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ABSTRACT

In recent years, there has been extensive research on object detection methods applied to optical remote sensing
images utilizing convolutional neural networks. Despite these efforts, the detection of small objects in remote
sensing remains a formidable challenge. The deep network structure will bring about the loss of object features,
resulting in the loss of object features and the near elimination of some subtle features associated with small objects
in deep layers. Additionally, the features of small objects are susceptible to interference from background features
contained within the image, leading to a decline in detection accuracy. Moreover, the sensitivity of small objects
to the bounding box perturbation further increases the detection difficulty. In this paper, we introduce a novel
approach, Cross-Layer Fusion and Weighted Receptive Field-based YOLO (CAW-YOLO), specifically designed
for small object detection in remote sensing. To address feature loss in deep layers, we have devised a cross-layer
attention fusion module. Background noise is effectively filtered through the incorporation of Bi-Level Routing
Attention (BRA). To enhance the model’s capacity to perceive multi-scale objects, particularly small-scale objects,
we introduce a weighted multi-receptive field atrous spatial pyramid pooling module. Furthermore, we mitigate the
sensitivity arising from bounding box perturbation by incorporating the joint Normalized Wasserstein Distance
(NWD) and Efficient Intersection over Union (EIoU) losses. The efficacy of the proposed model in detecting small
objects in remote sensing has been validated through experiments conducted on three publicly available datasets.
The experimental results unequivocally demonstrate the model’s pronounced advantages in small object detection
for remote sensing, surpassing the performance of current mainstream models.
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1 Introduction

With the advancement of aerospace remote sensing technology, the tasks such as classification,
segmentation, detection, and tracking of remote sensing images have emerged as focal points in the
modern field of image processing. In recent years, deep learning-based object detection algorithms
have achieved notable breakthroughs in various domains [1]. Despite the success of these object
detection algorithms [2–5] in detecting medium and large objects in remote sensing object detection
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tasks, challenges persist when it comes to small objects characterized by a limited number of pixel
values. Even the current more advanced object detection algorithms [6–9] cannot completely overcome
this challenge. The definition of small objects varies in different scenarios, and there are fundamental
approaches for classification: 1) Based on relative scale, object instances whose relative area, i.e., the
ratio of the area of the bounding box to the area of the image, has a median between 0.08% and 0.58%
for all object instances in the same category are defined as small objects; 2) Based on absolute scale,
i.e., from the perspective of the absolute pixel size of the object, the most common definition comes
from the MSCOCO dataset [10], a generalized dataset in the field of object detection, which defines a
small object as an object with a resolution of less than 32 pixels by 32 pixels.

Presently, there are two types of object detection models based on deep learning: single-stage
detection models and two-stage detection models. Unfortunately, both detection models exhibit
notable shortcomings in the performance of small object detection compared to other sizes of objects
[11]. Persistent challenges in small object detection include the following: Firstly, the risk of losing
object information is pronounced. Common contemporary object detectors are typically comprised of
a backbone and a detection head, with the latter making decisions based on the representation output
by the former. While these models have proven effective and yielded unprecedented success, general
feature extraction networks often employ down-sampling operations to filter out noise and reduce the
spatial resolution of the feature maps. While this loss has minimal impact on the model’s performance
for medium and large object detection, it proves fatal for small objects. The detection head struggles
to provide accurate predictions in highly structured representations when the subtle features of
small objects are nearly eliminated from the deep features. Secondly, noise adversely affects feature
representation, and discriminative features are crucial for both classification and localization tasks.
Small objects typically exhibit low resolution and poor feature quality, posing challenges in learning
discriminatively from the distorted structures. Simultaneously, regional features of small objects are
susceptible to background and other environmental factors, introducing additional noise into the
deep learning process. Thirdly, small objects exhibit low tolerance for perturbation of bounding
frames. In most object detection algorithms, localization—one of the primary tasks—is formulated
as a regression problem. The localization branch is designed to output bounding box offsets, and
the Intersection over Union (IoU) metric is commonly used for accuracy evaluation. However, even
a slight deviation significantly lowers the IoU, exacerbating the learning difficulty of the regression
branch. Numerous scholars have proposed solutions to these challenges in small object detection.
For example, Bai et al. [12] proposed a feature-enhanced pyramid and shallow feature reconstruction
network (FEPS-Net) based on feature enhancement to address the difficulty of detecting densely
distributed small ships in synthetic aperture radar (SAR) ship images. FEPS-Net proposes a feature
enhancement pyramid that includes a spatial enhancement module for enhancing spatial location
information and suppressing background noise, and a feature alignment module for solving the
problem of feature misalignment during feature fusion; in addition, for the problem of detecting small
ships in SAR ship images, a shallow feature reconstruction module is designed to extract the semantic
information of small ships. Huang et al. [13] proposed a cross-scale feature fusion pyramid network
for the problem of fewer small object features in the deep network, in which the Cross-Scale Fusion
Module (CSFM) is introduced to perform multi-scale fusion in order to ensure that there are enough
small object features in the output features, and in this way to solve the problem of difficult detection of
small objects in remote sensing images. While these existing methods have improved detection accuracy
to some extent, they still face limitations:1) Most detection models targeting small objects adopt only
the multi-scale fusion method, neglecting the cross-layer fusion strategy and the determination of the
fusion factor; 2) The Spatial Pyramid Pooling (SPP) module in many models does not incorporate
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smaller receptive fields and self-learning weighted ideas, hindering small object detection; 3) The
optimization of the frame regression loss calculation method is overlooked in most models, resulting
in poor locating ability for small objects.

To tackle the challenges associated with detecting small objects, we propose the Cross-Layer
Fusion and Weighted Receptive Field-based YOLO [14] (CAW-YOLO) for small object detection
in remote sensing. This approach utilizes the YOLOX-S object detection model as the baseline
model. Firstly, Bi-Level Routing Attention (BRA) [15] is introduced into the backbone network
to enhance feature extraction while effectively filtering out noise. Secondly, we propose MSCA-
CBAM, an enhancement of the Convolutional Block Attention Module (CBAM) [16], addressing
the limitations of CBAM. Thirdly, we present a weighted multi-receptive field atrous spatial pyramid
pooling module, leveraging the concept of receptive field weighting to augment the detection capability
for small objects. Fourthly, a cross-layer attention fusion module is constructed using a multi-scale
fusion scheme, which fuses shallow and deep features, so that the information of small objects is
retained to the maximum extent in the fused feature map. Finally, we address the low tolerance of small
objects to bounding box perturbations by incorporating the joint Normalized Wasserstein Distance
(NWD) [17] and Efficient Intersection over Union (EIoU) [18] losses as the model’s box regression
loss function. The following summarizes the contributions of the paper:

1. Utilizing YOLOX-S [19] as the baseline model, we propose CAW-YOLO for remote sensing
small objects, which surpass current mainstream object detection models used for multiple
small object datasets in remote sensing.

2. A cross-layer attention fusion module is proposed which is to preserve the information of small
objects in the fused feature map to the greatest extent and reduce the redundancy in the feature
fusion process through the attention mechanism. It is worth mentioning that we propose an
improved CBAM based on CBAM in this module.

3. Based on a weighting mechanism, a multi-receptive field atrous spatial pyramid pooling
module is proposed so that the model can dynamically adjust the importance of different sizes
of receptive field feature maps according to different inputs.

4. We adopt a joint box regression loss function to address the low tolerance of small objects to
bounding box disturbances while maintaining a high convergence speed in the model.

The remainder of the article is organized as follows: Section 2 reviews some related work. Section 3
describes the materials and methods of our work. Section 4 presents our experimental results and
discusses their significance. Finally, Section 5 provides a concise summary of our findings and suggests
directions for future research.

2 Related Work
2.1 Attention Mechanism

In recent years, the attention mechanism has gained widespread use across various task models,
such as language and vision, due to its exceptional performance. Attention systems operate by
selectively weighting input variables to determine output variables. In visual models, attention systems
suppress irrelevant information by assigning weights to features in the object area. SENet [20] obtains
the weights corresponding to each channel through compression and assigns the corresponding
weights to each channel; CBAM calculates the attention weights in both spatial and channel dimen-
sions to better focus on the features of interest; CA (Coordinate Attention) [21] is essentially spatial
attention by performing average pooling horizontally and vertically, and assigns different weight
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coefficients to different locations in space after embedding the location information in the channel
attention.

2.2 Feature Fusion
Multi-scale feature fusion forms the foundational structure for addressing small object detection

problems. Deeper Convolutional Neural Network (CNN) structures generate multi-layer feature maps
with diverse spatial resolutions. Lower layers contain finer-grained and more localized features,
while higher layers offer richer semantic information. The challenge arises because features of small
objects may vanish in deeper layers due to down-sampling. Therefore, feature fusion integrates
features at different levels or branches, enhancing the representation of small object features. SSD
[22] first attempts to use pyramid features for object detection. Feature Pyramid Networks (FPN) [23]
uses lateral connectivity and top-down feature fusion to construct a feature pyramid with stronger
semantics. In addition, Path Aggregation Network (PAN) [24] adds bottom-up enhancement based on
FPN to improve the information flow. EfficientDet [25] repeats the bidirectional path multiple times
to facilitate higher-level feature fusion. In addition to manually designing the network, NAS-FPN [26]
attempts to find stronger feature pyramid structures with the help of neural structure search.

2.3 Current Mainstream Small Object Detection Model
Presently, numerous mainstream small object detection models exist. Wang et al. [27] proposed

M-CenterNet, which was an improvement on CenterNet. Instead of predicting a single central point,
M-CenterNet predicts four central points, enhancing the model’s accuracy in pinpointing small objects
and improving detection accuracy. Li et al. [28] proposed TridentNet, emphasizing the impact of
receptive fields on small objects. TridentNet suggested that smaller receptive fields are more suitable for
detecting these objects and employs a multi-scale detection framework to balance them with objects of
other sizes. Most current object detection models use rectangular bounding boxes to represent objects
across various recognition stages like anchors, proposals, and final predictions. While convenient,
these boxes only offer initial object positioning, resulting in rough feature extraction. To address
this, Yang et al. [29] proposed RepPoints. RepPoints uses a set of points for object localization,
employing adaptive to position these points accurately. This approach limits the spatial scope of the
object, highlighting semantically important areas and providing a more refined positioning method.
Hong et al. [30] proposed SSPNet (Scale Selection Pyramid Network) to enhance the representation
of small objects in FPN by employing a scale enhancement module and scale selection module. The
former ensures that the model focuses on objects of different scales throughout each layer to prevent
the small objects from being overwhelmed by the large number of backgrounds, while the latter
facilitates feature sharing between adjacent layers in FPN, ensuring gradient consistency. Lu et al. [31]
proposed AF-SSD (Attention and Feature-fusion SSD), which enhances the detection ability for small
objects by fusing shallow and deep feature information through a multi-layer feature fusion structure.

3 Methodology

In this section, we elucidate the proposed method and delve into the implementation details of
each module.

3.1 General Structure of the Model
We use YOLOX-S as the baseline model and propose an improved model, named CAW-YOLO, for

small objects in remote sensing. The overall structure of the model is shown in Fig. 1, illustrating the
data flow with arrows. The whole model is comprised of the Backbone, Neck and Head. The Backbone
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plays the role of extracting image features. Considering that small object features are easily affected by
background noise in the process of feature extraction, CAW-YOLO adds Bi-Level Routing Attention
(BRA) to the last layer of Backbone, so that the model can filter background noise in the process
of feature extraction. The BRA module is based on sparse sampling rather than down-sampling, it
can retain the fine-grained detail information on the one hand, and achieve the purpose of saving the
computation quantity on the other hand as well. The retention of fine-grained features in the network
can improve the model’s ability to discriminate small objects. In order to enhance the model’s ability of
multi-scale perception, especially for small-scale objects, we propose WMFASPP instead of SPP [32]
in YOLOX-S, which enhances the model’s multi-scale perception ability through dynamic weighting.
In the Neck, we adopt the cross-layer fusion method, fusing feature maps d2, d3 and d4 through the
Cross-layer Attention Fusion Module. Finally, the detection results are processed in the Head. To be
clear here, although BRA has a good ability to optimize the model, it also has a negative impact, that
is, excessive use of BRA in the model will introduce too many parameters, affecting the detection speed
of the model. For an object detection model for industrial applications, its real-time performance must
be ensured, as a result, only one BRA is used in order to avoid introducing too many parameters.

Figure 1: Overall architecture of CAW-YOLO

3.2 Cross-Layer Attention Fusion Module
In the task of object detection, the shallow features of the network have a smaller receptive

field, and the extracted features are more similar to the input, including more fine-grained features
such as color, texture, corners and edges, which are more conducive to the network’s localization
of small objects. While the deep features of the network, after multi-layer convolution operations,
contain more abstract semantic information, in which the detailed features of small objects are almost
eliminated, which is the reason why many object detection models have poor performance for small
object detection. Addressing this, the improved model performs cross-layer feature fusion in YOLOX-
S’s Neck. We propose a Cross-layer Attention Fusion Module (CAFM) to fuse shallow features with
deep features, and use the attention mechanism to reduce the redundancy of feature fusion.
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3.2.1 MSCA-CBAM

Before introducing the entire CAFM in detail, it is necessary to introduce the attention module
used in CAFM: MSCA-CBAM in detail. The main function of MSCA-CBAM in CAFM is to filter
useless features and reduce feature information redundancy during feature fusion. The structure of
CBAM will be introduced below, and its defects will be analyzed. Finally, how MSCA-CBAM is
improved from CBAM will be introduced.

CBAM is comprised of a Channel Attention Module (CAM) and a Spatial Attention Mod-
ule (SAM), which are cascaded together. The CAM utilizes max-pooling and average-pooling to
respectively compress the input features F ∈ R

C×H×W , aiming to derive channel information from the
input features. The resulting two generated channel information features F c

max, F c
avg ∈ R

C×1×1 undergo
processing through a multilayer perceptual machine—a fully connected three-layer structure. Finally,
the obtained features are aggregated and subjected to a sigmoid function to obtain the channel
attention weights Mc ∈ R

C×1×1, which are computed as Eq. (1):

Mc (F) = σ (MLP (AvgPool (F)) + MLP (MaxPool (F))) = σ
(
W1

(
W0

(
F c

avg

))+W1

(
W0

(
F c

max

)))
(1)

Here, σ represents the sigmoid activation function, and W0 and W1 represents the weights in the
fully connected three-layer network.

The feature mapping F1 ∈ R
C×H×W incorporating the channel attention is derived by producing

the channel attention weights Mcwith the input features F . Subsequently, SAM processes F1 as input,
performing maximum pooling and average pooling on the channel dimensions to obtain two spatial
information mappings F s

max, F s
avg ∈ R

1×H×W , which are then concatenated. Then the spatial attention
weights Ms ∈ R

1×H×W are obtained after a 7 × 7 convolution operation and sigmoid function processing,
and the computation is as Eq. (2):

Ms (F1) = σ
(
f 7×7 ([AvgPool(F); MaxPool (F)])

) = σ
(
f 7×7

([
F s

avg; F s
max

]))
(2)

Here, σ represents the sigmoid activation function, and f 7×7 is a 7 × 7 convolution operation. The
CBAM-processed feature map is obtained by performing the inner product operation on Ms and F1.
The CBAM-processed feature map is then used as the basis for the feature map.

While CBAM proves efficient as an attention module, it has still some drawbacks. Firstly, the use
of global average-pooling in the CAM for feature compression can lead to some amount of missing
feature information. Secondly, it demands more computing resources, increasing computational
complexity. The work [33] proposed the Multi-Spectral Channel Attention Module (MSCAM), which
proves that the global average-pooling used by CAM in calculating channel attention is essentially
the zero-frequency pooling of the Discrete Cosine Transform (DCT) from the frequency perspective.
However, this obviously ignores other useful frequency components. Although maximum pooling is
also utilized in CAM to supplement the frequency information, this is still not an optimal solution.
Based on the work [33], the CBAM is improved by utilizing 2D DCT instead of global average-pooling
in CAM, which introduces frequency information into the attention process, includes more useful
frequency information during feature compression. This avoids missing feature information attributed
to global average pooling, allowing the network to better filter noise during feature extraction. The
improved CBAM is referred to as MSCA-CBAM, and its structure is shown in Fig. 2.
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Figure 2: Structure of MSCA-CBAM

Instead of global average pooling, 2D DCT is utilized as follows: the feature map is divided into
multiple parts according to the number of channels, and each undergoes 2D DCT calculation using
different frequency components, including the zero-frequency component (i.e., global average pool-
ing), thereby compressing more frequency information. As shown in Fig. 2, F 0, F 1, . . . , Fn−1denotes the
partitions into which the input feature F ∈ R

C×H×W is divided, where Fi ∈ R
C′×H×W , i ∈ {0, 1, . . . , n − 1},

C ′ = C
n

, and C should be divided by n. For each partition, the corresponding 2D DCT frequency

component is assigned, and the 2D DCT transform is performed. Finally, the compressed components
are concatenated to obtain the 2D DCT compressed feature map F 2DDCT ∈ R

C×1×1. The calculation
process is as follows. In addition, the 16 frequency components with the best performance based on
the heuristic two-step criterion from the work [28] are used our works.

Freqi = 2DDCTui ,vi (Fi) =
H−1∑
h=0

W−1∑
w=0

Fi
: ,h,wBui ,vi

h,w

s.t. i ∈ {0, 1, . . . , n − 1}
(3)

Bi,j
h,w = cos

(
πh
H

(
i + 1

2

))
cos

(
πw
W

(
j + 1

2

))
(4)

F 2DDCT = [
Freq0; Freq1; . . . ; Freqn−1

]
(5)

Here, Eq. (4) is the basis function of 2D DCT. In Eq. (3), ui and vi are the preset 2D frequency
component weights corresponding to Fi, and Freqi ∈ R

C′×H×W denotes the results of 2D DCT
compression for each channel partition.

3.2.2 The Structure of the Cross-Layer Attention Fusion Module

The implementation process of the cross-layer attention fusion module will be described in detail
below, including the selection of required fusion features and the selection of fusion methods.
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As shown in Fig. 3, the output features of layers d2, d3, and d4 in the Backbone are utilized for
cross-layer feature fusion. This involves combining shallow features with deep features using the three
output features p1, p2, and p3 of the PAN in the Neck. In contrast to the conventional cross-layer
fusion, this approach directly fuses Backbone features with PAN output features, avoiding additional
processing by the FPN and the PAN. Compared with the latter, by directly fusing with the output
features of PAN, the number of parameters of the model can be minimally increased while fusing
the deep and shallow features to avoid overfitting the network; secondly, in the backbone part of the
network, since the features are only less processed, there are more fine-grained features of the retained
small objects, which will inevitably result in the loss of the fine-grained features of the small objects if
they are fused in the FPN and the PAN and undergo too much processing.

Figure 3: Cross-layer fusion network structure

The structure of CAFM is shown in Fig. 4a. Here, X ∈ R
C×H×W represents shallow features

output from backbone, andY ∈ R
2C× H

2 × W
2 represents deep features output from the PAN. Inspired

by the prior work [34], down-sampling utilizes the SPD (Space-to-depth) layer, as shown in Fig. 4b.
The SPD layer slices the feature map X by the separated feature points to generate four sub-feature

maps, where the size of each sub-feature map is
(

C × H
2

× W
2

)
, and finally performs a stitching

operation to generate the down-sampled feature map X ′ ∈ R
4C× H

2 × W
2 . In contrast to direct utilize of

down-sampling methods such as pooling, the SPD layer converts the fine-grained features of the space
into channel depth features and does not directly erase the fine-grained features. After the SPD layer,
X ′ is processed utilizing a non-spanning (step size of 1 and kernel size of 1) dynamic convolution [35].
The structure of dynamic convolution is shown in Fig. 4c. It firstly performs attention computation
for the input feature maps, generates n attention weights, and then performs linear summation on the
n convolution kernel parameters. Finally, the summated convolution kernel is used as the convolution
kernel of dynamic convolution for the operation. Compared to traditional convolution, dynamic
convolution can change with the input. After using the SPD layer, dynamic convolution can more
effectively extract small object features with fewer operations. In addition, utilizing non-stride methods
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is more helpful for the network to retain the fine-grained information of small objects, as opposed to s
strides greater than 1, which results in an undifferentiated loss of feature information. Finally, CAFM
utilize the MSCA-CBAM to compute the attention of the two feature maps, reducing the redundancy
of feature information during the feature fusion process.

Figure 4: Structure of CAFM. (a) Overall structure of CAFM; (b) SPD layer; (c) Overall structure of
dynamic convolution

3.3 Weighted Multi-Receptive Field WMFASPP
Spatial Pyramid Pooling (SPP) is utilized in the Backbone of YOLOX-S, which aims at extracting

spatial feature information at different scales of the receptive field, and improving the robustness of the
model to spatial layout and object variability. Chen et al. [36] proposed Atrous Spatial Pyramid Pooling
(ASPP). ASPP fundamentally differs from SPP by eschewing pooling operations and employing a
series of dilation convolutions with varying dilation rates to create a pooling pyramid. This approach
offers distinct advantages: compared to pooling operations, downsampling with dilated convolutions
acquires feature maps with diverse receptive fields while preserving fine-grained image features crucial
for small object detection. Based on the above theories, we propose the Weighted Multi-receptive Field
Atrous Spatial Pyramid Pooling (WMFASPP), Its structure is shown in Fig. 4.

WMFASPP constructs feature maps with different receptive fields through ordinary convolu-
tion and dilated convolution. The dilation rates of dilated convolutions are set at 2, 3, 4, and 5,
corresponding to receptive field sizes of 1 × 1, 3 × 3, 7 × 7, 9 × 9, and 11 × 11, respectively. The
smaller receptive fields ensure the network captures features of small objects, while the multi-scale
receptive fields empower the network to gather information across various scales. Leveraging dilated
convolution ensures the retention of fine-grained features during downsampling, preserving detailed
image information and enhancing small-scale object detection. To adaptively learn the importance
of different receptive field feature maps, a weighted fusion concept is employed. Different weights are
multiplied with distinct receptive field feature maps before the splicing operation. Moreover, regarding
the generation of weights, instead of taking the traditional way of generating compressed feature maps
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using global average pooling, the 2D DCT mentioned in the previous section is utilized. As shown in
Fig. 5, the input feature map of WMFASPP undergoes 2D DCT compression, followed by feature
extraction via a fully connected two-layer structure. Finally, the Sigmoid function activate to yield
the 6 feature map weights W ∈ R

6×1×1. These six weights are multiplied with the feature maps of
different receptive fields before the subsequent step. This adaptive weighting enhances the model’s
multi-scale detection capabilities, assigning greater importance to small receptive field feature maps
when increased attention to small objects is warranted, and vice versa for larger objects. The selection
of frequency components in the 2D DCT transformation aligns with the approach detailed in the
previous section.

Figure 5: Overall structure of WMFASPP

3.4 Joint Box Regression Loss of NWD and EIoU
To mitigate the susceptibility of small objects to bounding box perturbations, Wang et al. [21]

proposed a novel metric utilizing the Wasserstein distance to assess small objects, which better reflects
the distance between distributions even if there is no overlap between them. Compared with IoU,
this metric has better properties in measuring the similarity between small objects. The Normalized
Wasserstein Distance is a distance metric that measures the distance between probability distributions
using the Wasserstein distance derived from optimal transportation theory. When comparing two 2D
Gaussian distributions represented by μ1 = N (m1, Σ1) and μ2 = N (m2, Σ2), the distance between
them can be quantified using the second-order Wasserstein distance, as shown in Eq. (6).

W2
2 (μ1, μ2) =‖ m1 − m2 ‖2

2 +Tr
(
Σ1 + Σ2 − 2

(
Σ1/2

2 Σ1Σ
1/2
2

)1/2
)

(6)

The equation can be simplified as:

W2
2 (μ1, μ2) =‖ m1 − m2 ‖2

2 + ‖ Σ
1
2
1 − Σ

1
2
2 ‖2

F′ (7)
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Here, ‖ · ‖F represents the Frobenius norm. Furthermore, since modeling is performed for two
bounding boxes A = (

cxa, cya, wa, ha

)
and B = (

cxb, cyb, wb, hb

)
, the above equation can be simplified

to:

W2
2 (μ1, μ2) =

∣∣∣∣
∣∣∣∣
([

cxa, cya,
wa

2
,

ha

2

]T
)

,
[

cxb, cyb,
wb

2
,

hb

2

]T ∣∣∣∣
∣∣∣∣

2

2

(8)

Normalizing it results in NWD:

NWD (Na, Nb) = exp

⎛
⎝−

√
W2

2 (Na, Nb)

C

⎞
⎠ (9)

Here, C is the usual size of the dataset instance.

Recognizing that relying solely on NWD as a distance metric for object and prediction boxes
might impede model convergence, both EIoU and NWD are employed as the distance metrics in this
paper. Their collective loss is the joint loss of EIoU and NWD, computed as:

Loss = 1 −
(

1
2

NWD (Na, Nb) + 1
2

EIoU
)

(10)

Here, EIoU is calculated as:

EIoU = IoU − ρ2 (b, bgt)

c2
− ρ2 (w, wgt)

C2
w

− ρ2 (h, hgt)

C2
h

(11)

Here, c represents the diagonal length of the minimum outer rectangle of the prediction box and
the real box. Cw and Ch denote the width and length of the minimum outer rectangle, and b and bgt

denote the centers of the prediction box and the real box, respectively. ρ denotes the Euclidean distance,
w, wgt, h and hgt represent the width and length of the prediction box and the real box, respectively.

4 Experimental Details
4.1 Datasets

Currently, there are many datasets used in the field of remote sensing object detection. However,
in most of datasets, the number of large objects is much larger than that of small objects; at the
same time, some small object annotations have poor quality and may contain errors. In recent years,
numerous datasets proposed for remote sensing small objects, such as DOTA [37], NWPUVHR-
10 [38], UCAS_AOD [39], DIOR [40], RSOD [41], and AI-TOD [27]. Considering the number of
categories and the richness of small objects in the dataset, we choose to utilize AI-TOD, DIOR, and
RSOD as the experimental dataset.

DIOR is a large-scale dataset for optical remote sensing detection containing such as high-speed
service areas, high-speed toll booths, airplanes, airports, baseball stadiums, basketball courts, bridges,
chimneys, dams, golf courses, athletic stadiums, harbors, overpasses, boats, stadiums, storage tanks,
tennis courts, train stations, vehicles, and windmills in total 20 categories. The dataset has a total of
23463 images and 192472 instances, out of which 5862 will be used as a train set, 5863 as a validation
set, and 11738 as a test set. RSOD is an open remote sensing dataset including 4 categories of airplanes,
fuel tanks, playgrounds, and overpasses. The dataset has a total of 976 images and 6950 instances,
which are randomly divided into a train set and a test set according to the ratio of 8:2. AI-TOD is a
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newer remote sensing object detection dataset, which mainly focuses on the small objects, including
airplane bridge storage-tank ship swimming-pool vehicle person AI-TOD is a newer remote sensing
object detection dataset, which mainly focuses on small objects, including airplanes, bridges, storage-
tanks, ships, swimming-pools, vehicles, persons, and wind-mills, with 8 categories and a total of 28,036
images, of which 14,018 are used as a train set, and 14,018 as a test set (such as PASCAL VOC
(156.6 pixels), MS COCO (99.5 pixels) or DOTA (55.3 pixels)). The details of the three datasets are
summarized in Table 1.

Table 1: Dataset overview

Dataset Image size Image number Instance Category

AI-TOD 800 × 800 28036 700621 8
DIOR 800 × 800 23463 192472 20
RSOD 1044 × 915 976 6950 4

In order to prove the reliability of the dataset used for the experiment, the aspect ratio of the object
boxes in the dataset was counted as shown in Fig. 6. There are a large number of small objects in all
three data mentioned in the experiment, which meets the experimental requirements of remote sensing
small objects.

Figure 6: Aspect ratio of the object box in the datasets. (a) aspect ratio of the object box in AI-TOD;
(b) aspect ratio of the object box in DIOR; (c) aspect ratio of the object box in RSOD

4.2 Experimental Details
In our experiment, the hardware configuration for model training and performance evaluation

is Intel Core i7-12700KF (3.60 GHz), with 32 GB of RAM, GPU model NVIDIA RTX A4000, and
16 GB of video memory; the software environment is Windows 10, Python 3.8, PyTorch 1.9, and
CUDA framework for parallel acceleration. Parallel accelerated computing, CUDA version 11.0. In
order to have a fair comparison of the model performance, the Adam optimizer is used uniformly in
the experiments, the momentum size is set to 0.937, the learning rate adopts the cosine annealing
algorithm, the initial learning rate is 1e−3, the minimum learning rate is 0.01 times of the initial
learning rate, the batch size and the epoch is set to 16 and 300, respectively.
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4.3 Evaluation Metric
In the object detection task, the commonly used evaluation metrics are Average Precision (AP),

detection speed FPS (Frames Per Second) and the amount of model parameters (Params). The AP
is a comprehensive metric in the task of object detection. For the detection of multi-category objects,
the AP usually denotes mean average precision (mAP) which is obtained by the average of different
category APs. But, in order to specifically show the detection effect of the proposed model for small
objects. we adopts the same evaluation metrics as in the work [27] in the comparison experiments for
the AI-TOD dataset. This is a more stringent COCO metric, which includes AP, AP0.5, AP0.75, APvt,
APt, APs, APm and APl. AP denotes the AP with IoU = 0.50:0.05:0.95 (the average of the values on
the IOU thresholds), and AP0.5 denotes the AP with IOU = 0.50 (equally to mAP in PASCAL VOC
metric, is the metric that can best represent the comprehensive performance of the detection model).
AP0.75 denotes APs with IOU = 0.75 (a very strict metric). APs denotes AP for small objects with areas
less than 322 and greater than 162. APm denotes AP for medium-sized objects with areas between 322

and 962. APl denotes AP for large objects with areas greater than 962. In addition, APvt and APt are
very tiny and tiny objects, corresponding to areas ranging from greater than 22 less than 82 and greater
than 82 less than 162, respectively.

4.4 Experimental Results and Analysis
In this section, the effectiveness of the proposed method is evaluated and analyzed, utilizing

YOLOX-S as the baseline network. It is worth mentioning that all three datasets were utilized in a
set of comparative experiments in this chapter, and the AI-TOD dataset was utilized in the subsequent
improved module comparisons

4.4.1 Comparative Experiments

In order to prove the superiority of the proposed model over the current mainstream object
detection models and its generalizability among different datasets, comparisons are made with multiple
models on the AI-TOD dataset, the RSOD dataset and the DIOR dataset, respectively, and the
comparison results are shown in Tables 2 and 3.

Table 2: Evaluation metrics of different methods based on AI-TOD dataset

Method AP AP0.5 AP0.75 APvt APt APs APm

SSD512 [22] 7.0 21.7 2.8 1.0 4.7 11.5 13.5
TridentNet [28] 7.5 20.9 3.6 1.0 5.8 12.6 14.0
FoveaBox [42] 8.1 19.8 5.1 0.9 5.8 13.4 15.9
RepPoints [29] 9.2 23.6 5.3 2.5 9.2 12.9 14.4
FCOS [5] 9.8 24.1 5.9 1.4 8.0 15.1 17.4
M-CenterNet [27] 14.5 40.7 6.4 6.1 15.0 19.4 20.4
RetinaNet [4] 4.7 13.6 2.1 2.0 5.4 6.3 7.6
ATSS [43] 12.8 30.6 8.5 1.9 11.6 19.5 29.2
Faster R-CNN [2] 11.1 26.3 7.6 0.0 7.2 23.3 33.6
Cascade R-CNN [44] 13.8 30.8 10.5 0.0 10.6 25.5 36.6
DetectorRS [45] 14.8 32.8 11.4 0.0 10.8 28.3 38.0
YOLOv6-M [46] 16.3 37.9 12.1 2.6 10.2 30.5 40.2

(Continued)
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Table 2 (continued)

Method AP AP0.5 AP0.75 APvt APt APs APm

YOLOv8n [47] 14.9 32.8 11.6 2.0 9.8 26.4 33.6
DETR [6] 10.6 26.4 7.4 0.0 6.7 20.5 35.2
YOLOX-S [19] 17.8 44.7 12.6 2.9 13.1 24.4 38.8
Ours 17.1 45.9 10.5 6.3 15.2 31.0 38.5

Table 3: Evaluation metrics of different methods based on DIOR dataset and RSOD dataset

Method DIOR RSOD Params/M FPS/frame·s−1

AP0.5 APs AP0.5 APs

YOLOv7 [48] 72.76 13.7 95.10 41.7 36.90 44.1
YOLOv6-S [46] 73.20 13.5 97.70 44.6 17.19 133.0
YOLOv8-S [47] 74.18 13.3 97.75 42.7 11.67 133.8
YOLOX-S [19] 70.91 11.2 94.58 40.2 8.93 117.9
YOLOv5-S [3] 69.23 11.7 93.38 37.3 7.07 121.9
YOLOv4 [49] 70.13 9.1 94.44 27.6 63.90 62.2
Faster-RCNN [2] 57.94 1.3 93.19 11.6 136.71 44.3
M2Det [50] 59.94 2.1 95.00 14.7 86.50 50.2
FCOS [5] 71.57 11.8 94.45 31.4 51.0 38.1
Ours 73.98 13.9 97.50 44.8 13.22 90.5

The results of the comparison experiments for the AI-TOD dataset are shown in Table 2. Even
the current state-of-the-art detection model’s APvt tends to be close to 0 (which indicates that it is
difficult to detect tiny objects with area sizes of 22∼82), while the APvt value of the proposed model in
this paper reaches 6.3%. Compared with YOLOv8n, YOLOv6-M, M-CenterNet, YOLOX-S, DETR,
and Faster R-CNN, the APvt values of the model in this paper are 4.3%, 3.7%, 0.2%, 3.4%, 6.3%,
and 6.3% higher, respectively. In addition, the AP0.5 and APt values of the proposed model are the
highest, which indicates that the proposed model has the best detection performance for small objects
compared to the other models. It is worth mentioning that many metrics of the model in this paper
have reached the highest in Table 2, but the values of AP and APm are not the highest. Because, for
objects of different scales, it is a problem to keep the AP of small objects rising while the AP of large
objects is also rising. And, the model proposed in this paper, on the basis of YOLOX-S, strengthens
the attention to small objects, it is inevitable that the model’s attention to medium and large objects
will decline. This is also the reason why the APm of the model proposed in this paper is smaller than
that of YOLOX-S, and also causes the AP metric of the model proposed in this paper to be slightly
inferior to that of YOLOX-S. However, from a global perspective, the APvt, APt and APs metrics of
the model proposed in this paper have been greatly improved compared with YOLOX-S, while the AP
metric has only decreased by 0.7%. It is very cost-effective to reduce the AP metric or exchange for
a large improvement in the accuracy of small objects. In the comparison experiments on the RSOD
and DIOR datasets, the results are shown in Table 3, the proposed model outperforms the current
mainstream object detection models in the comparison of each metric. The APs reach 13.9% and AP0.5
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reaches 73.98% on the DIOR dataset, while the APs reach 44.8% and AP0.5 reaches 97.50% on the
RSOD dataset.

In order to explore the difference between the proposed detection model in terms of parameter
amount and detection speed with respect to the current mainstream object detection model, parameter
amount and detection speed are compared between the current mainstream detection models and
the proposed model, and the comparison results are shown in Table 3. The parameter amount of
the detection model proposed in this paper is only 13.22 M, and the detection speed can reach
90.5 frame·s−1. The parameter amount is only 4.29 M higher than the baseline model YOLOX-S, and
the detection speed is up to 90.5 frame·s−1 to meet the requirement of real-time detection. In addition,
compared with the other models in the table, the parameter amount of the proposed model is only
larger than that of YOLOX-S, YOLOv8-S and YOLOv5-S, and the number of parameters of the rest
of the models is larger than that of the model in this paper. Finally, it should be noted that with the
increase of modules, the detection speed and parameter number of the model will be affected to a
certain extent, but at the cost of a small number of parameters and detection speed, improving the
detection accuracy of small objects is cost-effective, which is not inferior to the current mainstream
detectors (YOLOv8, etc.).

In order to directly reflect the detection ability of the improved model on remote sensing small
objects, the detection effect is compared using the BASELINE, the proposed model, YOLOv8-S
and YOLOv7, and the detection effect is shown in Fig. 7. Compared with the other three current
mainstream models in the detection of remote sensing small objects in the process of a large number of
leakage detection, the improved model has greatly improved this situation. This proves that the model
structure proposed in this paper plays an important role in the detection process of small objects.

4.4.2 Ablation Experiment

In order to verify the effectiveness of each improvement method proposed in this paper, a set
of ablation experiments were designed on the AI-TOD dataset, and the results of the experiments
are shown in Table 4. A “√” indicates that the method was added. All the methods proposed in this
paper improve the model AP0.5 by a total of 1.2%, APt by 2.1% and APvt by 3.4%. It illustrates that
the model’s detection ability for remote sensing objects, especially small objects, can be significantly
improved when all the improved methods are utilized. In addition, after utilizing all the methods, the
number of parameters only increases by 4.29 M compared with the original model, and the FPS only
decreases by 27.4 frame·s−1, which only uses less overhead in exchange for a larger improvement.

From the overall point of view, the improved model in this paper has some advantages in improving
both AP0.5 and APs. At the same time, due to the addition of each improvement method, the complexity
of the model will inevitably be enhanced, and it will be slightly inferior to the original model in
terms of the number of parameters and detection speed. However, the small increase in the number
of parameters and detection speed does not affect the lightweight and real-time performance of the
model, and it is very cost-effective to exchange a small amount of overhead for the improvement of
detection accuracy.
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Figure 7: The detection effect is compared with the BASELINE, the proposed model, YOLOv8-S, and
YOLOv7. (a) The detection effect of the proposed model; (b) The detection effect of YOLOv8-S; (c)
The detection effect of YOLOv7; (d) The detection effect of baseline

Table 4: Evaluation metrics of ablation experiment

BRA WMFASPP CAFM Loss AP0.5 APt APvt Params/M FPS/frame·s−1

— — — — 44.7 13.1 2.9 8.93 117.9√ — — — 44.9 13.7 3.4 10.00 100.3√ √ — — 44.6 14.2 5.5 12.87 95.0√ √ √ — 45.2 14.6 6.0 13.22 90.5√ √ √ √ 45.9 15.2 6.3 13.22 90.5
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4.4.3 Experimental Analysis of MSCA-CBAM

To further validate the effectiveness of MSCA-CBAM, a set of side-by-side comparison experi-
ments of attention modules are done in this paper, replacing MSCA-CBAM with CBAM, CA, SK
and MSCAM attention modules respectively on the basis of the model proposed in this paper on the
AI-TOD dataset, and the experimental results are shown in Table 5. As can be seen from Table 5,
the different attention modules all bring different changes in performance, while the model utilizing
MSCA-CBAM achieves the highest in terms of detection accuracy. In terms of the number of model
parameters, the addition of MSCA-CBAM only results in a model parameter of 13.22 M, which is only
0.01 M higher than that of CA and lower than that of CBAM, which is 14.77 M. This is due to the fact
that pre-determined frequency components are utilized in the 2D DCT transforms, so no additional
parameter number is introduced when using multi-band components for feature compression.

Table 5: Comparison of the effects of different attention models

Model AP0.5 APt APvt Params/M FPS/frame·s−1

w/CBAM-MSCA 45.9 15.2 6.3 13.22 90.5
w/CBAM [16] 45.0 14.5 5.7 14.77 87.5
w/CA [21] 46.1 14.8 6.0 13.21 89.8
w/SK [51] 44.3 14.2 5.5 32.57 83.2
w/MSCAM [28] 44.8 13.6 3.8 13.22 95.8

In order to increase the interpretability of the performance of each attention model, the effect of
each attention model is visualized and analyzed on a small object remote sensing image using a heat
map, and the visualization results are shown in Fig. 8. Among them, MSCA-CBAM achieves the best
both in terms of heat map response strength and response tightness.

4.4.4 Experimental Analysis of WMFASPPF

In order to explore the superiority of WMFASPP, a set of comparative experiments were
conducted utilizing the models proposed in this paper with SPP, ASPP and WMFASPP, respectively,
and the results are shown in Table 6. Among them, the model with WMFASPP achieves the best
detection accuracy, with an improvement of 2.5% and 2.3% in AP0.5, 2.8% and 3.1% in APt, and
2.8% and 3.2% in APvt, relative to the use of SPP and the use of ASPP, respectively. Therefore, by
constructing additional small receptive fields and adaptive weighting in the spatial pyramid pooling
module, it can strengthen the model’s multi-scale perception ability and adaptive scale reinforcement
ability, which can effectively improve the model’s accuracy for small object detection. In addition,
WMFASPP has a smaller number of parameters than ASPP, for several reasons: Firstly, the 2D
DCT utilized in WMFASPP does not add additional parameters. Secondly, more 1 × 1 convolution
is utilized in ASPP for feature extraction, which is the main reason for the large number of ASPP
parameters. Thirdly, WMFASPP initially reduces the channel by more than ASPP, which results in a
lower number of convolution module parameters in the middle.

4.4.5 Experimental Analysis Box Regression Loss Function

In order to investigate the effectiveness of the joint loss of EIoU and NWD, a set of cross-sectional
comparison experiments of the box regression loss function are designed in this paper, utilizing the
IoU loss, EIoU loss, NWD loss and the joint box regression loss in the model proposed in this paper,
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respectively, and the experimental results are shown in Table 7. Compared to the model utilizing IoU
loss alone as the box regression loss, higher accuracy is obtained by utilizing the joint box regression
loss (0.7% improvement in AP0.5, 0.6% improvement in APt, and 0.3 improvement in APvt).

Figure 8: Heat map visualization results. (a) Original image; (b) Heat map of MSCA-CBAM; (c) Heat
map of CBAM; (d) Heat map of CA; (e) Heat map result of SK; (f) Heat map of MSCAM

Table 6: Comparison of the effects of different spatial pyramid pooling models

Model AP0.5 APt APvt Params/M FPS/frame·s-1

w/SPP 43.4 12.4 3.5 10.34 98.7
w/ASPP 43.6 12.1 3.1 18.25 84.3
w/WMFASPP 45.9 15.2 6.3 13.22 90.5
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Table 7: Comparison of the effects of different box regression loss function

Model AP0.5 APt APvt Params/M FPS/frame·s−1

w/IoU 45.2 14.6 6.0 13.22 90.5
w/EIoU 45.3 14.9 6.0 13.22 90.5
w/NWD 45.5 14.8 6.1 13.22 90.5
w/EIoU + NWD 45.9 15.2 6.3 13.22 90.5

4.4.6 Comparison of Cross-Layer Fusion Feature Maps

In order to demonstrate the effectiveness of CAFM proposed in this paper, feature maps will
be visualized utilizing the output from the bottom layer of the cross-layer fusion model and without
utilizing the cross-layer fusion model, and the results of the visualization are shown in Fig. 9 (Fig. 8a
is the input image). Compared with the model without cross-layer fusion method, the object features
in the detected images can be clearly observed in the output feature map of the model utilizing the
CAFM proposed in this paper, and the feature response is stronger in comparison.

Figure 9: (Continued)
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Figure 9: Feature visualization results of the bottom layer output of the models. (a) Visualization of
model with cross-layer fusion; (b) Visualization of model without cross-layer fusion

5 Conclusion

Aiming at the problem that it is difficult to detect small objects in remote sensing images, this
paper proposes CAW-YOLO for small objects in remote sensing by utilizing the YOLOX-S object
detection model as the baseline model. It firstly incorporates BRA into the feature extraction stage of
the model so that the model can filter out the background noise interfering with the detection of small
objects in the feature extraction stage. A weighted multi-receptive field atrous spatial pyramid pooling
module is then constructed by increasing the feature maps of small receptive field and adaptive weights
to enhance the multi-scale, especially small-scale, perception capability of the module. Furthermore,
a cross-layer attention fusion module is proposed, so that the model can maximize the retention of
small object features, and an improved CBAM attention module is also proposed in which the CBAM
attention module is improved by a 2D DCT transform, which introduces frequency information into
the attention so that it can optimize the performance of CBAM attention; finally, the joint box
regression loss of NWD and EIoU is utilized to cope with the sensitivity of the small object to the
slight offset of the object frame. The effectiveness and generalizability of the improved model are
demonstrated on three remote sensing datasets, AI-TOD, DIOR and RSOD, and on the AI-TOD
dataset, which is the most difficult to detect, the APvt reached 6.3%, a 3.4% improvement over the
baseline. However, due to the inclusion of the improved module, it is bound to increase a certain
number of parameters and detection speed, and the future model needs to be researched in the direction
of high accuracy and lightweight.
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