
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.043589

ARTICLE

Blockchain-Based Certificateless Bidirectional Authenticated Searchable
Encryption Scheme in Cloud Email System

Yanzhong Sun1, Xiaoni Du1,*, Shufen Niu2 and Xiaodong Yang2

1College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, China
2College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, China

*Corresponding Author: Xiaoni Du. Email: ymldxn@126.com

Received: 06 July 2023 Accepted: 23 October 2023 Published: 11 March 2024

ABSTRACT

Traditional email systems can only achieve one-way communication, which means only the receiver is allowed
to search for emails on the email server. In this paper, we propose a blockchain-based certificateless bidirectional
authenticated searchable encryption model for a cloud email system named certificateless authenticated bidirec-
tional searchable encryption (CL-BSE) by combining the storage function of cloud server with the communication
function of email server. In the new model, not only can the data receiver search for the relevant content by
generating its own trapdoor, but the data owner also can retrieve the content in the same way. Meanwhile, there
are dual authentication functions in our model. First, during encryption, the data owner uses the private key
to authenticate their identity, ensuring that only legal owner can generate the keyword ciphertext. Second, the
blockchain verifies the data owner’s identity by the received ciphertext, allowing only authorized members to
store their data in the server and avoiding unnecessary storage space consumption. We obtain a formal definition
of CL-BSE and formulate a specific scheme from the new system model. Then the security of the scheme is
analyzed based on the formalized security model. The results demonstrate that the scheme achieves multi-
keyword ciphertext indistinguishability and multi-keyword trapdoor privacy against any adversary simultaneously.
In addition, performance evaluation shows that the new scheme has higher computational and communication
efficiency by comparing it with some existing ones.

KEYWORDS
Cloud email system; authenticated searchable encryption; blockchain-based; designated server test; multi-trapdoor
privacy; multi-ciphertext indistinguishability

1 Introduction

Email systems have become an essential component of modern communication tools and revolu-
tionized the way we conduct business, education, and personal communication, facilitating effective
and efficient communication. However, the widespread usage of email has raised significant concerns
regarding email security. Searchable encryption [1], as a promising security solution, has been success-
fully applied in many fields, including email systems. It can not only provide users with convenient
search and data management methods while preserving data privacy and security but also enrich

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.043589
https://www.techscience.com/doi/10.32604/cmes.2023.043589
mailto:ymldxn@126.com

3288 CMES, 2024, vol.139, no.3

the overall user experience while safeguarding email confidentiality. That is, searchable encryption
technology has become an indispensable security protection measure within email systems.

Public key Encryption with Keyword Search (PEKS) is a form of searchable encryption within the
asymmetric category proposed by Boneh et al. [2] which optimises the security and privacy of email
and improves users’ experience and the system performance. Since then, several PEKS schemes with
varying functionality have been proposed including secure channel-free PEKS [3] and certificateless
PEKS [4,5]. Although these schemes offer numerous keyword search methods suitable for encrypted
email systems, there are still some security issues to be concerned with, specifically the Keyword
Guessing Attack (KGA) [6]. In fact, the limited keyword space and low entropy render most PEKS
schemes vulnerable to both online and offline KGA.

To defend against KGA, Huang et al. [7] introduced the Public Key Authenticated Encryption
with Keyword Search (PAEKS) as a new variant of PEKS in 2017 and proved that the proposed
PAEKS scheme achieved Ciphertext Indistinguishability (CI)-secure and Trapdoor Privacy (TP)-
secure. Considering against chosen multi-keyword attacks and multi-keyword guessing attacks, Qin
et al. [8] presented a new security model as Multi-Ciphertext Indistinguishability (MCI) in 2020 and
Pan et al. formalized Multi-Trapdoor Privacy (MTP) in [9], which are the enhancement of CI-secure
and TP-secure, respectively.

It is obvious that all PEKS/PAEKS systems cannot avoid the inherent burden of certificate
management and key escrow issues due to their reliance on public key infrastructure cryptosystem
or identity-based cryptosystem. A common approach to overcome these problems is to incorporate
the PEKS/PAEKS system in certificateless public key cryptography (CL-PKC) [10]. As a result,
Peng et al. [5] proposed the first certificateless PEKS scheme and He et al. [11] developed the first
certificateless PAEKS scheme. However, the CL-PKC scheme still suffers from two types of attackers.
The distributed nature of blockchain makes it impossible to tamper the data stored on the chain,
which solves the trust problem and guarantees data security. Therefore, in CL-PKC, in order to avoid
forgery attacks launched by attackers using public parameters, part of the user’s private key is created
by a blockchain smart contract [12].

All of the above improvements to PEKS/PAEKS including the enhancement of security and the
introduction of certificateless cryptosystem have significantly optimized their application for protect-
ing the data security and privacy, enhancing user experience and improving system performance.
Moreover, Zhang et al. [13] highlighted a crucial aspect of encrypted email systems: users must not
only search for encrypted emails received from others but also retrieve encrypted emails sent to others,
and they developed a new cryptographic approach named Public-key Encryption with Bidirectional
Keyword Search (PEBKS). Inspired by the above ideas, it is imperative to develop a certificateless
authenticated bidirectional searchable encryption scheme with a designated server test that can achieve
both MCI and MTP security.

1.1 Our Contributions
The following is a list of the main contributions of this paper:

• Considering the actual application scenario of cloud email system that the data owner also needs
to retrieve emails with target keywords. We apply the bidirectional searchable functionality to
CL-PAEKS cryptosystem by introducing a trapdoor generation algorithm for the data owner,
put forward a cryptographic concept named CL-BSE. This allows the data owner not only to
encrypt and send an email to the cloud email server, but also to generate its own trapdoor for
specified keyword and retrieve the corresponding email.

CMES, 2024, vol.139, no.3 3289

• On the one side, the scheme in this paper achieves bidirectional searchable functionality, on
the other side, it establishes dual authentication functions. In the process of generating the
ciphertext with the keyword, the data owner not only uses the public key of the data receiver,
but also uses his own private key. Similarly, the data receiver uses both his own private key and
the public key of the data owner to generate the corresponding trapdoor, which authenticates
the identity of the data owner. Meanwhile, the blockchain can also verify the legitimacy of
the ciphertexts, which effectively saves the storage space. Furthermore, the scheme satisfies
designated server test which makes secure channel free.

• We formalize the definition of the new cryptographic concept CL-BSE, then give a concrete
construction of the scheme under the bilinear pairing. Meanwhile, we formally define the
security model of CL-BSE scheme and show that in the random oracle model, it is able to
achieve both MCI and MTP security levels against inside KGA under the CBDH hardness
assumption. Through the experimental comparison, our scheme has more advantages and
higher efficiency in computation and communication costs.

1.2 Organization
The rest of this paper is arranged as follows. The next section presents some basic symbols and

notations, including bilinear pairing and hardness assumption. Section 3 illustrates the framework of
our scheme including the system model in 3.1, the formalized definition in 3.2 and the formalized
security model in 3.3. Section 4 is the concrete construction of our CL-BSE scheme and Section 5
guarantees the security of the new scheme. In Section 6, we analyze the performance by comparing it
with existing works. Eventually, we draw a conclusion of the paper in Section 7.

1.3 Related Works
Boneh et al. [2] presented the first PEKS scheme in 2014, which effectively solved the distribution

and management of the secret-key in the symmetric searchable encryption (SSE) cryptosystem [14–16].
However, Baek et al. [3] pointed out that the trapdoor transmission channel must be secure in [2], and
then proposed a secure channel free PEKS (SCF-PEKS) scheme by giving the server a public/private
key pair so that only the designated server could execute the test algorithm. Rhee et al. in [17] improved
the trapdoor security of [3] and then constructed a new SCF-PEKS scheme called dPEKS under the
new security model. Nevertheless, Byun et al. [6] claimed that both PEKS and SCF-PEKS schemes
were vulnerable to (offline) KGA and a variety of improved PEKS and SCF-PEKS schemes [18–20]
were proposed to overcome the series security threats in the years including [17]. Unfortunately, it
turns out that none of them can really resist the offline KGA [21]. What’s worse is that Yau et al. [22]
pointed out that these existing PEKS schemes suffered from another generic attack called online KGA
or inside KGA in 2013.

In order to defend against both online KGA and offline KGA, Huang et al. [7] introduced a
new primitive of PAEKS and proposed the first PAEKS scheme in 2017. The essence of PAEKS is
to insert the data owner’s public/private key pair into PEKS so that it can authenticate the keyword
while encrypting it. Meanwhile, they defined the security as TP and CI for trapdoor and ciphertext,
respectively. After that, Noroozi et al. [23] pointed out some weaknesses of the previous security in
terms of multi-user settings. In 2020, Qin et al. [8] found that the CI & TP security in [7] does not
protect the information whether two different files extract identical keywords or the same file contains
how many identical keywords so they improved the security model as MCI, and they proposed a
PAEKS scheme satisfying MCI instead of MTP. In 2021, Pan et al. claimed that their new scheme
in [9] achieved both MCI and MTP secure until Cheng et al. [24] presented an effective attack method

3290 CMES, 2024, vol.139, no.3

on MTP. In addition to the security efforts, contributions to the functionality of PEKS/PAEKS have
also been made. Fuhr et al. [25] and Hofheinz et al. [26] inserted the ciphertext decryptable function
on PEKS schemes in different types of models. Zhang et al. [13] observed that in practical application,
a data owner also needed to retrieve encrypted files containing specified keywords, then proposed
a cryptographic system Public-key Encryption with Bidirectional Keyword Search (PEBKS) and
constructed a concrete scheme.

All of the above schemes, including PEKS, PAEKS and PEBKS are identity-based cryptosystem
with key escrow and certificate management issues. Peng et al. [5] constructed the first PEKS under
CL-PKC named CLPEKS. In 2018, Ma et al. [4] proposed an improved CLPEKS scheme and it was
improved again in the literature [27], which was been pointed out cannot achieve both MCI and MTP
secure and was subsequently improved by Yang et al. [28]. But, the cryptanalysis in [29] demonstrates
that these CLPEKS frameworks also suffer from the security vulnerability caused by the keyword
guessing attack and in order to remedy these security weakness and provide resistance against both
inside and outside keyword guessing attacks, they propose a new CLEKS scheme by embedding
the owner’s private key into the calculation of keyword ciphertexts, which actually is CL-PAEKS.
Later, combining [4], He et al. [11] proposed a CL-PAEKS scheme, and Shiraly et al. [30] constructed
a pairing-free CL-PAEKS. However, their security and functionality still need to be improved and
promoted.

2 Preliminaries
2.1 Notations

The symbols and notations used in this paper are presented in the Table 1.

Table 1: The symbols and notations

Notation Definition

1k System security parameter
G1,G2 Two cyclic groups
q A large prime number
P1, P2, Q Three distinct generators of G1

Hi(1 ≤ i ≤ 6) Cryptographic hash functions
(PKDO, SKDO) Public/private key pair of DO
(PKDR, SKDR) Public/private key pair of DR
(PKCS, SKCS) Public/private key pair of CS
s ← S Sample s from S uniformly at random
ê : G1 × G1 → G2 A bilinear pairing
negl(·) A negligible function

2.2 Bilinear Pairing
Bilinear pairing [31] is an important tool in the construction of many pairing based cryptographic

schemes, including our CL-BSE scheme, and we usually construct it using the Weil pairing and the
Tate pairing [31–33].

CMES, 2024, vol.139, no.3 3291

Definition 2.1 (Bilinear Pairing). Let G1 be an additive cyclic group of large prime order q and G2

a multiplicative cyclic group of the same order. A bilinear pairing ê : G1 ×G1 → G2 is a mapping which
satisfies the following properties:

Bilinearity: For any P, Q ∈ G1 and any a, b ∈ Z
∗
q, ê(aP, bQ) = ê(P, Q)ab;

Non-Degeneracy: There exists a P ∈ G1 such that ê(P, P) �= 1G2
, (where 1G2

denotes the identity
in G2). Observe that since G1 and G2 are groups of prime order, so for any generator P ∈ G1, this
statement implies that ê(P, P) ∈ G2 is a generator of G2;

Computability: For any P, Q ∈ G1, there is an efficient algorithm to compute ê(P, Q).

2.3 Hardness Assumption
Definition 2.2 (The CBDH Assumption [31]). The Computational Bilinear Diffie-Hellman

(CBDH) problem states that given (P, aP, bP, cP) ∈ G
4
1, a bilinear pairing ê : G1 × G1 → G2, to

compute ê(P, P)abc. The CBDH assumption says that, for any PPT algorithm B, it is hard to compute
ê(P, P)abc, given a random instance of the CBDH problem (P, aP, bP, cP) ∈ G

4
1. That is,

AdvCBDH
B (1k) := Pr[Z = ê(P, P)abc|Z ← B(P, aP, bP, cP)] ≤ negl(1k), (1)

where the probability is taken over the random choices of P ∈ G1, a, b, c ∈ Z
∗
q and the random coins

tossed by B.

3 The Framework

There are three principal works in this section. First, we illustrate the system model of our protocol
in this paper based on [13], and then formalise the definition of our CL-BSE scheme. Finally, we define
the security model based on [8,9].

3.1 System Model
As shown in Fig. 1, the system model of our protocol includes the following five parties: cloud

email server (CS), smart contract-based key generation center (SC-KGC), blockchain (BC), data
owner (DO) and data receiver (DR). They are interacting as follows:

• SC-KGC: Deployed on the blockchain, the smart contract key generation center is a combina-
tion of a smart contract and a conventional key generation center. It is responsible for producing
and storing the public parameters on the blockchain, generating and distributing partial private
keys and the master key to the corresponding parties.

• Blockchain: To avoid the system public parameters being tampered with, blockchain stores and
then transmits them to all clients. The blockchain is also responsible for verifying the validity
of the ciphertext, and then transferring the verified ciphertext to the cloud server.

• Cloud Email Server: The cloud email server plays an “honest but curious” role in the system
model, i.e., it stores the real data, retrieves keyword sets by rules and returns the corresponding
results correctly. Meanwhile, it may launch keyword guessing attacks on a set of received search
tokens. Furthermore, it also performs the test algorithm and then sends the search results to
the data receiver.

• Data Owner: The data owner is a client who wants to store the encrypted data files with keyword
indexes in the email server while sending it to the data receiver through the cloud email server,
so that he/she can retrieve it by generating a trapdoor using his/her own private key.

3292 CMES, 2024, vol.139, no.3

• Data Receiver: The data receiver is one who receives emails from the cloud email server by
sending a trapdoor for the keywords he/she interested in using his/her own private key.

V
erified

C
iphertext

Public
Param

eter

Blockchain

Serach From Data Receiver

Serach From Data Owner

Serach From Data Receiver

Data Owner

w1 Email 1

w2 Email 2

... Data Receiver

w1 Email 1

w2 Email 2

...

SC-KGC

Data Owner

Cloud Email Server

Encrypted
Email

Trapdoor-DO

Results

Serach From Data Owner

Results

Trapdoor-DO

Encrypted
Email

Results

Trapdoor-DR

Results

Trapdoor-DR

Devices
Group

Devices
Group

vices
oup

Data Receiver

Public
Param

eter

Public
Parameter

Public
Parameter

Identity Identity

Partial Private Key Partial Private Key

Figure 1: System model

3.2 The Definition of CL-BSE
We have formalized the architecture of our certificateless bidirectional authenticated searchable

encryption (CL-BSE) scheme for the cloud email system.

Definition 3.1. The CL-BSE scheme consists essentially of nine PPT algorithms: Setup, Extract-
PPK, Set-secret-value, Set-private-key, Set-public-key, CL-BSE, Trapdoor-DR, Trapdoor-DO and
Test. They are described below:

• Setup (1k): This algorithm is executed by SC-KGC. Given a security parameter 1k, the algorithm
generates the global public parameters Params and the master key Pmas.

• Extract-PPK (Params): This algorithm is also performed by SC-KGC. It takes as input
the global public parameters Params, the master key Pmas and the client identity IDU(U ∈
{CS, DO, DR}), generates and outputs each client’s partial private key PPKU .

• Set-secret-value (Params, IDU): This algorithm is run by each client. Input Params and the client
identity IDU(U ∈{CS, DO, DR}), it generates the secret value SVU for each participant.

• Set-private-key (Params, SVU , PPKU): Each client runs this algorithm on its own. Entering
Params, secret value SVU and partial private key PPKU , it outputs the private key SKU for
each client.

CMES, 2024, vol.139, no.3 3293

• Set-public-key (Params, SVU): This algorithm is executed by each client. It takes as input Params
and the secret value SVU , and outputs the public key PKU for itself.

• CL-BSE (PKDR, PKCS, SKDO, w): This is the keyword ciphertext generation algorithm and is
performed by the data owner. It takes as input PKDR, PKCS, SKDO and keyword w with respect
to the encrypted files, outputs a ciphertext Cw.

• Trapdoor-DR (PKDO, PKCS, SKDR, w′): This algorithm generates trapdoor for data receiver.
When searching the encrypted files containing the keyword w′ from the cloud email server, it
takes as input PKDO, PKCS, SKDR and the keyword w′, and outputs TDR.

• Trapdoor-DO (PKDR, PKCS, SKDO, w′): This algorithm generates trapdoor for data owner. When
the client wants to retrieve the encrypted files containing the keyword w′ from the cloud email
server, it takes as input PKDR, PKCS, SKDO and the keyword w′, outputs TDO.

• Test (Cw, SKCS, Tw′ = TDO(TDR)): The test algorithm is executed by the cloud email server. It
takes Cw and Tw′ as input and returns “1” if w = w′ and “0” otherwise.

Correctness. The correctness of our CL-BSE scheme is defined as follows. For any legally
registered clients IDU(U ∈ {DO, DR, CS}) with public/private key pairs (PKU , SKU). Let Cw ←
CL − BSE(PKDR, PKCS, SKDO, w) be the ciphertext of w, TDO ← Trapdoor − DO(PKDR, PKCS, SKDO, w′)
and TDR ← Trapdoor − DR(PKDO, PKCS, SKDR, w′) be the trapdoors of w′ generated by DO and DR,
respectively. Correctness implies

Pr[Test(Params, TDO(w′), Cw) = 1] = Pr[Test(Params, TDR(w′), Cw) = 1] = 1. (2)

3.3 Security Model
As with other certificateless cryptosystems [5,10,28,34,35], the CL-BSE scheme considers two

types of adversary with different privileges: Type-I adversary A1 and Type-II adversary A2. Specif-
ically,

• Type-I adversary A1. It plays the part of the malicious user who is available to perform queries
including extract partial private key, request public key, extract secret value and replace public
key, but does not have access to the master private key Pmas.

• Type-II adversary A2. It models an honest-but-curious SC-KGC that has access to the master
private key Pmas, but not allowed to replace public key query.

Now, the above queries are listed as follows, which are actually interactions between an adversary
A1(A2) and a challenger C .

– Extract-PPK query. When A1(A2) queries partial private key for identity IDi, C executes
Extract-PPK algorithm and returns partial private key PPKi.

– Extract-secret-value query. When A1(A2) queries secret value for identity IDi, C executes Set-
secret-value algorithm and returns a secret value SVi.

– Request-public-key query. When A1(A2) queries public key for identity IDi, C executes Set-
public-key algorithm and returns public key PKi.

– Replace-public-key query. A1 is permitted to ask C to replace the public PKi with a new one
PK ′

i for any user IDi.

– Ciphertext query. When A1(A2) queries the ciphertext of the keyword w, the challenger C
returns the matching ciphertext Cw.

3294 CMES, 2024, vol.139, no.3

– Data receiver trapdoor query. When A1(A2) queries the data receiver trapdoor of keyword w′,
C returns the matching trapdoor TDR = Tw′ .

– Data owner trapdoor query. When A1(A2) queries the data owner trapdoor of keyword w′, C
returns the matching trapdoor TDO = Tw′ .

In order to capture chosen multi-keyword attacks and multi-keyword guessing attacks, the security
model of our CL-BSE scheme are defined as MCI [8] and MTP [9], which are the enhancement of CI-
secure and TP-secure [7], respectively. Their formal definitions are described by the following games,
which are interactions between an challenger C and an adversary A1 or A2.

Game 1: The MCI Security against Adversary A1.

• Setup. Given security parameter 1k, C generates public parameter Params and system master
key Pmas by running Setup algorithm. It then responds only to A1 Params and keeps master key
Pmas secret.

• Phase 1. A1 can adaptively perform a series of polynomial times queries, including Extract-
PPK query, Extract-secret-value query, Request-public-key query, Replace-public-key query,
Ciphertext query, Data receiver trapdoor query and Data owner trapdoor query.

• Challenge. After A1 finishes the queries in Phase 1, it selects two challenge keyword sets w∗
0 =

{w0,1, w0,2, . . . , w0,n}, w∗
1 = {w1,1, w1,2 . . . , w1,n} which are not queried in Phase 1 and sends

them to C . After that, it first chooses a random bit b ∈ {0, 1}, then computes the searchable
ciphertext Cw∗

b
with respect to w∗

b. Finally, it returns Cw∗
b

as a challenge ciphertext.

• Phase 2. As in Phase 1, A1 can continue to make series queries for polynomial times and the
restriction here is that cannot make ciphertext query and two trapdoor queries on w∗

0 and w∗
1.

• Guess. Finally, A1 outputs its guess b′ ∈ {0, 1} on b, and wins this game if b′ = b.

The following probability equation defines A1’s advantage in the game,

AdvMCI
A1

(1k) =
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣ . (3)

Game 2: The MCI Security against Adversary A2.

• Setup. Given security parameter 1k, C runs Setup algorithm generates public parameter Params
and system master key Pmas, then sends both Params and Pmas to A2.

• Phase 1. As in Game 1, A2 can make Extract-PPK query, Extract-secret-value query, Request-
public-key query, Ciphertext query, Data receiver trapdoor query and Data owner trapdoor query,
but not available for Replace-public-key query.

• Challenge. When A2 completed the Phase 1, it selects w∗
0, w∗

1 as challenge keywords sets like the
steps in Game 1, and sends them to C . Then C chooses a random bit b ∈ {0, 1} and generates
the ciphertext Cw∗

b
with respect to w∗

b. Finally, it returns Cw∗
b

to A2 as a challenge ciphertext.

• Phase 2. This phase is the same as Game 1, A2 is not allowed to make ciphertext query and two
trapdoor queries on w∗

0 and w∗
1.

• Guess. Finally, A2 outputs its guess b′ ∈ {0, 1} on b, and wins if b′ = b.

The advantage of A2 in Game 2 is defined by the following probability equation:

AdvMCI
A2

(1k) =
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣ . (4)

CMES, 2024, vol.139, no.3 3295

Definition 3.2 (MCI security). The CL-BSE scheme is said MCI security if for any PPT adversary
A , its advantages AdvMCI

A1
(1k) and AdvMCI

A2
(1k) against the challenger C in Game 1 and Game 2 are

negligible.

Game 3: The MTP Security against Adversary A1.

• Setup. The setup algorithm is the same as Game 1, C also only sends the public parameter
Params to A1 eventually.

• Phase 1. Same as process Phase 1 in Game 1.

• Challenge. When A1 has finished the Phase 1, do the same as that in Game 1 to obtain two
challenge keywords sets w∗

0, w∗
1 and send them to C . After that, C chooses a random bit b ∈

{0, 1} first, then computes the trapdoor Tw∗
b

with respect to w∗
b. Finally, it returns Tw∗

b
to A1 as a

challenge trapdoor.

• Phase 2. Same as process Phase 2 in Game 1.

• Guess. Finally, A2 outputs its guess b′ ∈ {0, 1} on b, and wins this game if b′ = b.

The advantage of A1 in Game 3 is defined by

AdvMTP
A1

(1k) =
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣ . (5)

Game 4: The MTP Security against Adversary A2.

• Setup. The setup algorithm is the same as Game 2, the challenger C sends both the public
parameter Params and the master key Pmas to A2 eventually.

• Phase 1. Same as process Phase 1 in Game 2.

• Challenge. After A2 has finished the Phase 1, do the same as that in Game 3 to obtain two
challenge keyword sets w∗

0, w∗
1 and send them to C . Then C chooses a random bit b ∈ {0, 1}

and generates the trapdoor Tw∗
b

with respect to w∗
b. Finally, it returns Tw∗

b
to A2 as a challenge

trapdoor.

• Phase 2. Same as process Phase 2 in Game 2.

• Guess. Finally, A2 outputs its guess b′ ∈ {0, 1} on b, and it wins this game if b′ = b.

The advantage of A2 in Game 4 is defined by

AdvMTP
A2

(1k) =
∣∣∣∣Pr[b′ = b] − 1

2

∣∣∣∣ . (6)

Definition 3.3 (MTP security). The CL-BSE scheme is said MTP security for both data receiver
trapdoor and data owner trapdoor, if for any PPT adversary A , its advantages AdvMTP

A1
(1k) and

AdvMTP
A2

(1k) against the challenger C in Game 3 and Game 4 are negligible.

4 The Proposed CL-BSE Scheme

In this section, we give a concrete construction as the formal definition of the CL-BSE scheme
in Section 3.2 with a designated server, it consists of nine PPT algorithms in five phases: System
initialization, Key generation, Keyword encryption, Trapdoor generation and Test.

Phase A. System Initialization.

• Setup (1k): Given the security parameter 1k, SC-KGC performs the following steps:

3296 CMES, 2024, vol.139, no.3

(1) Select a cyclic additive group G1, a cyclic multiplicative group G2 with a large prime
order q, (q > 2k) and three generators P1, P2 and Q ∈ G1, generate a bilinear pair
ê : G1 × G1 → G2;

(2) Pick a random number s ← Z
∗
q, put it as the system master key and store it secretly, then

compute Ppub = sP1;

(3) Define six different cryptographic hash functions Hi(1 ≤ i ≤ 6) as: H1 : {0, 1}∗ → G1,
H2 : {0, 1}∗ × G1 → Z

∗
q, H3 : {0, 1}∗ × G1 × G1 × G1 → Z

∗
q, H4 : G1 → {0, 1}len, where len

is the fixed length output, H5 : G2 → Z
∗
q, H6 : {0, 1}logw+len → Z

∗
q, and logw denotes the

length of w;

(4) Broadcast the public parameters params = {1k, ê,G1,G2, q, P1, P2, Q, Ppub, Hi(1 ≤ i ≤ 6)}
on the blockchain.

Phase B. Key Generation.

• Extract-PPK (Params): SC-KGC takes as input the public parameters Params, the master key
Pmas and the identity IDU(U ∈{CS, DO, DR}), then generates partial private keys for all clients
as follows:

(1) For CS, SC-KGC selects r
CS

← Z
∗
q randomly, computes RCS = r

CS
P2, α

CS
=

H2(IDCS, RCS) and d
CS

= r
CS

+ α
CS

s(mod ∼ q), and outputs PPKCS = (RCS, d
CS

) as
its partial private key;

(2) For U ∈ {DO, DR}, SC-KGC computes their partial private key as PPKU = DU , where
DU = sQU and QU = H1(IDU).

• Set-secret-value (Params, IDU): The client U ∈{DO, DR} selects x
U

, y
U

← Z
∗
q randomly and sets

SVU = (x
U

, y
U
). CS selects a single random number x

CS
← Z

∗
q and sets SVCS = x

CS
.

• Set-private-key (Params, SVU , PPKU): The client U ∈ {DO, DR} and CS set their own private
keys as SKU = (x

U
, y

U
, DU) and SKCS = (x

CS
, d

CS
), respectively.

• Set-public-key (Params, SVU): The client U ∈ {DO, DR} computes PU = x
U

P1, YU = y
U

Q, and
assigns its public keys as PKU = (PU , YU), while CS assigns its public key as PKCS = (PCS, RCS),
where PCS = x

CS
P2.

Phase C. Keywords Encryption.

• CL-BSE (PKDR,PKCS,SKDO,w): When DO wants to encrypt the keyword w extracted from the
encrypted emails, he/she enters the relevant parameters params, SKDO, IDDR, PKDR, IDCS, PKCS

and performs the following steps:
(1) Compute α

CS
= H2(IDCS, RCS), βCS

= H3(IDCS, Ppub, PCS, RCS);

(2) Compute k1 = H4(yDO
YDR), k2 = H5(ê(DDO, QDR));

(3) Select r ← Z
∗
q randomly, then compute

C1 = r · P2, (7)

C2 = ê(PDR, β
CS

PCS + RCS + α
CS

Ppub)
rxDOH6(w‖k1), (8)

C3 = r · k2 · P1; (9)

(4) Compute V = DDO + (r · k2 + x
DO

)RCS;

(5) Upload the ciphertext Cw = (C1, C2, C3, V) on the blockchain.

CMES, 2024, vol.139, no.3 3297

Upon receiving Cw = (C1, C2, C3, V) from the data owner, the blockchain verifies the owner’s
legitimacy by the equation

ê(V , P1)
?= ê(QDO, Ppub)ê(C3 + PDO, RCS). (10)

If and only if the owner is a legal member of the system, the blockchain then stores the verified
ciphertexts to the cloud server, which can effectively save storage space.

Phase D. Trapdoor Generation.

Both DR and DO can generate their own trapdoor in the following ways:

• Trapdoor-DR (PKDO,PKCS,SKDR,w′): Input parameters Params, SKDR, PKDO and PKCS, when
DR searches for the files containing the keyword w′, it performs the following operations:

(1) Recall α
CS

, β
CS

, and k1 = H4(yDR
YDO), k2 = H5(ê(DDR, QDO));

(2) Select a random number t
DR

← Z
∗
q and compute

T1 = t
DR

(β
CS

PCS + RCS + α
CS

Ppub), (11)

T2 = t
DR

k2P1 + x
DR

H6(w′‖k1)PDO; (12)

(3) Output TDR = (T1, T2).

• Trapdoor-DO (PKDR, PKCS, SKDO, w′). Different from other CL-PAEKS models, the bidirec-
tional keyword search functionality in this paper is achieved by introducing DO’s trapdoor
generation algorithm. In fact, similar to DR’s trapdoor generation process above, when DO
retrieves the data from CS, it does not need to generate any additional variables, but simply
uses its own private key SKDO and PKDR, PKCS to generate the trapdoor TDO = (T1, T2). That is,

T1 = t
DO

(β
CS

PCS + RCS + α
CS

Ppub), (13)

T2 = t
DO

k2P1 + x
DO

H6(w′‖k1)PDR. (14)

Phase E. Test Process.

• Test (Cw, SKCS, Tw′ = TDO/TDR): Take Cw, SKCS, Tw′ = TDO or TDR as input, CS verifies whether
ê(T2, (βCS

x
CS

+ d
CS

)C1)
?= ê(T1, C3) · C2 (15)

holds. Output “1” if it holds and “0” otherwise.

Actually, from the verification equation it can be seen that since x
CS

and d
CS

are private keys
secretly held by the cloud email server, then only the server holding the private key can verify the
equation above, i.e., our scheme is a bidirectional searchable encryption scheme with secure channel
free for designated server verification.

Correctness.

(1) ê(V , P1)
?= ê(QDO, Ppub)ê(C3 + PDO, RCS).

ê(V , P1) = ê(DDO + (rk2 + x
DO

)RCS, P1)

= ê(DDO, P1)ê((rk2 + x
DO

)RCS, P1)

= ê(DDO, P1)ê((rk2 + x
DO

)P1, RCS)

= ê(QDO, Ppub)ê(C3 + PDO, RCS).

3298 CMES, 2024, vol.139, no.3

(2) ê(T2, (βCS
x

CS
+ d

CS
)C1)

?= ê(T1, C3) · C2.

ê(T2, (βCS
x

CS
+ d

CS
)C1)

= ê(t
DO

k2P1 + x
DO

H6(w‖k1)PDR, r(β
CS

x
CS

+ r
CS

+ sα
CS

)P2)

= ê(t
DO

k2P1, r(β
CS

x
CS

+ r
CS

+ sα
CS

)P2)ê(xDO
H6(w‖k1)PDR, r(β

CS
x

CS
+ r

CS
+ sα

CS
)P2)

= ê(t
DO

k2P1, r(β
CS

x
CS

+ r
CS

+ sα
CS

)P2)ê(xDO
H6(w‖k1)xDR

P1, r(β
CS

x
CS

+ r
CS

+ sα
CS

)P2)

= ê(P1, P2)
tDO k2r(βCS xCS +rCS +sαCS)ê(P1, P2)

rxDO xDR H6(w‖k1)(βCS xCS +rCS +sαCS),

and

ê(T1, C3) · C2

= ê(t
DO

(β
CS

x
CS

+ r
CS

+ sα
CS

)P2, rk2P1)ê(PDR, (β
CS

x
CS

+ r
CS

+ sα
CS

)P2)
rxDOH6(w‖k1)

= ê(t
DO

(β
CS

x
CS

+ r
CS

+ sα
CS

)P2, rk2P1)ê(xDR
P1, (βCS

x
CS

+ r
CS

+ sα
CS

)P2)
rxDOH6(w‖k1)

= ê(P1, P2)
rtDO k2(βCS xCS +rCS +sαCS)ê(P1, P2)

rxDOxDR H6(w‖k1)(βCS xCS +rCS +sαCS).

The verification process described above demonstrates the correctness of the data owner’s trap-
door and ciphertext test, the verification with respect to the data receiver’s trapdoor is similar and we
omit it.

5 Security Analysis

Based on the formal definition of security models in Section 3.3 and the CBDH hardness
assumption in Section 2.3, we give the security proof of our scheme in this section.

Theorem 5.1 (MCI security). In the random oracle model, our CL-BSE scheme achieves semanti-
cally MCI security against outside chosen multi-keyword attacks under the CBDH hardness assump-
tion.

The proof of Theorem 5.1 can be achieved by the following two lemmas.

Lemma 5.1. In the random oracle model, for any PPT adversary A1, there is an algorithm B that
can break the CBDH assumption with advantage

ε′ ≥ 2ε

q
H1

(
1 − 1

q
H1

)qE1
+qE2

+qC +qT

(16)

if A1 wins Game 1 with advantage ε.

Proof. Give a bilinear pair (ê,G1,G2, P1, q) and an instance of CBDH assumption (P1, aP1, bP1,
cP1) ∈ G

4
1, algorithm B calculates ê(P1, P1)

abc by taking A1 as a subroutine as follows:

• Setup. For a given security parameter 1k, B generates public parameter Params = {G1,G2, q, P1,
P2 = αP1, Q, ê, Ppub, Hi(1 ≤ i ≤ 6)} and system master key Pmas = s ∈ Z

∗
q firstly, then sets

PDO = aP1, PDR = bP1, PKCS = (PCS, RCS) and SKCS = (x
CS

, d
CS

), chooses IDI(1 ≤ I ≤ q
H1

)

randomly as the challenge identity. Finally, it only responds (Params, PDO, PDR, PKCS, SKCS) to
A1, and keeps Pmas secretly.

• Phase 1. A1 preforms a series of queries with polynomially many times adaptively, they are

CMES, 2024, vol.139, no.3 3299

– H1-query. B maintains a list LH1
= {〈IDi, λi, Qi〉} to respond H1-query. For any IDi submitted

by A1, B first checks whether the IDi already exists on LH1
in a tuples 〈IDi, λi, Qi〉, outputs

corresponding Qi if so, otherwise selects λi ← Z
∗
q randomly, outputs Qi = λiP1, and adds

〈IDi, λi, Qi〉 to LH1
.

– H2-query. B maintains a list LH2
= {〈IDi, Ri, αi〉} to respond H2-query. For any (IDi, Ri) ∈

{0, 1}∗ × G1 submitted by A1, B checks whether (IDi, Ri) already exists on LH2
in a tuples

〈IDi, Ri, αi〉 firstly, outputs corresponding αi if so, otherwise selects and outputs αi ← Z
∗
q

randomly, and adds 〈IDi, Ri, αi〉 to LH2
at the same time.

– H3-query. B maintains a list LH3
= {〈IDi, Pi, Ri, βi〉} to respond H3-query. For any (IDi, Pi, Ri)

submitted by A1, B first checks whether the tuples including (IDi, Pi, Ri) already exists on LH3
,

outputs corresponding βi if so, otherwise selects and outputs βi ← Z
∗
q randomly, and adds

〈IDi, Pi, Ri, βi〉 to LH3
at the same time.

– H4-query. B maintains a list LH4
= {〈Mi, k1 i〉} to respond H4-query. For any Mi ∈ G1 submitted

by A1, B first checks whether the Mi already exists on LH4
in a tuples 〈Mi, k1 i〉, outputs k1 i if

so, otherwise selects k1 i ← Z
∗
q randomly and outputs it, then add 〈Mi, k1 i〉 to LH4

.

– H5-query. B maintains a list LH5
= {〈Ni, k2 i〉} to respond H4-query. For any Ni ∈ G2 submitted

by A1, B first checks whether the Ni already exists on LH5
in a tuples 〈Ni, k2 i〉, outputs k2 i if so,

otherwise selects k2 i ← Z
∗
q randomly and outputs it, then adds 〈Ni, k2 i〉 to LH5

.

– H6-query. B maintains a list LH6
= {〈Ii, ηi〉} to respond H4-query, where Ii = wi‖k1 i ∈ {0, 1}∗,

k1 i ∈ LH4
. For any Ii submitted by A1, B first checks whether the Ii already exists on LH6

in a
tuples 〈Ii, ηi〉, outputs ηi if so, otherwise selects ηi ← Z

∗
q randomly and outputs it, then adds

〈Ii, ηi〉 to LH6
.

– Extract-PPK query. B maintains a list LE1
= {〈IDi, Qi, Di〉} to respond A1 for the partial private

key of IDi. It performs H1-query and gets 〈IDi, λi, Qi〉 first and adds them to LH1
. If IDi �= IDI ,

then B computes Di = λiPpub and outputs Di, and adds 〈IDi, Qi, Di〉 into LE1
, otherwise aborts

the query and denotes the event as E1.

– Request-public-key query. B maintains a list LE2
= {〈IDi, xi, yi, Pi, Yi〉} to respond A1 for the

public key of IDi. It first checks whether IDi already exists on LE2
, retrieves PKi = (Pi, Yi) if

so, otherwise selects two random numbers xi, yi ← Z
∗
q, computes Pi = xiP1, Yi = yiP1, and

outputs PKi = (Pi, Yi), meanwhile, adds 〈IDi, xi, yi, Pi, Yi〉 into LE2
.

– Replace-public-key query. When B receives a new public key PK ′
i = (P′

i, Y ′
i) of identity IDi

queried by A1, it updates the original tuple 〈IDi, xi, yi, Pi, Yi〉 in LE2
with 〈IDi, ⊥, ⊥, P′

i, Y ′
i 〉.

– Extract-private-key query. When the identity IDi is queried by A1, B checks whether IDi = IDI

first. If IDi �= IDI , then it performs as follows, if IDi already exists on LE1
and LE2

in their
tuples 〈IDi, Qi, Di〉 and 〈IDi, xi, yi, Pi, Yi〉 respectively, then B retrieves SKi = (xi, yi, Di) and
responds to A1, otherwise performs Extract-PPK query and Request-public-key query with IDi

and retrieves corresponding SKi = (xi, yi, Di). If IDi = IDI , then it aborts and denotes this
event as E2.

– Ciphertext query. Upon B receiving a query (w′, ID′
DO, ID′

DR, ID′
CS) about ciphertext. If ID′

DR �=
IDI , then it selects r′ ← Z

∗
q randomly, extracts the corresponding value from the above lists,

and computes
C ′

1 = r′P1, (17)

C ′
2 = ê(P′

DR, β ′P′
CS + R′

CS + α′
CS

Ppub)
r′x′

DO
η′

i , (18)

3300 CMES, 2024, vol.139, no.3

C ′
3 = r′k′

2iP1, (19)

V ′ = D′
DO + (r′k′

2i + x′
DO

)R′
CS. (20)

Otherwise B aborts and denotes it as E3. Finally, it outputs C ′
w = (C ′

1, C ′
2, C ′

3, V ′) to A1.

– Trapdoor query. No matter the trapdoor is queried to be generated by the data receiver or the
data owner. B performs the following steps. Upon receiving a query (w′, ID′

DO, ID′
DR, ID′

CS) for
a trapdoor, it aborts and denotes it as E4 if and only if ID′

DR = IDI . Otherwise B selects t′ ← Z
∗
q

randomly, extracts the corresponding value from the above lists, and computes
T1 = t′(β ′P′

CS + R′
CS + α′

CS
Ppub), (21)

T2 = t′k′
2iP1 + x′

DR
η′

iP
′
DO. (22)

Finally, it outputs T ′
w = (T ′

1, T ′
2) to A1.

• Challenge. After A1 finished Phase 1 queries, it selects w∗
0, w∗

1 not be queried in Phase 1 as
the challenge keywords sets and the challenge identity IDI , then sends them to B, B checks
whether ID′

DR = IDI , if not, B aborts and denotes it as E5, and gives a random bit b′ as a
guess of b. Otherwise, it first chooses a random bit b ∈ {0, 1} and a random number r∗ ← Z

∗
q,

computes C∗
1 ∈ G1, C∗

2 = ê(P′
DR, C∗

3)
x′

DO
η′

i , C∗
3 = r∗k′

2icP1 and V ∗ ∈ G1. Finally, it responds A1

with C∗
wb

= (C∗
1 , C∗

2 , C∗
3 , V ∗).

• Phase 2. As in Phase 1, A1 can make a series of queries for polynomial times and it can not
make ciphertext query and two trapdoor queries on any keyword in w∗

0 and w∗
0. Denote this

event as E6.

• Guess. Finally, A1 outputs its guess b′ ∈ {0, 1} on b, and B chooses C∗
wb

= (C∗
1 , C∗

2 , C∗
3 , V) to

compute
(
C∗

2

) 1
r∗k′

2iη
′
i . If A1 is correct, then no matter b = 0 or b = 1, it can compute C∗

2 =
ê(P′

DR, C∗
3)

x′
DO

η′
i . Furthermore, for unknown a, b, c ∈ Z

∗
q, we set P′

DO = aP1, P′
DR = bP1, and

C∗
3 = r∗k′

2icP1, B can compute ê(P1, P1)
abc as

(
C∗

2

) 1
r∗k′

2iη
′
i =

(
ê(P′

DR, C∗
3)

x′
DO

η′
i

) 1
r∗k′

2iη
′
i

=
(

ê(P′
DR, r∗k′

2icP1)
x′

DO
η′

i

) 1
r∗k′

2iη
′
i

= ê(P′
DR, x′

DO
cP1) = ê(P1, P1)

abc. (23)

Now, suppose B can break the CBDH assumption with advantage ε′, A1 can make at most q
H1

,
q

E1
, q

E2
, q

C
and q

T
times queries to H1-query, Extract-PPK query, Request-public-key query, Ciphertext

query and Trapdoor query, respectively, then

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4 ∧ ¬E5]

=
(

1 − 1
q

H1

)qE1
(

1 − 1
q

H1

)qE2
(

1 − 1
q

H1

)qC
(

1 − 1
q

H1

)qT
1

q
H1

=
(

1 − 1
q

H1

)qE1
+qE2

+qC +qT
1

q
H1

. (24)

CMES, 2024, vol.139, no.3 3301

Since

Pr[b = b′] = Pr[b = b′|E6]Pr[E6] + Pr[b = b′|¬E6]Pr[¬E6]

≤ Pr[b = b′|E6]Pr[E6] + Pr[¬E6]

= 1
2

Pr[E6] + Pr[¬E6] = 1
2

+ 1
2

Pr[¬E6], (25)

and

Pr[b = b′] ≥ Pr[b = b′|E6]Pr[E6] = 1
2

− 1
2

Pr[¬E6], (26)

we have Pr[¬E6] ≥ 2ε. Combing with (24), we get Eq. (16) and the lemma is proved.

Lemma 5.2. In the random oracle model, for any PPT adversary A2, there is an algorithm B that
can break the CBDH assumption with advantage

ε′ ≥ 2ε

q
H1

(
1 − 1

q
H1

)qE1
+qC +qT

(27)

if A2 wins Game 2 with advantage ε.

Proof. Similar with Lemma 5.1, given an instance of the CBDH assumption (P1, aP1, bP1, cP1) ∈
G

4
1, B calculates the value ê(P1, P1)

abc by taking A2 as a subroutine as follows:

• Setup. B generates Params = {G1,G2, ê, q, P1, P2 = αP1, Q, Ppub, Hi(1 ≤ i ≤ 6)} and
Pmas = s ∈ Z

∗
q, sets PDO = aP1, PDR = bP1, PKCS = (PCS, RCS) and SKCS = (x

CS
, d

CS
),

and chooses IDI(1 ≤ I ≤ q
H1

) randomly as the challenge identity. Finally, it responds both
(Params, PDO, PDR, PKCS, SKCS) and Pmas = s to A2.

• Phase 1. A2 preforms a series of queries with polynomially many times adaptively, they are

– Hash queries. A2 can query Hi(1 ≤ i ≤ 6) random oracles. B responds them as same as Lemma
5.1.

– Request-public-key query. B maintains a list LE2
= {〈IDi, xi, yi, Pi, Yi〉} to respond A2 for the

public key of IDi. The interaction is the same as Phase 1 in Lemma 5.1.

– Extract-private-key query. When the identity IDi is queried by A2, B first checks whether IDi =
IDI . If not, it performs as follows: if IDi already exists on LH1

and LE2
in the corresponding

tuples 〈IDi, λi, Qi〉 and 〈IDi, xi, yi, Pi, Yi〉, then B responds to A2 as SKi = (xi, yi, sQi), otherwise
performs H1 query and Request-public-key query with IDi and retrieves the corresponding
SKi = (xi, yi, sQi). If IDi = IDI , it aborts and denotes this event as E1.

– Ciphertext query. Upon B receiving a ciphertext query about (w′, ID′
DO, ID′

DR, ID′
CS). It first

checks whether ID′
DR = IDI , if not, selects r′ ← Z

∗
q randomly, extracts the corresponding value

and computes
C ′

1 = r′P2, (28)

C ′
2 = ê(P′

DR, β ′P′
CS + R′

CS + α′
CS

Ppub)
r′x′

DO
η′

i , (29)

C ′
3 = r′k′

2iP1, (30)

V ′ = sQ′
DO + (r′k′

2i + x′
DO

)R′
CS, (31)

3302 CMES, 2024, vol.139, no.3

where k′
2i = H5(ê(Q′

DO, Q′
DR)

s). Otherwise aborts and denotes the event as E2. Finally, it outputs
C ′

w = (C ′
1, C ′

2, C ′
3, V ′).

– Trapdoor query. No matter A2 makes a data receiver or a data owner trapdoor query. B
performs the follows steps. Upon receiving (w′, ID′

DO, ID′
DR, ID′

CS), B aborts and denote this
event as E3 if and only if ID′

DR = IDI . Otherwise it selects t′ ← Z
∗
q randomly, extracts the

corresponding value and computes
T1 = t′(β ′P′

CS + R′
CS + α′

CS
Ppub), (32)

T2 = t′k′
2iP1 + x′

DR
η′

iP
′
DO, (33)

where k′
2i = H5(ê(Q′

DO, Q′
DR)

s). Finally, it outputs T ′
w = (T ′

1, T ′
2) to A2.

• Challenge. After A2 finished the Phase 1 queries, it selects w∗
0, w∗

1 as the challenge keywords sets
not be queried before, and sends them to B with the challenge identity IDI . B checks whether
ID′

DR = IDI , if not, it aborts and denotes this event as E4, then gives a random bits b′ as guess of
b. Otherwise chooses a random bit b ∈ {0, 1} and computes ciphertext C∗

wb
= (C∗

1 , C∗
2 , C∗

3 , V ∗)

as follows. First, pick a random number r∗ ← Z
∗
q, compute C∗

1 = r∗cP1, C∗
2 = ê(P′

DR, C∗
1)

x′
DO

η′
i ,

C∗
3 ∈ G1 and V ∗ ∈ G1. Finally, respond C∗

wb
to A1.

• Phase 2. This phase is same as Game 2, A2 is not allowed to make ciphertext query and two
trapdoor queries on w∗

0 and w∗
1. Denote this event as E5.

• Guess. Finally, A2 outputs its guess b′ ∈ {0, 1} on b, meanwhile, B retrieves C∗
wb

=
(C∗

1 , C∗
2 , C∗

3 , V ∗) and computes
(
C∗

2

) 1
r∗η′

i . If A2 is correct, then no matter b = 0 or b = 1, it
can compute C∗

2 = ê(P′
DR, C∗

1)
x′

DO
η′

i . Furthermore, for unknown a, b, c ∈ Z
∗
q, we set P′

DO = aP1,
P′

DR = bP1 and P2 = cP1, B can compute ê(P1, P1)
abc as

(
C∗

2

) 1
r∗η′

i =
(

ê(P′
DR, C∗

1)
x′

DO
η′

i

) 1
r∗η′

i

=
(

ê(P′
DR, r∗cP1)

x′
DO

η′
i

) 1
r∗η′

i

= ê(P′
DR, x′

DO
cP1) = ê(P1, P1)

abc. (34)

Now, suppose B breaks the CBDH assumption with advantage ε′, A2 can make at most q
H1

, q
E1

,
q

C
and q

T
times queries to H1-query, Request-public-key query, Ciphertext query and Trapdoor query,

respectively, thus,

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4]

=
(

1 − 1
q

H1

)qE1
(

1 − 1
q

H1

)qC

(1 − 1
q

H1

)qT
1

q
H1

=
(

1 − 1
q

H1

)qE1
+qC +qT

1
q

H1

. (35)

CMES, 2024, vol.139, no.3 3303

Since

Pr[b = b′] = Pr[b = b′|E5]Pr[E5] + Pr[b = b′|¬E5]Pr[¬E5]

≤ Pr[b = b′|E5]Pr[E5] + Pr[¬E5]

= 1
2

Pr[E5] + Pr[¬E5] = 1
2

+ 1
2

Pr[¬E5]. (36)

and

Pr[b = b′] ≥ Pr[b = b′|E5]Pr[E5] = 1
2

− 1
2

Pr[¬E5]. (37)

we have Pr[¬E5] ≥ 2ε, so combing with (35), we get Eq. (27) and the lemma is proved.

Theorem 5.2 MTP security. In the random oracle model, our CL-BSE scheme achieves seman-
tically MTP security against inside multi-keywords guessing attacks under the CBDH hardness
assumption.

The proof of Theorem 5.2 can be achieved by the following two lemmas:

Lemma 5.3. In the random oracle model, for any PPT adversary A1, there is an algorithm B can
break the CBDH assumption with advantage

ε′ ≥ 2ε

q
H1

(
1 − 1

q
H1

)qE1
+qE2

+qC +qT

(38)

if A1 wins Game 3 with advantage ε.

Proof. The interaction process in the proof is basically the same as Lemma 5.1 except the Challenge
phase and the Guess phase. They are

• Challenge. A1 still select two sets w∗
0, w∗

1 as the challenge keywords set and the challenge identity
IDI , sends them to B, B checks whether ID′

DR = IDI , if not, then B gives a random bits b′ as a
guess of b. Otherwise, it chooses a random bit b ∈ {0, 1} and a random number t∗ ← Z

∗
q, then

computes T ∗
1 = t∗(β ′P′

CS + R′
CS + α′

CS
Ppub), T ∗

2 = t∗k′
2iP1 + x′

DR
η′

iP
′
DO. Finally, it responds A1 with

T ∗
wb

= (T ∗
1 , T ∗

2).

• Guess. Finally, A1 outputs its guess b′ ∈ {0, 1} on b, and B chooses T ∗
wb

= (T ∗
1 , T ∗

2) to compute(
ê(T ∗

2 , Ppub)

ê(P1, Ppub)
t∗·k′

2i

) 1
η′

i
. If A1 is correct, then no matter b = 0 or b = 1, T2 = t∗k′

2iP1 + x′
DR

η′
iP

′
DO

can be computed. Furthermore, for unknown a, b, c ∈ Z
∗
q, we set P′

DO = aP1, P′
DR = bP1 and

Ppub = cP1, B computes ê(P1, P1)
abc as(

ê(T ∗
2 , Ppub)

ê(P1, Ppub)
t∗·k′

2i

) 1
η′

i

=
(

ê(t∗k′
2iP1 + x′

DR
η′

iP
′
DO, Ppub)

ê(t∗k′
2iP1, Ppub)

) 1
η′

i

=
(

ê(x′
DR

η′
iP

′
DO, Ppub)

) 1
η′

i

= ê(x′
DR

P′
DO, Ppub) = ê(P1, P1)

abc. (39)

3304 CMES, 2024, vol.139, no.3

The analysis process of the advantages ε′ that B computes the above problem is also same as
Lemma 5.1, that is Eq. (38) holds and the lemma is proved.

Lemma 5.4. In the random oracle model, for any PPT adversary A2, there is an algorithm B can
break the CBDH assumption with advantage

ε′ ≥ 2ε

q
H1

(
1 − 1

q
H1

)qE1
+qC +qT

(40)

if A2 wins Game 4 with advantage ε.

Proof. The interaction process in the proof is basically the same as Lemma 5.2 except the Challenge
phase and the Guess phase. They are

• Challenge. A2 still selects w∗
0, w∗

1 as the challenge keywords set and sends them to B together
with the challenge identity IDI . B checks whether ID′

DR = IDI , if not, B aborts and gives
a random bits b′ as a guess of b. Otherwise chooses a random bit b ∈ {0, 1} and computes
trapdoor T ∗

wb
= (T ∗

1 , T ∗
2) as follows. First, pick a random number t∗ ← Z

∗
q, and then compute

T ∗
1 = t∗(β ′P′

CS + R′
CS + α′

CS
Ppub),T ∗

2 = t∗k′
2iP1 + x′

DRη
′
iP

′
DO. Finally, respond to A1 with T ∗

wb
=

(T ∗
1 , T ∗

2).

• Guess. Finally, A2 outputs its guess b′ ∈ {0, 1} on b, meanwhile, B retrieves T ∗
wb

= (T ∗
1 , T ∗

2)

and computes
(

ê(T ∗
2 , T ∗

1)

ê(t∗ · k′
2i · P1, T ∗

1)

) 1
t∗η′

i(β
′x′

CS
+d′

CS
)

. If A2 is correct, then no matter b = 0 or b = 1,

algorithm B can compute T ∗
1 = t∗(β ′P′

CS+R′
CS+α′

CS
Ppub), T ∗

2 = t∗k′
2iP1+x′

DR
η′

iP
′
DO. Furthermore,

for unknown a, b, c ∈ Z
∗
q, we set P′

DO = aP1, P′
DR = bP1, and P2 = cP1, B can compute

ê(P1, P1)
abc as following:(

ê(T ∗
2 , T ∗

1)

ê(t∗k′
2iP1, T ∗

1)

) 1
t∗η′

i(β′x′
CS

+d′
CS)

=
⎛
⎝ ê(t∗k′

2iP1 + x′
DR

η′
iP

′
DO, t∗

(
β ′x′

CS
+ d ′

CS

)
P2)

ê(t∗k′
2iP1, t∗�′

CSP2)

⎞
⎠

1
t∗η′

i(β′x′
CS

+d′
CS)

=
(

ê(x′
DR

η′
iP

′
DO, t∗

(
β ′x′

CS
+ d ′

CS

)
P2)

) 1
t∗η′

i(β′x′
CS

+d′
CS)

= ê(x′
DR

P′
DO, P2) = ê(P1, P1)

abc. (41)

The analysis process of the advantages ε′ that B computes the above problem is also same as
Lemma 5.2, that is Eq. (40) holds and the lemma is proved.

6 Performance Analysis

In this section, we analyze the performance of our scheme by comparing it with some existing
schemes in [4,5,28–30,36,37].

First, we give some basic operations used in the scheme and the executing times of a single
operation in Table 2. These times of operations are averaged over 1000 runs on a personal computer
(Lenovo with Windows 10 operating system, Intel (R) Core (TM) i7 −7700 CPU @ 3.60 GHz and
8 GB RAM memory) using the Pairing-Based Cryptography (PBC) library [38] in Ubuntu10.

CMES, 2024, vol.139, no.3 3305

Table 2: Some operations and their overhead time (ms)

Symbol Description Times

TP Bilinear pairing operation 5.787
TH Hash-to-point operation 5.693
TS Scalar multiplication 2.355
TE Modular exponentiation 0.794
Th General hash function 0.005
TA Addition operation 0.003

Figs. 2–5 and Table 3 describe the computation overhead of different algorithms in each scheme.
Specifically, the computational overhead in the ciphertext generation (Fig. 3) of our scheme is slightly
higher than [30,36]. In trapdoor generation process (Fig. 4), the computational overhead of the scheme
is higher than [4,5,30] since the enhanced trapdoor privacy and authentication functionality. In test
process (Fig. 5), its computational overhead is slightly higher than in [29,30] because our scheme is
server-designated, that is, the public/private key pairs of the server are involved in the operation.
However, in terms of total time, the time overhead of our new scheme is only slightly higher than
[30]. It has some advantages when DO (or DU) retrieves emails and is more in line with practical
application scenarios.

Figure 2: Computation overhead in each phase

3306 CMES, 2024, vol.139, no.3

Figure 3: Running time of encryption Figure 4: Running time of trapdoor

Figure 5: Running time of test

Table 3: The computational overhead of the schemes (ms)

Schemes Ciphertext Trapdoor Test

Yang et al. [28] 3TP + 2TH + 3TS + 2TE +
3Th + TA

TP + TH + 3TS + 3Th + 2TA 2TP + TE + TA

Peng et al. [5] 3TP + 3TH + 4TS + 2Th TH + 3TS + Th + 2TA TP + TS + Th + 4TA

Cheng et al. [37] TH + 10TS + 5Th + 5TA TH + 10TS + 5Th + 5TA 4TP

Ma et al. [4] 3TP + 3TH + 4TS + Th + TA TH + TS + TA TP + 2TH + TS +
Th + 2TA

(Continued)

CMES, 2024, vol.139, no.3 3307

Table 3 (continued)

Schemes Ciphertext Trapdoor Test

Chenam et al. [36] TH + 5TS + 3Th + 3TA TP + TH + 7TS + 3Th + 4TA 2TP + 4TS + Th + 2TA

Lu et al. [29] 2TP + TH + 3TS + TE +
3Th + TA

TP + 2TH + 3TS + 3Th + TA TP + Th

Shiraly et al. [30] 5TS + 3Th + TA 3TS + 2Th + TA TS + Th

Ours 2TP +5TS +TE +5Th +2TA TP + 5TS + 5Th + 3TA 2TP + TE

Subsequently, we make a comparison in terms of communication costs, including the size of public
key |PK |, ciphertext |CT | and trapdoor |TD|, which are presented in Table 4. In the table, the notations
|G1|, |G2| and |Zq| denote the bit length size for each element in G1, G2 and Zq, respectively. It is clearly
see that the size of ciphertext of our scheme is the same as Yang et al.’s scheme [28] and is smaller than
Cheng et al.’s scheme [37], a sightly larger than other schemes; same as Yang et al.’s scheme [28], the
size of trapdoor of our scheme is smaller than other schemes except Ma et al.’s scheme [4].

Table 4: The communication overhead of the schemes (bits)

Yang
et al. [28]

Peng
et al. [5]

Cheng
et al. [37]

Ma
et al. [4]

Chenam
et al. [36]

Lu
et al. [29]

Shiraly
et al. [30]

Ours

|PK | 2|G1| 4|G1| 4|G1| 2|G1| 4|G1| 2|G1| 4|G1| 4|G1|
|CT | 2|G1|+|G2| |G1|+|Z∗

q| 4|G1| |G1|+|Z∗
q| 2|G1| |G1|+|Z∗

q| 2|G1| 2|G1|+|G2|
|TD| 2|G1| 3|G1| 4|G1| |G1| 2|G1|+|G2| |Z∗

q| |Z∗
q| 2|G1|

Finally, we present some additional performance comparisons in the Table 5. In the table, SCF
denotes designated server test, AUT denotes authenticated function, BSE denotes bidirectional search-
able encryption and ASSUM denotes the difficulty assumption of the scheme security depends on.
Finally, we find that our scheme is a certificateless authenticated bidirectional searchable encryption
scheme with a designated server test that achieves both MCI and MTP security under the CBDH
hardness assumption.

Table 5: Other performance comparison

Schemes DST AUT BSE MCI MTP ASSUM

Yang et al. [28] � � × � � CBDH
Peng et al. [5] × × × × × BDH & GBDH
Cheng et al. [37] � � × � � CODH
Ma et al. [4] � × × � × BDH
Chenam et al. [36] � � × × × CBDH & DBDH
Zhang et al. [13] × � � � × BDH
Lu et al. [29] × � × × × BDH

(Continued)

3308 CMES, 2024, vol.139, no.3

Table 5 (continued)

Schemes DST AUT BSE MCI MTP ASSUM

Shiraly et al. [30] × � × × × DDH & GDH
Ours � � � � � CBDH

7 Conclusion

Based on the certificateless public key authenticated encryption with keyword search (CL-
PAEKS) cryptosystem and the bidirectional searchable functionality, this paper proposed a new
cryptographic approach named blockchain-based certificateless authenticated bidirectional searchable
encryption (CL-BSE). To some extent, it can be regarded as avoiding the key escrow and certificate
management problem in the PEBKS scheme, and can also be considered as appending distinctive
features which allow a data owner to retrieve the keyword ciphertext from server in the CL-PAEKS
cryptosystem. Taking the cloud email system as the actual application scenario, we build a concrete
construction of the CL-BSE scheme. The security analysis of the scheme indicates that it can achieve
both MCI-secure and MTP-secure against IKGA under the CBDH hardness assumption.

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper.

Funding Statement: This work was supported by the National Natural Science Foundation of China
(Nos. 62172337, 62241207) and Key Project of Gansu Natural Science Foundation (No. 23JRRA685).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Y. Sun, X. Du; data collection: Y. Sun; analysis and interpretation of results: Y. Sun, X. Du,
X. Yang; draft manuscript preparation: Y. Sun, S. Niu. All authors reviewed the results and approved
the final version of the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this
study are available within the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Song, D., Wagner, D., Perrig, A. (2000). Practical techniques for searching on encrypted data. IEEE

Symposium on Security and Privacy, pp. 44–55. Berkeley, USA.
2. Boneh, D., di Crescenzo, G., Ostrovsky, R., Persiano, G. (2004). Public key encryption with keyword

search. International Conference on the Theory and Applications of Cryptographic Techniquespp, pp. 506–
522. Interlaken, Switzerland.

3. Baek, J., Safavi-Naini, R., Susilo, W. (2008). Public key encryption with keyword search revisited. Interna-
tional Conference on Computational Science and its Applications, pp. 1249–1259. Perugia, Italy.

4. Ma, M., He, D., Kumar, N., Choo, K. K. R., Chen, J. (2018). Certificateless searchable public key encryption
scheme for industrial Internet of Things. IEEE Transactions on Industrial Informatics, 14(2), 759–767.

CMES, 2024, vol.139, no.3 3309

5. Peng, Y., Cui, J., Peng, C., Ying, Z. (2014). Certificateless public key encryption with keyword search. China
Communications, 11(11), 100–113.

6. Byun, J. W., Rhee, H. S., Park, H., Lee, D. H. (2006). Off-line keyword guessing attacks on recent keyword
search schemes over encrypted data. Third VLDB Workshop on Secure Data Management, pp. 75–83. Seoul,
Korea.

7. Huang, Q., Li, H. (2017). An efficient public-key searchable encryption scheme secure against inside
keyword guessing attacks. Information Sciences, 403(C), 1–14.

8. Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D. (2020). Public-key authenticated encryption with keyword
search revisited: Security model and constructions. Information Sciences, 516, 515–528.

9. Pan, X., Li, F. (2021). Public-key authenticated encryption with keyword search achieving both multi-
ciphertext and multi-trapdoor indistinguishability. Journal of Systems Architecture, 115(C), 102075.

10. Al-Riyami, S. S., Paterson, K. G. (2003). Certificateless public key cryptography. 9th International Confer-
ence on the Theory and Application of Cryptology and Information Security, pp. 452–473. Taipei, Taiwan.

11. He, D., Ma, M., Zeadally, S., Kumar, N., Liang, K. (2018). Certificateless public key authenticated encryp-
tion with keyword search for industrial internet of things. IEEE Transactions on Industrial Informatics,
14(8), 3618–3627.

12. Yang, X., Wen, H., Liu, L., Ren, N., Wang, C. (2023). Blockchain-enhanced certificateless signature scheme
in the standard model. Mathematical Biosciences and Engineering, 20(7), 12718–12730.

13. Zhang, W., Qin, B., Dong, X., Tian, A. (2021). Public-key encryption with bidirectional keyword search and
its application to encrypted emails. Computer Standards & Interfaces, 78, 103542.

14. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R. (2011). Searchable symmetric encryption: Improved
definitions and efficient constructions. Journal of Computer Security, 19(5), 895–934.

15. Kamara, S., Papamanthou, C. (2013). Parallel and dynamic searchable symmetric encryption. International
Conference on Financial Cryptography and Data Security, pp. 258–274. Okinawa, Japan.

16. Li, J., Huang, Y., Wei, Y., Lv, S., Liu, Z. et al. (2021). Searchable symmetric encryption with forward search
privacy. IEEE Transactions on Dependable and Secure Computing, 18(1), 460–474.

17. Rhee, H. S., Park, J. H., Susilo, W., Lee, D. H. (2010). Trapdoor security in a searchable public-key
encryption scheme with a designated tester. Journal of Systems and Software, 83(5), 763–771.

18. Chen, R., Mu, Y., Yang, G., Guo, F., Huang, X. et al. (2016). Server-aided public key encryption with
keyword search. IEEE Transactions on Information Forensics and Security, 11(12), 2833–2842.

19. Hu, C., Liu, P. (2012). An enhanced searchable public key encryption scheme with a designated tester and
its extensions. Journal of Computers, 7(3), 716–723.

20. Tang, Q., Chen, L. (2010). Public-key encryption with registered keyword search. Proceedings of the 6th
European Workshop on Public Key Infrastructures, Services and Applications, pp. 163–178. Pisa, Italy.

21. Wu, T. Y., Chen, C. M., Wang, K. H., Pan, J. S., Zheng, W. et al. (2018). Security analysis of Rhee et al.’s
public encryption with keyword search schemes: A review. Journal of Network Intelligence, 3(1), 16–25.

22. Yau, W. C., Phan, R. C. W., Heng, S. H., Goi, B. M. (2013). Keyword guessing attacks on secure searchable
public key encryption schemes with a designated tester. International Journal of Computer Mathematics,
90(12), 2581–2587.

23. Noroozi, M., Eslami, Z. (2019). Public key authenticated encryption with keyword search: Revisited. IET
Information Security, 13(4), 336–342.

24. Cheng, L. X., Meng, F. (2021). Security analysis of Pan et al.’s “Public-key authenticated encryption
with keyword search achieving both multi-ciphertext and multi-trapdoor indistinguishability”. Journal of
Systems Architecture, 119, 102248.

25. Fuhr, T., Paillier, P. (2007). Decryptable searchable encryption. Proceedings of the First International
Conference on Provable Security, pp. 228–236. Wollongong, Australia.

3310 CMES, 2024, vol.139, no.3

26. Hofheinz, D., Weinreb, E. (2008). Searchable encryption with decryption in the standard model. Cryptology
ePrint Archive.

27. Wu, T. Y., Chen, C. M., Wang, K. H., Wu, J. M. T. (2019). Security analysis and enhancement of a
certificateless searchable public key encryption scheme for IIoT environments. IEEE Access, 7, 49232–
49239.

28. Yang, G., Guo, J., Han, L., Liu, X., Tian, C. (2022). An improved secure certificateless public-key searchable
encryption scheme with multi-trapdoor privacy. Peer-to-Peer Networking and Applications, 15(1), 503–515.

29. Lu, Y., Li, J. (2019). Constructing certificateless encryption with keyword search against outside and inside
keyword guessing attacks. China Communications, 16(7), 156–173.

30. Shiraly, D., Pakniat, N., Noroozi, M., Eslami, Z. (2022). Pairing-free certificateless authenticated encryption
with keyword search. Journal of Systems Architecture, 124, 102390.

31. Boneh, D., Franklin, M. (2003). Identity-based encryption from the weil pairing. SIAM Journal on
Computing, 32(3), 586–615.

32. Barreto, P. S. L. M., Kim, H. Y., Lynn, B., Scott, M. (2002). Efficient algorithm for pairing-based
cryptosystems. 22nd Annual International Cryptology Conference Santa Barbara, pp. 354–369. California,
USA.

33. Joux, A. (2002). The weil and tate pairing as building blocks for public key cryptosystems. 5th International
Algorithmic Number Theory Symposium, pp. 20–32. Sydney, Australia.

34. Han, M., Xu, P., Xu, L., Xu, C. (2022). TCA-PEKS: Trusted certificateless authentication public-key
encryption with keyword search scheme in cloud storage. Peer-to-Peer Network Appliction, 16(1), 156–169.

35. Uwizeye, E., Wang, J., Cheng, Z., Li, F. (2019). Certificateless public key encryption with conjunctive
keyword search and its application to cloud-based reliable smart grid system. Annals of Telecommunications,
74(7), 435–449.

36. Chenam, V. B., Ali, S. T. (2022). A designated cloud server-based multi-user certificateless public key
authenticated encryption with conjunctive keyword search against IKGA. Computer Standards & Interfaces,
81(C), 103603.

37. Cheng, L. X., Meng, F. (2023). Certificateless public key authenticated searchable encryption with enhanced
security model in IIoT applications. IEEE Internet of Things Journal, 10(2), 1391–1400.

38. PBC Library: The pair-based cryptography library. http://crypto.stanford.edu/pbc/ (accessed on
06/01/2023).

http://crypto.stanford.edu/pbc/

	Blockchain-Based Certificateless Bidirectional Authenticated Searchable Encryption Scheme in Cloud Email System
	1 Introduction
	2 Preliminaries
	3 The Framework
	4 The Proposed CL-BSE Scheme
	5 Security Analysis
	6 Performance Analysis
	7 Conclusion
	References

