0.85, 0.9],
[0.1, 0.15],

⎤⎥⎦
E

⎡⎢⎣ (0.8947, 0.7785);
[0.75, 0.9],
[0.1, 0.25],

⎤⎥⎦
⎡⎢⎣ (0.6667, 0.6302);

[0.8, 0.85],
[0.15, 0.2],

⎤⎥⎦
⎡⎢⎣ (0.8889, 0.8272);

[0.8, 0.9],
[0.1, 0.2],

⎤⎥⎦
⎡⎢⎣ (0.7778, 0.7545);

[0.8, 0.85],
[0.15, 0.2],

⎤⎥⎦

Table 3: Weighted averaging values

A B C D E⎡⎢⎣ (0.9389, 0.7919);
[0.2737, 0.2520],
[0.2479, 0.2225]

⎤⎥⎦
⎡⎢⎣ (0.8591, 0.6882);

[0.2360, 0.2193],
[0.2647, 0.2582]

⎤⎥⎦
⎡⎢⎣ (0.8614, 0.6563);

[0.2426, 0.2436],
[0.2451, 0.2480]

⎤⎥⎦
⎡⎢⎣ (0.8623, 0.8152);

[0.2892, 0.2773],
[0.2309, 0.2187]

⎤⎥⎦
⎡⎢⎣ (0.8135, 0.7414);

[0.2609, 0.2412],
[0.2537, 0.2440]

⎤⎥⎦

Step 5: The HD between for all alternative with a different ideal value is as follows:

ϒ+
1 = 0.5258, ϒ+

2 = 0.5310, ϒ+
3 = 0.5562, ϒ+

4 = 0.5795, ϒ+
5 = 0.5707,

and

ϒ−
1 = 0.5247, ϒ−

2 = 0.5179, ϒ−
3 = 0.4917, ϒ−

4 = 0.4751, ϒ−
5 = 0.4824.

Step 6: Relative closeness values are

ϒ ∗
1 = 0.4995, ϒ ∗

2 = 0.4937, ϒ ∗
3 = 0.4692, ϒ ∗

4 = 0.4505, ϒ ∗
5 = 0.4581.

Step 7: Ranking of alternatives are

A > B > C > E > D.

Therefore A is a very urgent need for treatment.
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6.3 Comparison of the Suggested Method with Existing Methods
Here, we demonstrate the effectiveness and superiority of new methods by comparing them

with existing methods, using practical examples to analyze the results of the new proposed method.
A Pythagorean neutrosophic interval valued weighted averaging using AOs was constructed by
Yang et al. [26]. The following subsection is devoted to reviewing a few existing models and comparing
them with the suggested models suggested in this section. In this way, it is demonstrated that it is
valuable and advantageous. Based on ED and HD and score values, we calculate the log q-rung
NVWA, log q-rung NVWG, log G q-rung NVWA, and log G q-rung NVWG. A list of the various
distances is provided below: Tables 4 and 5 represent the comparison for the proposed and existing
values.

Table 4: Proposed values

q = 1 log q-rung NVWA log q-rung NVWG log G q-rung NVWA log G q-rung NVWG

ED A > B > C A > C > B A > B > C A > C > B
E > D E > D E > D E > D

HD A > B > C A > C > B A > B > C A > C > B
E > D E > D E > D E > D

Score A > E > D A > E > D A > E > D A > E > D
C > B C > B C > B C > B

Table 5: Existing values

q = 1 IVPNVWA IVPNVWG GIVPNVWA GIVPNVWG

ED [26] A > C > E A > E > C A > C > E A > E > C
D > B D > B D > B D > B

HD [26] A > E > C A > E > C A > E > C A > E > C
D > B D > B D > B D > B

Score [26] A > E > D A > E > D A > E > D A > E > D
C > B C > B C > B C > B

As shown in Fig. 2, proposed and existing models are compared for ED.

As shown in Fig. 3, proposed and existing models are compared for HD.

MADM is compared to competing approaches for its merits. A log q-rung NVWA technique is
used to derive the various values. Use a log q-rung NVWA operator to generate data for alternatives
(q = 2).

Step 1: The aggregated data for each alternative is based on the log q-rung NVWA operators
(q = 2). Table 6 represents log q-rung NVWA (q = 2).
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Figure 2: Different Euclidean distance

Figure 3: Different Hamming distance

Table 6: The values of q = 2

A B C D E⎡⎢⎣ (0.9389, 0.7919);
[0.2815, 0.2735],
[0.2479, 0.2225]

⎤⎥⎦
⎡⎢⎣ (0.8591, 0.6882);

[0.2401, 0.2349],
[0.2647, 0.2582]

⎤⎥⎦
⎡⎢⎣ (0.8614, 0.6563);

[0.2653, 0.2759],
[0.2451, 0.2480]

⎤⎥⎦
⎡⎢⎣ (0.8623, 0.8152);

[0.2954, 0.2823],
[0.2309, 0.2187]

⎤⎥⎦
⎡⎢⎣ (0.8135, 0.7414);

[0.2625, 0.2457],
[0.2537, 0.2440]

⎤⎥⎦

Step 2: In each alternative, the both ideal values are as follows:

P+ = [(0.9389, 0.6563); [1, 1], [0, 0]
]
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and

P− = [(0.8135, 0.8152); [0, 0], [1, 1]
]

.

Step 3: EDs between for all alternative with different ideal values are

ϒ+
1 = 0.5370, ϒ+

2 = 0.5382, ϒ+
3 = 0.5754, ϒ+

4 = 0.5835, ϒ+
5 = 0.5728,

and

ϒ−
1 = 0.5134, ϒ−

2 = 0.5107, ϒ−
3 = 0.4724, ϒ−

4 = 0.4711, ϒ−
5 = 0.4802.

Step 4: Relative closeness values are

ϒ ∗
1 = 0.4888, ϒ ∗

2 = 0.4869, ϒ ∗
3 = 0.4508, ϒ ∗

4 = 0.4467, ϒ ∗
5 = 0.4560.

Step 5: Ranking of alternatives are

A > B > E > C > D.

Step 1: The aggregated data for each alternative is based on the log q-rung NVWA operators
(q = 3).

Table 7 represents log q-rung NVWA (q = 3).

Table 7: The values of q = 3

A B C D E⎡⎢⎣ (0.9389, 0.7919);
[0.2883, 0.2948],
[0.2479, 0.2225]

⎤⎥⎦
⎡⎢⎣ (0.8591, 0.6882);

[0.2449, 0.2514],
[0.2647, 0.2582]

⎤⎥⎦
⎡⎢⎣ (0.8614, 0.6563);

[0.2861, 0.3026],
[0.2451, 0.2480]

⎤⎥⎦
⎡⎢⎣ (0.8623, 0.8152);

[0.3007, 0.2869],
[0.2309, 0.2187]

⎤⎥⎦
⎡⎢⎣ (0.8135, 0.7414);

[0.2644, 0.2508],
[0.2537, 0.2440]

⎤⎥⎦

Step 2: In each alternative, the both ideal values are as follows:

P+ = [(0.9389, 0.6563); [1, 1], [0, 0]
]

and

P− = [(0.8135, 0.8152); [0, 0], [1, 1]
]

.

Step 3: EDs between for all alternative with different ideal values are

ϒ+
1 = 0.5476, ϒ+

2 = 0.5458, ϒ+
3 = 0.5916, ϒ+

4 = 0.5869, ϒ+
5 = 0.5752,

and

ϒ−
1 = 0.5028, ϒ−

2 = 0.5031, ϒ−
3 = 0.4562, ϒ−

4 = 0.4675, ϒ−
5 = 0.4778.

Step 4: Relative closeness values are

ϒ ∗
1 = 0.4787, ϒ ∗

2 = 0.4796, ϒ ∗
3 = 0.4354, ϒ ∗

4 = 0.4434, ϒ ∗
5 = 0.4537.

Step 5: Ranking of alternatives are

B > A > E > D > C.
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Fig. 4 shows that different q values for log q-rung NVWA.

6.4 Critical Analysis
On the basis of the log q-rung NVWA method, the alternative would rank as follows: A > C >

E > D > B. Assuming that q = 2, then the ranking of alternatives would be A > B > E > C > C. In
this case, q = 3, thus the ranking would be B > A > E > D > C. Due to this, the patient is in need of
treatment B rather than A. In a similar way, log q-rung NVWGs, log G q-rung NVWAs, and log G
q-rung NVWGs can be used.

Figure 4: Different q values

6.5 Advantages
According to the study previously presented, the applications have numerous advantages. Our

research presents the concept of VS and combines it with the concept of q-rung FS to develop a log
q-rung VS. The log q-rung NVN analyzes human behaviors and natural events that follow a normal
distribution in the real world. The total of its TMG, IMG and FMG exceeds one, but the square sum of
those three is less than 1, and so on. A decision maker provides a number of options based on which the
proposed log q-rung NVS is used to find the best alternative. As a result, the proposed MADM method
that uses log q-rung NVS is another way to find the most effective DM alternative. The outcome of
the alternatives based on q. Results of all alternatives obtained using log q-rung NVWAs, log q-rung
NVWGs, and log G q-rung NVWAs.

7 Conclusion

This method is effective due to its ability to consider relationships between attributes. As a result,
the proposed method produces more accurate ranking results. Considering the interrelationships
between attributes, the proposed method is more efficient and superior to [26] in solving practical DM
problems. In this article, we examined problems arising within DM domains using log q-rung NVS and
MADM. Based on our discussion of log q-rung NVS, several AO reached a number of conclusions that
were important to their log q-rung NVS. There should be a log q-rung NVWA and log q-rung NVWG,
as well as a log G q-rung NVWA and log G q-rung NVWG. By applying log q-rung NVS based on the
MADM methodology, individuals may be able to determine the appropriate action to take in scenarios
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with unclear and contradictory facts. We apply the operator representations of log q-rung NVWAs,
log q-rung NVWGs, log G q-rung NVWAs and log G q-rung NVWGs to problems based on log q-
rung NVS. We can estimate the different rankings using log q-rung NVWA, log q-rung NVWG, log
G q-rung NVWA, and log G q-rung NVWG. As a final step, we have examined the values of q that
affect alternative ranking most strongly. A decision-maker can select the most appropriate ranking
based on a real-world scenario by adjusting q. Based on the actual values of q, the decision-maker can
select a method. Finally, we compared the proposed models to a number of currently used models in
order to demonstrate their applicability and benefits. In data analysis, HD and ED of neutrosophic
sets are used in a number of practical applications. If further research shows that these operators are
superior to others, such as power mean aggregation operators, Bonferroni mean operators, Heronian
mean operators, etc., we may be able to extend new q-rung complex neutrosophic set to them. The
following topics will be discussed in further detail:

(1) It is shown that expert sets and soft sets can be compared with log q-rung NVSs.

(2) The cubic NVS and spherical NVS are investigated on the basis of log q-rung NVSs.

(3) To solve problems with a generalized Fermatean NVS and a complex NVS.
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Appendix

Proof of the Theorem 4.1

Proof. It is clear that (1) and (2) can be proven. There is only one proof we provide for the last
statement (3). Now,(
ϒE(M1, M2) + ϒE(M2, M3)

)2
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Proof of the Theorem 5.1

Proof. This theorem is proven by using the induction method. If n = 2, then log q-rung NVWA
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Proof of the Theorem 5.2
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Proof of the Theorem 5.3
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MT︸ ︷︷ ︸)q
)
i + q

√
1 − ©n

i=1

(
1 − (log�i

(M1−F)︸ ︷︷ ︸)q
)
i

� q

√
1 − ©n

i=1

(
1 − (log�i

Mij
T
)q
)
i + q

√
1 − ©n

i=1

(
1 − (log�i

(Mij
1−F

))q
)
i

� q

√
1 − ©n

i=1

(
1 − (

︷ ︸︸ ︷
log�i

MT)q
)
i + q

√
1 − ©n

i=1

(
1 − (

︷ ︸︸ ︷
log�i

(M1−F))q
)
i

=
︷ ︸︸ ︷
log�i

MT +
︷ ︸︸ ︷
log�i

(M1−F) .

Since, log�i
MF︸ ︷︷ ︸ = min log�i

MF
ij ,
︷ ︸︸ ︷
log�i

MF = max log�i
MF

ij log�i
(M1−T)︸ ︷︷ ︸ = min log�i

(Mij
1−T

),︷ ︸︸ ︷
log�i

(M1−T) = max log�i
(Mij

1−T
) and log�i

MF︸ ︷︷ ︸ � log�i
MF

ij �
︷ ︸︸ ︷
log�i

MF and log�i
(M1−T)︸ ︷︷ ︸ �

log�i
(Mij

1−T
) �
︷ ︸︸ ︷
log�i

(M1−T). Now,

log�i
MF︸ ︷︷ ︸+ log�i

(M1−T)︸ ︷︷ ︸ = ©n
i=1(log�i

MF︸ ︷︷ ︸)
i + ©n
i=1(log�i

(M1−T)︸ ︷︷ ︸)
i

� ©n
i=1(log�i

MF
ij )


i + ©n
i=1(log�i

(Mij
1−T

))
i

� ©n
i=1(
︷ ︸︸ ︷
log�i

MF)
i + ©n
i=1(
︷ ︸︸ ︷
log�i

(M1−T))
i

=
︷ ︸︸ ︷
log�i

MF +
︷ ︸︸ ︷
log�i

(M1−T) .

Since, χ︸︷︷︸ = min χij,
︷︸︸︷
χ = max χij, ψ︸︷︷︸ = max ψij,

︷︸︸︷
ψ = min ψij and χ︸︷︷︸ � χij � ︷︸︸︷χ

and
︷︸︸︷
ψ � ψij � ψ︸︷︷︸. Hence, 
n

i=1
i χ︸︷︷︸ � 
n
i=1
iχij � 
n

i=1
i

︷︸︸︷
χ and 
n

i=1
i

︷︸︸︷
ψ � 
n

i=1
iψij �
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n
i=1
i ψ︸︷︷︸. Therefore,


n
i=1
i χ︸︷︷︸

2
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎝ q

√√√√√√1 − ©n
i=1

(
1 − (log�i

MT︸ ︷︷ ︸)q
)
i

⎞⎟⎟⎠
2

+

⎛⎜⎜⎝ q

√√√√√√1 − ©n
i=1

(
1 − (log�i

(M1−F)︸ ︷︷ ︸)q
)
i

⎞⎟⎟⎠
2

2

+1 −

⎛⎜⎜⎜⎝©n
i=1

⎛⎜⎜⎝
︷ ︸︸ ︷
log�i

MF

⎞⎟⎟⎠

i
⎞⎟⎟⎟⎠

2

+

⎛⎜⎜⎜⎝©n
i=1

⎛⎜⎜⎝
︷ ︸︸ ︷
log�i

(M1−T)

⎞⎟⎟⎠

i
⎞⎟⎟⎟⎠

2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

� 
n
i=1
iχij

2
×

⎡⎢⎢⎢⎣
⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (log�i

Mij
T
)q
)
i

⎞⎟⎠
2

+
⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (log�i

(Mij
1−F

))q
)
i

⎞⎟⎠
2

2

+1 −
(
©n

i=1(log�i MF
ij )
i

)2+(©n
i=1(log�i (Mij

1−T ))
i)
2

2

⎤⎥⎥⎥⎦

� 
n
i=1
i

︷︸︸︷
χ

2
×

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (

︷ ︸︸ ︷
log�i

MT)q
)
i

⎞⎟⎠
2

+
⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (

︷ ︸︸ ︷
log�i

(M1−F))q
)
i

⎞⎟⎠
2

2

+1 −

⎛⎜⎝©n
i=1(log�i

MF︸ ︷︷ ︸)
i

⎞⎟⎠
2

+
⎛⎜⎝©n

i=1(log�i
(M1−T)︸ ︷︷ ︸)
i

⎞⎟⎠
2

2

⎤⎥⎥⎥⎥⎥⎦ .

Hence,
〈
( χ︸︷︷︸, ψ︸︷︷︸); [log MT︸ ︷︷ ︸, log (M1−F)︸ ︷︷ ︸], [

︷ ︸︸ ︷
log MF ,

︷ ︸︸ ︷
log (M1−T)]

〉
� < italic > q < /italic > −rungNVWA(M1, M2, ..., Mn)

�
〈
(
︷︸︸︷
χ ,
︷︸︸︷
ψ ); [

︷ ︸︸ ︷
log MT ,

︷ ︸︸ ︷
log (M1−F)], [log MF︸ ︷︷ ︸, log (M1−T)︸ ︷︷ ︸]〉.

Proof of the Theorem 5.4

Proof. For any i, χtij � ψhij . Therefore, 
n
i=1χtij � 
n

i=1ψhij . For any i,
(

log�i
MT

tij

)2

+(
log�i

M1−F
tij

)2

�
(

log�i
MT

hij

)2

+
(

log�i
M1−F

hij

)2

. Therefore, 1 −
(

log�i
MT

ti

)2

+ 1 −
(

log�i
M1−F

ti

)2

	

1−
(

log�i
MT

hi

)2

+1−
(

log�i
M1−F

hi

)2

. Hence, ©n
i=1

(
1 −
(

log�i
MT

ti

)2
)
i

+ ©n
i=1

(
1 −
(

log�i
M1−F

ti

)2
)
i

	

©n
i=1

(
1 −
(

log�i
MT

hi

)2
)
i

+ ©n
i=1

(
1 −
(

log�i
M1−F

hi

)2
)
i

and q

√
1 − ©n

i=1

(
1 −
(

log�i
MT

ti

)q)
i +
q

√
1 − ©n

i=1

(
1 −
(

log�i
M1−F

ti

)q)
i � q
√

1 − ©n
i=1

(
1 − (log�i

MT
hi

)q)
i + q
√

1 − ©n
i=1

(
1 − (log�i

M1−F
hi

)q)
i .

For any i,
(

log�i
MF

tij

)2

+
(

log�i
M1−T

tij

)2

	
(

log�i
MF

hij

)2

+
(

log�i
M1−T

hij

)2

. Therefore,
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1 −
(
©n

i=1 log�i
MF

tij

)2

+
(
©n

i=1 log�i
M1−T

tij

)2

2
� 1 −

(
©n

i=1 log�i
MF

hij

)2

+
(
©n

i=1 log�i
M1−T

hij

)2

2
.


n
i=1χtij

2
×

⎡⎢⎢⎢⎢⎣
⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (log�i

MT
ti )

q
)
i

⎞⎟⎠
2

+
⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (log�i

M1−F
ti )q
)
i

⎞⎟⎠
2

2

+1 −
(©n

i=1 log�i
MF

tij

)2 + (©n
i=1 log�i

M1−T
tij

)2
2

⎤⎥⎥⎥⎥⎦

� 
n
i=1χhij

2
×

⎡⎢⎢⎢⎢⎣
⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (log�i

MT
hi)

q
)
i

⎞⎟⎠
2

+
⎛⎜⎝ q

√√√√√1 − ©n
i=1

(
1 − (log�i

(M1−F
hi ))q

)
i
⎞⎟⎠

2

2

+1 −
(©n

i=1(log�i
MF

hij)
)2 + (©n

i=1(log�i
(M1−T

hij ))
)2

2

⎤⎥⎥⎥⎥⎦ .

Hence, log q-rung NVWA (M1, M2, . . . , Mn) � log q-rungNVWA (W1, W2, . . . , Wn).

Proof of the Theorem 5.7

Proof. We prove that, 
n
i=1
iM	

i =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((

n

i=1 
iχ
	

i

)
,
(


n
i=1 
iψ

	

i

))
;[

q

√
1 − ©n

i=1

(
1 −
(
(log�i

Mi
T
)q
)q
)
i

, q

√
1 − ©n

i=1

(
1 −
(
(log�i

M1−F
i ))q

)q
)
i
]

,

[
©n

i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i

, ©n
i=1

(
q

√
1 −
(

1 − (log�i
M1−T

i ))q

)q
)
i
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Based on the
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inductive approach, the proof can be made. If n = 2, then 
1M1

⊕

2M2 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(

1χ

	

1 + 
2χ
	

2 , 
1ψ
	

1 + 
2ψ
	

2

)
;⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q

√√√√√√√√√√
(

q

√
1 −
(

1 −
(
(log�i

MT
1 )q
)q
)
1
)q

+
(

q

√
1 −
(

1 −
(
(log�i

MT
2 )q
)q
)
1
)q

,

−
(

q

√
1 −
(

1 −
(
(log�i

MT
1 )q
)q
)
1
)q

·
(

q

√
1 −
(

1 −
(
(log�i

MT
2 )q
)q
)
1
)q

q

√√√√√√√√√√
(

q

√
1 −
(

1 −
(
(log�i

(M1−F
1 ))q

)q
)
1
)q

+
(

q

√
1 −
(

1 −
(
(log�i

(M1−F
2 ))q

)q
)
1
)q

−
(

q

√
1 −
(

1 −
(
(log�i

(M1−F
1 ))q

)q
)
1
)q

·
(

q

√
1 −
(

1 −
(
(log�i

(M1−F
2 ))q

)q
)
1
)q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎣
(

q

√
1 −
(

1 − (log�i
MF

1 )q

)q
)
1

·
(

q

√
1 −
(

1 − (log�i
MF

2 )q

)q
)
1

,(
q

√
1 −
(

1 − (log�i
(M1

1−T
))q

)q
)
1

·
(

q

√
1 −
(

1 − (log�i
(M2

1−T
))q

)q
)
1

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(

2

i=1 
iχ
	

i , 
2
i=1
iψ

	

i

)
;[

q

√
1 − ©2

i=1

(
1 −
(
(log�i

MT
1 )q

)q
)
i

, q

√
1 − ©2

i=1

(
1 −
(
(log�i

(M1−F
1 ))q

)q
)
i
]

,

[
©2

i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i

, ©2
i=1

(
q

√
1 −
(

1 − (log�i
M1−T

i ))q

)q
)
i
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It valid for n = l and l 	 3. Thus, 
l
i=1
iM	

i

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(

l

i=1 
iχ
	

i , 
l
i=1
iψ

	

i

)
;[

q

√
1 − ©l

i=1

(
1 −
(
(log�i

MT
1 )q

)q
)
i

, q

√
1 − ©l

i=1

(
1 −
(
(log�i

(M1−F
1 ))q

)q
)
i
]

,

[
©l

i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i

, ©l
i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If n = l + 1, then 
l
i=1
iM	

i + 
l+1M	

l+1 = 
l+1
i=1
iM	

i .
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Now, 
l
i=1
iM	

i + 
l+1M	

l+1 = 
1M	

1

⊕

2M	

2

⊕
...
⊕

wlM	

l

⊕

l+1M	

l+1 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(

l

i=1 
iχ
	

i + 
l+1�
	

l+1, 
l
i=1
iψ

	

i + 
l+1ψ
	

l+1

)
;⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q

√√√√√√√√√√
(

q

√
1 − ©l

i=1

(
1 −
(
(log�i

Mi
T
)q
)q
)
i
)q

+
(

q

√
1 −
(

1 −
(
(log�i

Ml+1
T
)q
)q
)
1
)q

,

−
(

q

√
1 − ©l

i=1

(
1 −
(
(log�i

Mi
T
)q
)q
)
i
)q

·
(

q

√
1 −
(

1 −
(
(log�i

Ml+1
T
)q
)q
)
1
)q

q

√√√√√√√√√√
(

q

√
1 − ©l

i=1

(
1 −
(
(log�i

M1−F
i ))q

)q
)
i
)q

+
(

q

√
1 −
(

1 −
(
(log�i

(Ml+1
1−F

))q
)q
)
1
)q

−
(

q

√
1 − ©l

i=1

(
1 −
(
(log�i

M1−F
i ))q

)q
)
i
)q

·
(

q

√
1 −
(

1 −
(
(log�i

(Ml+1
1−F

))q
)q
)
1
)q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎣
©l

i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i

·
(

q

√
1 −
(

1 − (log�i
MF

l+1)
q

)q
)
1

,

©l
i=1

(
q

√
1 −
(

1 − (log�i
M1−T

i ))q

)q
)
i

·
(

q

√
1 −
(

1 − (log�i
(Ml+1

1−T
))q

)q
)
1

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus,


l+1
i=1 
iM	

i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(

l+1

i=1 
iχ
	

i , 
l+1
i=1
iψ

	

i

)
;[

q

√
1 − ©l+1

i=1

(
1 −
(
(log�i

MT
1 )q

)q
)
i

, q

√
1 − ©l+1

i=1

(
1 −
(
(log�i

(M1−F
1 ))q

)q
)
i
]

,[
©l+1

i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i

, ©l+1
i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i
]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence,
(
l+1

i=1
iM	

i

)1/	⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((

l+1

i=1 
iχ
	

i

)1/	

,
(


l+1
i=1 
iψ

	

i

)1/	
)

;[(
q

√
1 − ©l+1

i=1

(
1 −
(
(log�i

Mi
T
)q
)q
)
i )1/q

,
(

q

√
1 − ©l+1

i=1

(
1 −
(
(log�i

M1−F
i ))q

)q
)
i )1/q

]
,⎡⎢⎢⎢⎢⎣

q

√
1 −
(

1 −
(

©l+1
i=1

(
q

√
1 −
(

1 − (log�i
Mi

F
)q

)q
)
i )2)1/q

,

q

√
1 −
(

1 −
(

©l+1
i=1

(
q

√
1 −
(

1 − (log�i
M1−T

i ))q

)q
)
i )2)1/q

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A log G q-rung NVWA operator is modified into a log G q-rung NVWA operator when q = 1 is
specified.
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