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ABSTRACT

The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity. To address
these complexities, this study employs non-local Peridynamics (PD) theory and reconstructs the kernel function
to represent accurately the spatial decline of long-range force. Additionally, modifications to the traditional bond-
based PD model are made. By considering the micro-structure of coal-rock materials within a uniform discrete
model, heterogeneity characterized by bond random pre-breaking is introduced. This approach facilitates the
proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity,
rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered coal-rock mass
structures. The established numerical model and simulation method, termed the sub-homogeneous PD model,
not only incorporates the support effect but also captures accurately the random heterogeneous micro-structure
of roadway surrounding rock. The simulation results obtained using this model show good agreement with field
measurements from the Fucun coal mine, effectively validating the model’s capability in accurately reproducing
the deformation and failure mode of surrounding rock under bolt-supported (anchor cable). The proposed sub-
homogeneous PD model presents a valuable and effective simulation tool for studying the deformation and failure
of roadway surrounding rock in coal mines, offering new insights and potential advancements.
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1 Introduction

The surrounding rock of roadways is a composite, heterogeneous body comprising mineral
particles and various defects formed through geological processes. It includes discontinuous structures
such as fractures, joints, bedding, and faults [1]. These characteristics result in distinct mechanical
properties, deformation, and failure behaviors compared to homogeneous materials. Under external
loads and other disturbances, pre-existing micro-defects expand and aggregate, forming new macro-
cracks and energy dissipation. Consequently, the strength and stiffness of the coal-rock mass are
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significantly reduced, ultimately leading to irreversible fracture failure, extensive roadway deforma-
tion, damage to support structures, and even overall roadway instability [2]. Over recent decades,
advances in computing technology have made numerical methods an essential and valuable tool
for investigating rock mechanical damage and failure. However, a key challenge in underground
engineering is understanding the mechanical mechanisms behind the deformation and failure of
surrounding rock in such scenarios and developing an effective numerical simulation approach capable
of accurately capturing these processes.

In order to enhance understanding of roadway surrounding rock instability mechanisms, many
researchers have conducted extensive research using numerical methods to investigate damage and
failure characteristics. Traditional numerical techniques, such as the finite element method (FEM),
require predicting crack location and propagation direction. When cracks propagate and branch, the
mesh at the crack tip must be redefined, leading to pronounced mesh dependence in the simulation
results. Introducing Goodman joint elements into the FEM framework allows describing discontin-
uous structures, such as joints and fissures within rock masses. However, numerical instability issues
may arise when many joint elements are involved. To address these challenges, Belytschko et al. [3]
proposed the extended finite element method (XFEM), introducing discontinuous and crack tip
displacement field functions into the conventional finite element displacement mode. However, XFEM
requires that cracks remain continuous at the interfaces of adjacent elements, which still makes it
challenging to deal with complex failure problems like multiple crack interactions and branching.
Another approach, the boundary element method (BEM) [4], treats discontinuous interfaces, such
as cracks, as boundary interfaces. However, basic solutions for corresponding differential operators
are not guaranteed, limiting their applicability. The discrete element method (DEM) [5] and other
discrete medium numerical methods are widely used in geotechnical engineering. Nevertheless, their
accuracy is relatively modest, the number of contact simulations is extensive, and numerous artificial
assumptions must be introduced, potentially leading to significant discrepancies between simulation
results and analytical situations. The numerical manifold method (NMM) [6] employs a finite element
mesh as its mathematical coverage. During the process of crack propagation, this mathematical
coverage remains unchanged. It is only necessary to place densely distributed nodes at the crack
tip without regenerating the mesh. This approach can effectively simulate the progressive cracking
process. However, the function corresponding to the control equations of NMM does not always
exist, which limits its scope of application. The mesh-free method (MF) [7], utilizing node information
and weight functions within compact support domains for local approximation, requires the addition
of nodes near the crack tip to facilitate fracture simulation. Although MF methods eliminate the
mesh dependency issue, they require the introduction of additional parameters. Moreover, their
higher-order continuous approximation functions do not necessarily offer advantages when solving
crack propagation problems, and accurately applying essential boundary conditions can be quite
challenging.

From the perspective of the mechanism underlying material deformation and failure, coal-
rock geotechnical materials comprise various micro-defects at the mesoscale, resulting in distinct
mechanical behaviors for each mesoscale unit under external loads. The interaction among these
mesoscale units within the coal-rock mass leads to an uneven internal stress distribution, producing
nonlinear deformation characteristics at the macro-scale. Existing numerical modeling methods
for heterogeneous geotechnical materials are complex in modeling and simulation, and traditional
numerical methods face limitations in addressing discontinuous problems [8,9]. The primary challenge
of traditional numerical methods in simulating fracture and related issues stems from discontinuities
caused by cracks. Nevertheless, within the framework of continuum mechanics, various difficulties
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are inevitable. Peridynamics (PD) offers a multi-scale simulation approach capable of overcoming
differential operation issues associated with singular or discontinuous nodes in continuum mechanics.
PD has surmounted the limitations of spatial scale. Currently, the mechanical constitutive relationships
of materials mostly rely on laboratory-scale specimen tests, which do not provide a unified constitutive
model between the micro-scale and macro-scale. In contrast, PD utilizes a unified model to describe
deformation and failure problems from the atomic scale to the macro-scale. This approach circumvents
the complexities of traditional multi-scale mechanics methods for transferring mechanical quantities
across different scales. It enables cross-scale numerical computations within a unified framework [10].
Other researchers, such as Zhou et al. [11,12], have integrated PD theory into the failure analysis of
rock-like materials, examining crack growth under various loading conditions. Ma et al. [13] proposed
an improved PD model to capture the stress-strain changes in rock materials and simulated the
changes in cracking angles under different pre-crack angles and tensile load conditions. Moreover,
Li et al. [14] used the PD method to simulate and study crack propagation and penetration in rock-
like materials. Gao et al. [15] implemented a material node dormancy method based on PD to
simulate roadway excavation, exploring the deformation and failure characteristics of surrounding
rock during this process. Wang et al. [16–18] defined nonlocal stresses to obtain isotropic and deviatoric
forces commensurate with deformations and proposed a new failure model to link computational PD
with some phenomenological failure criteria, highly relevant for both brittle and quasi-brittle rocks.
Furthermore, Fan et al. [19–21] conducted a hybrid PD-SPH (smoothed particle hydrodynamics)
approach to simulate geotechnical materials fragmentation under buried explosive loads. However,
the studies above on the failure of rock-like materials have not adequately considered material
heterogeneity.

This study presents the construction of a quadratic constitutive force kernel function that
effectively captures the spatial variation of long-range force. Departing from the micro-structural
characteristics of coal-rock materials, this research addresses the heterogeneity of such materials
and introduces a novel heterogeneous PD model centered on random pre-breaking “bonds.” The
improved model treats the coal seams, roof, and floor layers as multi-layer composite materials.
The incorporation of material heterogeneity is accomplished by establishing a pre-breaking “bond”
coefficient, enabling the representation of the random heterogeneous mesostructure of surrounding
rock in roadways and considering support effects. Subsequently, a corresponding numerical simulation
method is developed to effectively analyze the deformation and failure of surrounding rock in extensive
discontinuous and heterogeneous geotechnical engineering scenarios. The proposed sub-homogeneous
PD model holds great potential in accurately analyzing complex geotechnical systems exhibiting
significant discontinuities and material heterogeneity.

2 Peridynamics Theory
2.1 Bond-Based Peridynamic Model

As shown in Fig. 1, at a specific time t, there is an interaction force represented by a vector function
f between any material node x occupying a certain space domain R and all other material nodes within
a certain range of the surrounding space δ, then the internal force f caused by the interaction between
the nodes within the range Hx of any node is,

Lu (x, t) =
∫

Hx

f
(
u

(
x̂, t

) − u (x, t), x̂ − x
)

dVx̂ (1)

In the space domain R, the equation of motion of PD at any time can be expressed as follows:

ρü (x, t) = Lu (x, t) + b (x, t), ∀x ∈ R, t ≥ 0 (2)
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Figure 1: Schematic diagram of interaction between nodes in PD theory

The radius δ is called the horizon range, Hx is the collection of all the material nodes within the
range δ, specifically,

Hx = H (x, δ) = {
x̂ ∈ R :

∥∥x̂ − x
∥∥ ≤ δ

}
(3)

When the distance between the material nodes
∣∣x̂ − x

∣∣ > δ, the interaction between the material
nodes no longer occurs,

f (η, ξ) = 0,
∣∣x̂ − x

∣∣ > δ (4)

where ξ = x̂−x is the relative position vector, η = û−u is the relative displacement vector, and f (η, ξ)

is the constitutive force function between nodes x and x̂.

For homogeneous materials, the general expression of the constitutive force function f (η, ξ)

between nodes is,

f (η, ξ) = f (η, ξ) (η + ξ), ∀η, ξ (5)

where f (η, ξ) is a scalar value force vector function, which contains information that can be utilized
to describe the mechanical response of materials, and the function f (η, ξ) must meet,

f (−η, − ξ) = f (η, ξ) (6)

In addition to the relevant material parameters, the function f (η, ξ) is only related to |η|, |ξ | and
the angle between them. Based on Stokes theorem, there must be differentiable scalar functions w
satisfying,

f (η, ξ) = ∂w (η, ξ)

∂η
(7)

The scalar function w (η, ξ) is the potential energy function between nodes, representing the energy
density ξ stored in the “bond”.

For the prototype micro elastic brittle (PMB) material model proposed by Silling et al. [22], the
mechanical properties of the material are related to the micro-modulus c and critical elongation s0.
PMB model is based on modeling interactions between material nodes with spring-like “bonds,” where
these “bonds” can only be stretched and do not consider lateral or torsional deformations.
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The potential energy w (η, ξ) stored in the “bond” between nodes, namely, the density of defor-
mation energy, is defined as follows:

w (η, ξ) =
∫ η

0

f · dη (8)

The deformation energy density of the material node x in its horizon δ is,

W = 1
2

∫
R

w (η, ξ) dVξ = 1
2

∫ δ

0

(
cs2ξ

2

)
4πξ

2dξ (9)

The coefficient indicates that the deformation energy density of each node occupies half of the
deformation energy density of related two nodes.

Based on the PMB model, the pairwise force function of micro-elastic material is derivable from
the scalar micro potential w,

f (η, ξ) = ∂w (η, ξ)

∂η
=

⎧⎨
⎩

ξ + η

|ξ + η|g (s) μ (t, ξ) |ξ | ≤ δ

0 |ξ | > δ

(10)

g (s) = cs, ∀s (11)

μ (t, ξ) =
{

1 if s (ξ) < s0

0 otherwise (12)

where μ (t, ξ) is a time-related scalar function; s is the elongation of the “bond” between nodes.

In PD, local damage is represented by the ratio of the number of broken bonds to the total number
of bonds in the horizon of each node,

ϕ (x,t) = 1 −
∫

Hx
μ

(
x̂ − x,t

)
dVx̂∫

Hx
dVx̂

(13)

2.2 Modification of Constitutive Force Function
In the constitutive function of the PMB model, the interaction between nodes changes in direct

proportion to the elongation |ξ | of the “bond” without considering the effect of the length of the
“bond” on the interaction force between nodes. The PMB model can be modified by introducing
different forms of kernel functions into the constitutive function to eliminate the numerical dispersion
of the PD equation.

For the modified model, the constitutive force function f (η, ξ) can be expressed as follows:

f (η, ξ) =
⎧⎨
⎩

ξ + η

|ξ + η|c0κ (ξ , δ) s ξ ≤ δ

0 ξ > δ

(14)

The kernel function κ (ξ , δ) can represent the characteristics of the spatial decline of the long-range
force between nodes. In this study, κ (ξ , δ) was defined as follows:

κ (ξ , δ) =
(

1 − |ξ |
δ

)2

(15)
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The corresponding micro-modulus function c (ξ , δ) can be expressed as follows:

c (ξ , δ) =
⎧⎨
⎩c0

(
1 − |ξ |

δ

)2

|ξ | ≤ δ

0 |ξ | > δ

(16)

The relationship between micro-modulus function c (ξ , δ) and mechanical parameters in contin-
uum mechanics can be derived utilizing equivalence between the strain energy density of nodes in
PD and the strain energy density in continuum mechanics. For the quadratic polynomial type kernel
function used in this paper, its micro-modulus function is as follows:

c (ξ , δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

60E
πδ3 (1 − ν)

(
1 − |ξ |

δ

)2

plane stress

60E
πδ3 (1 + ν) (1 − 2ν)

(
1 − |ξ |

δ

)2

plane strain

(17)

For 2-D problems, the fracture energy G0 in PD is given by,

G0 = 2
∫ δ

0

∫ δ

z

∫ cos−1(z/ξ)

0

[
c0κ (ξ , δ) s2

0ξ

2

]
ξdϕdξdz (18)

For plane stress problems, c0 = 90E
πδ3

, for plane strain problems, c0 = 96E
πδ3

; kernel function of

constitutive function is κ (ξ , δ) =
(

1 − |ξ |
δ

)2

, since the exact value cos−1 (z/ξ) cannot be derived

directly, and |z/ξ | < 1, the exact value of cos−1 (z/ξ) can be obtained by Taylor expansion,

cos−1 (z/ξ) = π

2
− sin−1

(z/ξ) = π

2
− z/ξ + O

(
(z/ξ)

3
)

(19)

Substituting Eq. (18) into (17), the approximate expression of the energy release rate G0 in PD can
be obtained as follows:

G0 = (π − 1) δ4c0s2
0

120
(20)

An approximate expression of the energy release rate G0 can be derived as follows:

G0 =

⎧⎪⎪⎨
⎪⎪⎩

3 (π − 1) Eδs2
0

4π
plane stress

4 (π − 1) Eδs2
0

5π
plane strain

(21)

Then, the critical elongation s0 in the modified model of the 2-D problem can be obtained as
follows:

s0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
4πG0

3 (π − 1) Eδ
plane stress

√
5πG0

4 (π − 1) Eδ
plane strain

(22)
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2.3 Numerical Solution Method
In the PD simulation system, the model is composed of material nodes. The motion of nodes

obeys Newton’s second law. The mechanical response of the model can be obtained by solving the
integral equation. Solving the motion equation of the PD simulation model involves time integration
(difference scheme), spatial discretization, and integration. The unit volume force generated by the
node xi in the reference configuration under the action of other nodes within its horizon δ can be
obtained by summing, and the spatial integral equation can be discretized as follows:

ρiün
i =

N∑
j=1

f
(
un

j − un
i , xj − xi

)
Vj + b

(
xn

i

)
(23)

where un
j = u

(
xj, t

)
, n is the time step number and subscripts denote the node number.

The numerical integration of time can be obtained by the Velocity-Verlet difference scheme. The
displacement u (x, t) and velocity u̇ (x, t) of a node are as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇n+ 1
2

= u̇n + 
t
2

· ün

un+1 = un + 
t · u̇n+ 1
2

u̇n+1 = u̇n+ 1
2
+ 
t

2
· ün+1

(24)

where 
t is the time step, which is far less than the critical time step 
tc, it needs to be met 
t � 
tc =

χ

CL

, 
χ is the minimum length of the “bond”, and CL is the longitudinal wave velocity in material.

The force boundary conditions in traditional theory cannot be directly applied in the PD model,
and the external force usually needs to be applied through volume force density. The concentrated
force and surface forces are applied on several layers of material nodes at the boundary. If the model
is subject to the external force p, it can be converted into the external force density in PD.

b (x,t) = p
V (x)

, x ∈ R (25)

3 Sub-Homogeneous PD Model
3.1 PD Modeling of Heterogeneous Coal-Rock Mass

A substantial number of experiments in rock mechanics indicated that coal-rock geotechnical
materials display significant variability in their physical and mechanical parameters, and these
properties also demonstrate spatial heterogeneity. The heterogeneity in coal-rock mass materials arises
from various factors. Characterizing this heterogeneity during numerical modeling is exceptionally
challenging. Many researchers argue that heterogeneity due to micro-structural defects, such as pores
and voids, is a crucial factor influencing the deformation and failure of coal-rock mass. Therefore,
the geometric configuration and distribution of these micro-defects greatly influence the physical and
mechanical properties of the materials.

Based on Eq. (13), ϕ (x,t) ∈ [0, 1] local damage can also be defined as the local damage index dindex

of a material node x at time t.

dindex = Nb

N
(26)



3174 CMES, 2024, vol.139, no.3

where Nb is the number of “bonds” cut off between the node and all other nodes in its horizon range;
N is the total number of “bonds” between the same node and all other nodes in its horizon range.

The material presents micro-defects, like pores and holes, leading to macro-level heterogeneity. In
the context of the PD simulation, this heterogeneity appears through the absence of “bonds” between
nodes, indicating local damage between them. This study introduces a random pre-breaking “bond”
coefficient, symbolized by the initial damage quantity, into the uniform discrete simulation model to
effectively characterize micro-defects, including material pores (as shown in Fig. 2), and thus capture
the material’s heterogeneity. This method is inspired by the analysis of failure in functionally graded
materials by Chen et al. [23].

�

x

�

x ��

(a) all "bonds" remain intact   (b) random pre-breaking "bond"

Figure 2: Schematic diagram of bond random breaking in heterogeneity PD model

Following this concept, this study defines the PD model’s heterogeneity as the simulation model’s
initial damage amount. The process of setting the random pre-breaking “bond” is depicted in Fig. 3.
The pre-breaking “bond” index of one node is,

d (x) = M (x)

Mc

(27)

where M (x) is the degree of heterogeneity of one node. Hence, the rate of random pre-breaking “bond”
Mc is the critical heterogeneity of the material.

Generate random number R from [0,1]
uniform random distribution

R < d (x)

Break the "bond"

Update the damage information of the
material nodes connected by the "bond"

"Bond" i in the horizon range of
material node x

YES

i = i+1
NO

Figure 3: Flow chart of bond random pre-breaking
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For the degree of heterogeneity of material nodes xi and xj, respectively, are M (xi) and M
(
xj

)
,

the probability of the “bond” ξ = xj − xi between material nodes remains intact is,

p =
(

1 − M (xi)

Mc

)(
1 − M

(
xj

)
Mc

)
(28)

For the uniform discrete model, assuming that the degree of heterogeneity in the model is
consistent, i.e., the degree of heterogeneity of each node is M (x), then the probability p that the “bond”
between nodes remains complete is as follows:

p =
(

1 − M (x)

Mc

)2

(29)

Then, the damage index Dindex of any node can be expressed as follows:

Dindex = 1 − p = 1 −
(

1 − M (x)

Mc

)2

(30)

Compared to existing homogenized PD models, the model in this study can be referred to as a sub-
homogeneous PD model. In the heterogeneous PD model, homogeneous dispersion is performed to
ensure uniform physical and mechanical parameters for materials based on their heterogeneity degree.
Establishing the sub-homogeneous PD model involves setting the heterogeneity degree coefficient,
symbolized by the pre-breaking “bond”. Importantly, no additional pre-processing is necessary for
the simulation model, and the model effectively reflects the random distribution characteristics of
material heterogeneity. Moreover, the model’s implementation is straightforward, and the efficiency
of heterogeneous modeling is unaffected by the simulation model’s size or the number of nodes, making
it especially suitable for large discontinuous and heterogeneous geotechnical engineering applications.

Literature [24] indicated that coal-rock mass in deep strata undergoes compaction during diage-
nesis, typically resulting in low porosity. Regarding the coal-rock material heterogeneity in this study,
Fig. 4 illustrates the material heterogeneity degree and the corresponding damage index represented
by random pre-breaking “bonds.” It is important to note that the damage in the nephogram does
not relate to damage caused by external loads on the model; instead, it represents the proportion of
random pre-breaking “bonds,” quantifying the material heterogeneity degree. This serves as the initial
condition of the model during the simulation process.

3.2 Numerical Solution Process
Based on the modified PD model, this study develops a simulation program for the sub-

homogeneous PD model using the FORTRAN language. The fundamental procedure is shown in
Fig. 5. The pre-processing module involves compiling the model discrete program in MATLAB,
enabling the acquisition of crucial information, such as node coordinates. Then, in the post-processing
module, the simulation file information is read using Ensight, permitting the output of simulation
results, including damage and displacement.
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(a) index0, 0M D= = == (b) 
index10%, 0.19M D

Figure 4: Degree of material heterogeneity and corresponding damage index characterized by bond
random pre-breaking

Start

Establish the neighbor lists

Simulate the force between material nodes

Update material nodes location

Judge whether iteration
finished or not

Output the simulation results

Read in data (nodes information, material parameters,
boundary conditions, etc.)

Define PD parameters (critical elongation,
micro-module, etc.)

End

Apply boundary conditions

YES

NO

Set random pre-breaking "bond" coefficient

Figure 5: Flow chart of the sub-homogeneous PD model simulation program
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4 Analysis of Surrounding Rock Excavation and Support of Roadway
4.1 Computational Model

This research focuses on the No. 3 upper 411 haulage roadway at Fucun Coal Mine as the research
subject. The simulation model’s dimensions are set to 60 m × 40 m × 0.1 m (as illustrated in Fig. 6),
using orthogonal uniform dispersion. The node lattice size, denoted as |
x|, is set at 0.1 m, resulting in
a total of 232320 nodes. Considering the heterogeneity degree, symbolized by the random pre-breaking
“bond” coefficient, and to avoid premature damage at the model boundary, a suitably increased
horizon range size was selected as δ = 6|
x|.

Figure 6: PD simulation model of gob-side entry

The Poisson’s ratio for diagenetic minerals is generally 0.2–0.3, as shown in Table 1, cited from
the literature [25]. In bond-based PD, the Poisson’s ratio for plane stress problems is limited to 1/3,
and for plane strain problems, to 1/4. Thus, the influence of Poisson’s ratio on simulation results is not
significant. The problem is then simplified as a plane strain problem, with a Poisson’s ratio of ν = 0.25
assigned. The physical and mechanical parameters of the material are outlined in Table 2. The haulage
roadway, situated along the goaf, is approximately buried at a depth of −500 m. For most crystalline
rock masses, the porosity is relatively small, often ranging from 0.1% to 10%. The surrounding rock
stratum shows a relatively dense composition with low porosity, resulting in a material heterogeneity
of 5% selected for this study.

Table 1: Elastic constants of several common diagenetic minerals

Mineral type Young’s modulus E/GPa Poisson’s ratio ν

Magnetite 230.3 0.26
Barite 62.8 0.32
Almandine 241.8 0.28
Diopside 154.4 0.26
Calcite 68.8 0.31
Biotite 33.8 0.27
Fluorite 111.3 0.28
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Table 2: Physical and mechanical parameters of coal seam and roof and floor rock layer

Rock stratum Index

Density
kg/m3

Tensile
strength
MPa

Compressive
strength
MPa

Fracture
energy
N/m

Young’s
modulus
GPa

Cohesion
MPa

Thickness
m

Fine
sandstone-1

2460 2.8 62.2 85 13.3 9.6 6.8

Sandy
mudstone-1

2483 1.55 28.4 23 7.2 3.55 2.8

Coal seam 1420 1.73 10.5 8.5 6.3 1.25 4.0
Sandy
mudstone-2

2530 2.4 67.9 56 28.8 11.0 0.8

Fine
sandstone-2

2873 3.0 84.1 88 11.1 12.6 8.8

Gangue in
goaf

1120 – – 2.5 1.5 – 4.0

In this proposed model, the PD parameters of various interlayer materials are different, and
the micro-modulus function c (ξ , δ) and critical elongation s0 of composite “bond” can be obtained
by corresponding reduction. The micro-modulus function c (ξ , δ) and critical elongation s0 of the
material are determined by the physical and mechanical parameters of the material. In order to
reflect the difference between the two kinds of material, in this paper, Young’s modulus E

(
x, x̂

)
and

fracture energy density G0

(
x, x̂

)
of the composite “bond” take the harmonic average of the mechanical

parameters of two materials.

E
(
x, x̂

) = 2
1

Ex

+ 1
Ex̂

= 2ExEx̂

Ex + Ex̂

(31)

G0

(
x, x̂

) = 2
1

Gx
0

+ 1
Gx̂

0

= 2Gx
0 Gx̂

0

Gx
0 + Gx̂

0

(32)

The composite “bond” micro-modulus function c
(
x, x̂

)
and critical elongation s0

(
x, x̂

)
can be

obtained as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
(
x, x̂

) = 60E
(
x, x̂

)
πδ3 (1 + ν) (1 − 2ν)

(
1 − |ξ |

δ

)2

s0

(
x, x̂

) =
√

5πG0

(
x, x̂

)
4 (π − 1) E

(
x, x̂

)
δ

(33)

The macro strength and other mechanical parameters of materials with different degrees of
heterogeneity are also different. Chen et al. [26], based on the wave propagation theory under the
plane stress state, obtained the relationship between longitudinal wave velocity and elastic modulus of
heterogeneous materials through a large number of numerical tests.
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CL =
√

EM

ρ (1 − ν2)
(34)

where CL is the longitudinal wave velocity, EM is Young’s modulus, ν is Poisson’s ratio, for plane stress
problems ν = 1/3, for plane strain problems ν = 1/4.

The corresponding Young’s modulus values of materials under different degrees of heterogeneity
can be obtained through Eq. (34), and the following relationship exists between the Young’s modulus
EM of materials with different degrees of heterogeneity and the Young’s modulus E of materials with
M = 0 through fitting,

EM

E
=

(
1 − M

Mc

)2

(35)

where E is Young’s modulus of material when it is heterogeneous M = 0. For coal-rock mass materials,
it is the Young’s modulus of the original rock.

Substitute Eq. (35) into Eq. (30) to get,

Dindex = 1 − EM

E
(36)

Similarly, the fracture energy G0 of materials with different heterogeneity also follows the following
relationship:

Dindex = 1 − GM
0

G0

(37)

where G0 is the fracture energy of material when the degree of heterogeneity is M = 0. For coal-rock
mass materials, it is the fracture energy of the original rock.

4.2 Consideration of Support Structure
The reinforcement effect of the bolt on the surrounding rock of the roadway is shown in Fig. 7.

Generally, the tensile strength Rb
t of the bolt and anchor cable is far greater than the tensile strength Rt

of coal-rock mass, and the reinforcement effect of the bolt (cable) on surrounding rock can be evenly
distributed to each node within its scope of action through conversion. Assuming that the support
density of the anchor bolt (cable) is ρb, that is, the number of anchor bolts (cables) in the unit area,
and the pre-stress applied to the anchor bolt (cable) is p, the maximum load Pmax for the tensile failure
of the solid after anchor bolt (cable) is applied can be obtained as follows:

Pmax = ρbRb
t

(
πr2

) + Rt · A + p (38)

where A is the surface area of the roadway; r is the radius of the bolt (cable) body.

Generally, inclined bolts will be applied at the shoulder angle of the roadway, so Eq. (38) can be
rewritten as,

Pmax = [
ρbRb

t

(
πr2

) + ρ̂bRb
t

(
πr2

)
cos θ

] + Rt · A + p (39)

where ρ̂b is the density of the inclined anchor bolt, θ is the angle between the bolt and the normal
direction of the roadway surface.
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Figure 7: Schematic diagram of bolt reinforcement

The tensile strength R̂t of added solid can be obtained from Eqs. (38) and (39), respectively,

R̂t = Pmax

A
(40)

In PD theory, whether the “bond” cut off is judged by the relationship between the elongation of
the “bond” and the critical elongation between nodes. If the critical elongation s0 of “bond” between
coal-rock mass nodes before reinforcement is, the critical elongation ŝ0 of “bond” between coal-rock
mass nodes after reinforcement is,

ŝ0 = R̂t

Rt

s0 (41)

In the simulation process, the local damage of nodes can be obtained from Eq. (13).

4.3 Initial Balance of Model
The numerical simulation process for roadway excavation and support application encompasses

three primary steps: (1) establishing self-weight stress balance in the model, (2) executing roadway
excavation, and (3) applying support. The study employs the gravity field method to create the initial
stress field balance within the simulation model. The model’s bottom vertical displacement is fixed,
and the normal horizontal displacement of its sides is also fixed. A balanced state is attained by
allowing the model to achieve equilibrium solely through self-weight. Displacement monitoring nodes
are strategically positioned symmetrically along the model’s horizontal axis. Once the displacement at
these nodes stabilizes, the model has attained its initial balance. Fig. 8 shows the vertical displacement
at selected monitoring points, revealing that the model reaches equilibrium after 15,000 simulation
iterations. After equilibrium, the force density of all nodes in the model is extracted, using these
values as the initial force densities for the nodes in the roadway excavation simulation. The node
displacements generated during the initial stress field equilibrium are reset to zero, ensuring precise
simulations in subsequent excavation and support application phases.
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Figure 8: Vertical displacement curve of monitoring node during loading

4.4 Simulation Results and Analysis
The PD parameters, such as the micro-modulus function and critical elongation of nodes in the

anchor bolt (cable) area, are determined using Eqs. (40) and (41). Figs. 9 and 10 depict the initial
roadway support scheme’s cross-section and plan view. The roof support comprises Φ18/Q500 left-
handed bolts without longitudinal reinforcement, each 2.4 m long, and Φ17.8 × 6000 mm anchor
cables. The two side supports consist of similar bolts, each 2.0 m long. However, this scheme severely
damages the coal seam on both roadway sides. In order to improve support effectiveness, the spacing
between side anchor bolts is reduced based on the original scheme, while the spacing between roof
anchor bolts (cables) remains constant, as shown in Fig. 11. The row spacing of anchor bolts (cables)
remains as in the original scheme.

Figure 9: Cross section of original roadway support (unit: mm)
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Figure 10: Scheme of original roadway support (unit: mm)

Figure 11: Cross section of modified roadway support (unit: mm)

Unlike traditional continuum mechanics methods, bond-based PD eschews stress and strain
descriptions. The study’s analysis focuses on horizontal displacement changes of the roadway’s sides
and the roof’s vertical displacement variations. Figs. 12 and 13 show these displacements under the
original support scheme: the coal side’s maximum deformation is 35 mm, and the coal pillar side is
59 mm, totaling a maximum deformation of 94 mm. The maximum vertical displacement of the
roadway roof is 53 mm.
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Figure 12: Horizontal displacement of roadway surrounding rock under original support scheme
(unit: m)

Figure 13: Vertical displacement of roadway surrounding rock under original support scheme (unit: m)

Figs. 14 and 15 illustrate the displacements under the enhanced support scheme. The maximum
deformation of the coal side is 26 mm, and that of the coal pillar side is 42 mm, leading to a total
maximum deformation of 68 mm. The maximum vertical displacement of the roadway roof is 51 mm.

Figure 14: Horizontal displacement of roadway surrounding rock under modified support scheme
(unit: m)



3184 CMES, 2024, vol.139, no.3

Figure 15: Vertical displacement of roadway surrounding rock under modified support scheme
(unit: m)

Accordingly, reducing the spacing between side bolts and increasing support density significantly
mitigates the horizontal movement of the roadway sides. The enhanced support scheme effectively
controls roadway deformation during its service period. Fig. 16 visually demonstrates the enhanced
scheme’s actual support effect.

Figure 16: Actual effect of roadway support

In order to assess the support scheme’s feasibility, monitoring the ground pressure on the support
system and surrounding rock is imperative. Observing mine pressure in the stopping roadway involves
various instruments to measure macroscopic ground pressure manifestations, such as displacements
of the roof, floor, and sides and deformation of the coal seam and support structure. The observation
sections’ layout appears in Fig. 17.

Table 3 presents statistical data on deformations observed in the roof and sides of the roadway
in field observations. The results show a maximum deformation of 65 mm on the sides and a roof
subsidence of 43 mm. Remarkably, the simulated deformation of the surrounding rock by the sub-
homogeneous PD model closely aligns with field measurements, meeting the engineering requirements
for investigating the deformation and failure characteristics of the surrounding rock and optimizing
the support scheme.
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Figure 17: Layout of observation sections

Table 3: Displacement statistics of measuring points of gob-side entry surrounding rock (unit: mm)

Observational data Observation surface 1 Observation surface 2 Observation surface 3

Maximum Average Maximum Average Maximum Average

Roof subsidence 40 37.3 43 40 40 36.3
Displacement of
roadway on two sides

62 59.3 65 62 62 58

5 Conclusion

This study simulates the fracture and failure process of roadway surrounding rock subjected to
support application using an improved sub-homogeneous PD model. This investigation analyzes the
impact of various factors, including kernel function, heterogeneity, and support application, on the
fracture pattern and failure mode.

(1) A quadratic constitutive force kernel function was developed to account for the spatial
variation of long-range forces. Moreover, considering the heterogeneity of coal-rock mass materials
and structures, a random pre-breaking “bond” coefficient was introduced, characterizing the degree
of heterogeneity in rock-like materials. Establishing this heterogeneous PD model, based on uniform
dispersion and reflecting the random distribution characteristics of material heterogeneity, enabled
the simulation of deformation and failure in heterogeneous materials and structures.

(2) Given the layered composition of coal seams, including its roof and floor layers, a PD model
was developed for layered coal-rock mass structures. To address underground engineering challenges,
this bond-based PD model adopted a method of initial balance. Additionally, a support facility
application mode for the PD model was proposed, facilitating the analysis of underground engineering.
The proposed PD model effectively captured the random heterogeneous meso-structure of the roadway
surrounding rock while considering the influence of support measures.

(3) The PD method was employed to assess coal-rock masses’ structural deformation and failure.
By employing the sub-homogeneous PD model, the study explored the deformation and failure
characteristics of roadway surrounding rock when supported by bolts (cables). The displacement
distribution along both sides and the roof of the roadway was meticulously analyzed. A comparative
assessment between the simulation outcomes and actual measurements revealed a high degree of
consistency, confirming the sub-homogeneous PD model’s efficacy in replicating the discontinuous
deformation and failure of diverse coal-rock mass structures.
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