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ABSTRACT

Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity
and strength-to-weight ratio. In this paper, a full-scale isogeometric topology optimization (ITO) method based
on Kirchhoff–Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is
proposed. This method utilizes high-order continuous nonuniform rational B-splines (NURBS) as basis functions
for Kirchhoff–Love shell elements. The geometric and analysis models of thin shells are unified by isogeometric
analysis (IGA) to avoid geometric approximation error and improve computational accuracy. The topological
configurations of thin-shell structures are described by constructing the effective density field on the control mesh.
Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.
To facilitate numerical implementation, the p-norm function is used to aggregate local volume constraints into
an equivalent global constraint. Several numerical examples are provided to demonstrate the effectiveness of
the proposed method. After simulation and comparative analysis, the results indicate that the cellular thin-shell
structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness.
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IGA isogeometric analysis
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1 Introduction

Thin-shell structures are widely applied in the aerospace [1], automobile [2] and civil engineering
[3] fields due to their excellent load-carrying capacity. The mechanical behavior of a thin-shell structure
can be described by shell elements based on surface models because the thickness of the thin-shell
structure is much smaller than its size in the other directions. Reissner–Mindlin [4] and Kirchhoff–
Love [5] models are the two most widely used mathematical models for describing shells. Reissner–
Mindlin theory considering the transverse shear force is primarily used to describe thick shells. It is very
suitable for the finite element method (FEM) based on the C0-continuous Lagrangian basis function
since the shell elements in this theory need to ensure only C0-continuity. Therefore, the Reissner–
Mindlin shell model is widely used in most current industrial software. In contrast, Kirchhoff–Love
theory describes thin shells based on the assumption that the shell is thin enough to neglect transverse
shear deformation. The rotation of the shell is described by the first derivative of displacement; hence,
at least the C1-continuity of the shell elements must be guaranteed in Kirchhoff–Love theory [6].
Because the FEM has difficulty constructing C1-continuous elements, Kirchhoff–Love theory is rarely
adopted in current mainstream industrial software.

Compared with FEM, isogeometric analysis (IGA) [7] can avoid remeshing via the same basis
function to describe the geometric structure and construct the analysis grid, hence eliminating
geometric approximation errors by unifying geometric and analysis models of structures and attracting
widespread concern [8]. NURBS basis functions are the most widely used functions in IGA due to
their geometric flexibility and high-order continuity. Because nonuniform rational B-splines (NURBS)
is convenient for constructing high-order continuous mesh elements, which aligns with Kirchhoff–
Love theory’s requirement for the C1-continuity of shell elements, IGA is suitable for use with the
Kirchhoff–Love shell theory. Kiendl et al. [9] developed a Kirchhoff–Love shell element based on
IGA, which was applied in thin shells under large rotation by a geometrically nonlinear formulation.
Guo et al. [10] proposed a variationally consistent weak coupling method for thin-walled shell patches
based on IGA, which ensured the effective transfer of the displacement and bending moment between
multiple NURBS patches. This method enabled a blended coupling of shells based on different
mathematical models, such as Kirchhoff–Love and solid-like shell models. Li et al. [11] presented
a novel method coupling the meshfree method and IGA for geometrically nonlinear analysis of
thin-shell structures based on Kirchhoff–Love theory. Thanh et al. [12] further extended the above
method to static and free-vibration analyses of cracks in thin-shell structures, and Zhang et al. [13]
coupled the isogeometric–meshfree method with the peridynamic method for static and dynamic crack
propagation. Hirschler et al. [14] proposed a dual domain decomposition algorithm to address the
inconsistencies between multiple NURBS patches for accurately analyzing nonconforming multipatch
Kirchhoff–Love shells. Zareh et al. [15] developed isogeometric Kirchhoff–Love shell elements based
on Cr smooth rational triangular Bézier splines. These elements overcame limitations on complex
geometries requiring multiple NURBS patches, offering a more efficient way to handle complex
geometric models. Miao et al. [16] developed an isogeometric Bézier dual mortar method coupling
multipatch Kirchhoff–Love shells, which strengthened the continuity of the solution at the boundaries
of patches. Peng et al. [17] developed a novel continuum-based fast projection scheme for cloth
simulation based on the isogeometric Kirchhoff–Love shell model. Current methods for Kirchhoff–
Love shell analysis based on IGA have applications in various emerging research areas, such as
metamaterials [18], hyperelastic materials [19], biomechanics [20], lattice shells [21], and optimization
of stiffeners for thin shell structures [22].

Topology optimization [23], as an effective structural design method, can enable the performance
potential of structures to be fully explored by iteratively finding the optimal distribution of materials



CMES, 2024, vol.139, no.3 2481

in the design domain under given design constraints and objectives. Through topology optimization,
unprecedented thin-shell structures that extend beyond the experience and intuition of designers
can be generated to further improve the strength-to-weight ratio, hence achieving ultralightweight
designs and obtaining broad application prospects [24]. Recently, the combination of IGA and
topology optimization, i.e., isogeometric topology optimization (ITO), has attracted great attention.
Hassani et al. [25] proposed an ITO method, in which a solid isotropic material with penalization
(SIMP) method based on control points was employed. Wang et al. [26] proposed an ITO method
based on the level set method (LSM), in which NURBS basis functions were used to construct
physical fields and to parameterize level set functions. Gao et al. [27] developed an ITO method based
on a smooth density distribution function, in which the Shepard function was used to construct a
smooth density distribution function, which was employed to ensure that the structural boundary
of the optimized result was clear and smooth. Zhu et al. [28] presented an explicit ITO based on
graded truncated hierarchical B-splines. Meanwhile, some studies on the applications of ITO to shell
structures have also been conducted. Kang et al. [29] proposed an ITO method for shell structures,
in which trimmed surface analysis was used to handle complex topologies. Zhang et al. [30] presented
an ITO method for a 3D shell under stress constraints, in which the moving morphable voids method
was adopted to explicitly describe the topological configuration.

Additionally, multiscale topology optimization is widely employed for cellular structure design to
achieve extraordinary performances, such as excellent dynamic behavior [31], high stiffness-to-weight
ratio [32,33] and fast heat dissipation [34]. The majority of multiscale topology optimization methods
utilize the homogenization theory based on scale separation and periodic assumptions to establish
the relationship between macro and micro scales [35]. The geometry of the micro structures filling
in the cellular structure is generally limited to regular shapes, such as squares and parallelograms.
As a result, few investigations have been conducted on the topology optimization design of cellular
structures with curved edges or surfaces by homogenization theory [36]. Another strategy for designing
cellular structures is the full-scale topology optimization method [37]. Full-scale topology optimization
generates many bone-like holes by imposing local volume constraints within the design domain
without using homogenization theory. Therefore, this full-scale topology optimization method can
be used to design irregular cellular structures with curved edges or surfaces.

Based on these considerations, a high-order continuous Kirchhoff–Love shell model based on
IGA is proposed, and a cellular thin-shell structure with high damage robustness is designed via full-
scale ITO. NURBS is used to describe the geometry of the shell and establish its analysis model to
improve the analysis accuracy. A density field is built on the control mesh to describe the topological
configuration of the shell. Local volume constraints, which are aggregated into an equivalent global
constraint by the p-norm function, are introduced into ITO to obtain bone-like thin-shell structures.
The simulation and comparison of several numerical examples show that the cellular thin-shell
structures obtained by the proposed method have great bearing capacity and damage robustness.

The remainder of the paper is organized as follows: Section 2 describes the full-scale ITO model
based on the Kirchhoff–Love shell in detail. Section 3 provides the numerical implementation and
framework. Section 4 provides several numerical examples to verify the effectiveness of the proposed
method and the excellent performances of the structures optimized by the proposed method. Section 5
summarizes and discusses the research work of this paper.
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2 Full-Scale Isogeometric Topology Optimization Based on the Kirchhoff–Love Shell
2.1 Local Volume Constraint

To generate a bone-like cellular structure on a thin shell, the local volume constraint method is
introduced [37]. The average of the effective densities in the designated neighborhood nc of each control
point is taken as the local volume fraction Lc of the current control point c. Lc is calculated as follows:

Lc =
∑

i∈nc
ρi∑

i∈nc
1

(1)

where ρi represents the density of the control point in the designated neighborhood nc, where nc

represents the set of adjacent control points of the current control point. The distance between adjacent
control points and the current control point must be less than the specified influence radius r, as
follows:

nc = {i| ||Pi − Pc||2 ≤ r} (2)

where Pc is the coordinate of the current control point and Pi is the coordinate of the adjacent control
point. The local volume constraint is represented as follows:

gc = Lc ≤ Lmax, c = 1, 2, . . . , Nc (3)

where gc represents the local volume constraint of the c th control point, Lmax denotes the specified
upper limit of the local volume fraction, and Nc denotes the total number of control points. Imposing
a local volume constraint on each control point results in many constraints, and implementing these
constraints is difficult. These constraints can be represented by an aggregated constraint max (Lc) ≤
Lmax. Since the aggregated constraint is nondifferentiable, the p-norm function is used to approximate
the max function as follows:

max (Lc) ≈ ‖L‖p =
(∑

c

(Lc)
p

) 1
p

(4)

When p tends to infinity, ||L||p is completely equivalent to max (Lc). If p is not infinite, the
aggregated constraint can be written as:

g =
(∑

c

(Lc)
p

) 1
p

≤
(∑

c

(Lmax)
p

) 1
p

, c = 1, 2, . . . , Nc (5)

The size of p determines how strict the local volume constraint is.

2.2 Full-Scale ITO Model
In the full-scale design framework, an ITO model for the cellular thin-shell structure is established

with the minimum compliance as the objective function and the global and local volume fractions as
constraints, as follows:

Find: ρi (i = 1, 2, . . . , Nc)

Min: J (ρi) =
∫

�

uT
e K̃ e (ρi) ued�
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s.t.:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K (ρi) u = f

G (ρi) = 1
|�|

∫
�

x (ρi) νd� − Vmax ≤ 0

g (ρi) = (∑
c (Lc (ρi))

p
) 1

p ≤ (∑
c (Lmax)

p
) 1

p

0 < ρmin ≤ ρi ≤ 1

(6)

where ρi is the effective density at the Nc control point, namely, the design variable. J denotes the
objective function, that is, the minimum compliance. ue is the element displacement, and � is the design
domain of the thin shell. K is the global stiffness matrix, u is the displacement vector, and f is the force
load vector. The equilibrium equation is constructed by the Kirchhoff–Love model based on IGA.
G (ρi) represents the global volume constraint, Vmax represents the specified upper limit of the global
volume fraction, and ν represents the element volume. g (ρi) represents the aggregated local volume
constraint. ρmin represents the lower limit of the design variable. K̃e (ρi) represents the interpolated
element stiffness matrix [23] and is calculated as follows:

K̃ e (ρi) = x (ρi) Ke (7)

where x (ρi) is the effective density field constructed by the effective density ρi on the control point and
the corresponding NURBS basis function Ri. x (ρi) is expressed as follows:

x (ρi) =
n∑

i=1

Ri (φi (ρi))
τ (8)

where τ denotes the penalty factor, and n represents the number of control points, which is the number
of effective densities. φi (ρi) represents the Heaviside step function [38], written as:

φi (ρi) =
tanh

(σ

2

)
+ tanh

(
σ

(
ρi − 1

2

))

2 tan h
(σ

2

) (9)

where σ represents the projection parameter to control the sharpness of the Heaviside step function.
The Heaviside step function is adopted to promote the generation of the 0–1 solution. The larger the
σ value is, the more the effective density field obtained by the Heaviside step function tends toward
being a 0–1 distribution. However, directly applying a large σ can result in highly nonlinear equations.
To ensure the stability of the iteration process, σ is initialized as σ = 1, and value is doubled after
every 50 iterations until σ = 16. This is a commonly used technique for promoting convergence in
topology optimization [38]. The effective density of any point on the shell can be obtained through
the effective density field x (ρi), which reflects whether each point on the shell corresponds to solid
material or void. The topological configuration of the shell is optimized by optimizing the reasonable
distribution of effective density.

2.3 NURBS Basis Functions
To construct NURBS basis functions, first, the B-spline basis function with a monotonically

increasing open knot vector � = {
ξ1, ξ2, · · · , ξn+p+1

}
is expressed by the recursive formula [8], as
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follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ni,0 (ξ) =
{

1, if ξi ≤ ξ < ξi+1

0, otherwise
, p = 0

Ni,p (ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1 (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) , p ≥ 1

(10)

where n and p represent the number and degree of B-spline basis functions, respectively. The knot
vector represents the coordinates of the element nodes in the parametric domain, and the knot spans
represent the elements. Then, introducing the weight ωi yields the NURBS basis functions as follows:

Rp
i (ξ) = Ni,p (ξ) ωi∑n

î=1 Nî,p (ξ) ωî

(11)

where ωi is the weight. Furthermore, a NURBS curve can be written as:

Curve (ξ) =
n∑

i=1

Rp
i (ξ) Pi (12)

where Pi is the coordinate of the control point corresponding to the NURBS basis function. Similarly,
a NURBS surface can be described by the tensor product of the NURBS basis functions in directions
ξ and η, written as:

Surf (ξ , η) =
n∑

i=1

m∑
j=1

Rp,q
i,j (ξ , η) Pi,j (13)

where n and m are the number of control points in two parametric directions, and p and q are the
corresponding polynomial degrees. Specifically, Rp,q

i,j is written as follows:

Rp,q
i,j (ξ , η) = Ni,p (ξ) Nj,q (η) ωij∑n

î=1

∑m

ĵ=1 Nî,p (ξ) Nĵ,q (η) ωîĵ

(14)

where Ni,p (ξ) and Nj,q (η) represent B-spline basis functions in two parametric directions.

2.4 Kirchhoff–Love Shell Model
In this paper, the IGA-based Kirchhoff–Love model is used to analyze the mechanical behavior of

the thin shell. First, the three-dimensional shell is described with the curvilinear coordinate
(
ξ 1, ξ 2, ξ 3

)
,

where ξ 1 and ξ 2 represent the in-plane directions, and ξ 3 represents the shell thickness direction. As
shown in Fig. 1, the position vectors x and X of any point in the shell in the current and reference
configurations, respectively, are represented as follows [39]:

x
(
ξ 1, ξ 2, ξ 3

) = r
(
ξ 1, ξ 2

) + ξ 3a3

(
ξ 1, ξ 2

)
X

(
ξ 1, ξ 2, ξ 3

) = R
(
ξ 1, ξ 2

) + ξ 3A3

(
ξ 1, ξ 2

) (15)

where r and R represent the position vectors of any point of the mid-surface in the current and reference
configurations, respectively. a3 and A3 represent the unit director vectors of the mid-surface in the
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current and reference configurations, respectively, defined as follows:⎧⎪⎪⎨
⎪⎪⎩

a3 = a1 × a2

|a1 × a2|
aα = r,α = ∂r

∂ξα

and

⎧⎪⎪⎨
⎪⎪⎩

A3 = A1 × A2

|A1 × A2|
Aα = R,α = ∂R

∂ξα

(16)

where aα and Aα represent the covariant basis vectors of the mid-surface in the current and reference
configurations, respectively. Here, the Greek index α = 1, 2. The corresponding inverse basis vectors
aα and Aα are defined as follows:

aα · aβ = Aα · Aβ = δα

β
(17)

where δα

β
represents the Kronecker delta. Therefore, the covariant metric coefficients and the inverse

metric coefficients of the mid-surface in the current and reference configurations are expressed as
follows:{

aij = ai · aj

aij = [
aij

]−1 and

{
Aij = Ai · Aj

Aij = [
Aij

]−1 (18)

Figure 1: Geometric description of the Kirchhoff–Love shell. The mid-surface is highlighted in blue,
red points represent control points, and red dashed lines represent the control mesh. The knot vectors
are {0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1} in two parametric directions

The displacement vector u of the mid-surface between the current and reference configurations is
calculated as follows:

u
(
ξ 1, ξ 2

) = r
(
ξ 1, ξ 2

) − R
(
ξ 1, ξ 2

)
(19)
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The covariant basis vectors at any material point in the current and reference configurations are
defined as follows:{

qα = x,α = aα + ξ 3a3,α

q3 = x,3 = a3

and

{
Qα = X,α = Aα + ξ 3A3,α

Q3 = X,3 = A3

(20)

Similarly, the corresponding inverse basis vectors qα and Qα are defined as follows:

qα · qβ = Qα · Qβ = δα

β
(21)

The covariant metric coefficients and the inverse metric coefficients at any material point in the
current and reference configurations are expressed as follows:{

qij = qi · qj

qij = [
qij

]−1 and

{
Qij = Qi · Qj

Qij = [
Qij

]−1 (22)

Based on Kirchhoff–Love’s hypothesis, the Green-Lagrange strain tensor [40] can be written as:

E = EαβQα ⊗ Qβ (23)

where

Eαβ = 1
2

(
qαβ − Qαβ

)
(24)

Bringing Eqs. (22) into (24) yields

Eαβ = εαβ + ξ 3καβ (25)

where εαβ and καβ represent the membrane strain and bending strain, respectively, as follows:⎧⎨
⎩εαβ = 1

2

(
aα · aβ − Aα · Aβ

)
καβ = −aα,β · a3 + Aα,β · A3

(26)

Next, the strain energy density per unit area of the Kirchhoff–Love shell can be expressed as:

W
(
ξ 1, ξ 2

) = 1
2

(
tε:C:ε + t3

12
κ :C:κ

)
(27)

where t is the shell thickness. C is the material tensor, written as:

C = Cαβγ δAα ⊗ Aβ ⊗ Aγ ⊗ Aδ,

Cαβγ δ = Eν

1 − ν2
AαβAγ δ + E

2(1 + ν)
(Aαγ Aβδ + AαδAβγ )

(28)

where E is Young’s modulus and ν is Poisson’s ratio.

2.5 Governing Equations and Discretization in IGA
The potential energy of the Kirchhoff–Love shell can be calculated by the following formula:

Π (u) = Πint (u) + Πext (f, u) =
∫

Ω

WdΩ + Πext (f, u) (29)
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where Ω is the mid-surface of the shell in the reference configuration. Πint (u) is the strain energy, and
Πext (f, u) is the external work generated by the external force f. According to the principle of virtual
work, the displacement variable u must meet the balance condition of potential energy minimization:

δΠ = ∂Π

∂u
δu =

∫
Ω

δε (u, δu) : n (u) + δκ (u, δu) : m (u) dΩ + Πext (f, u) = 0 (30)

where δε and δκ represent the first variation of membrane and bending strains. n and m represent the
membrane force resultant tensor and bending moment tensor, respectively, and are expressed as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n = nαβAα ⊗ Aβ , nαβ = ∂W
∂εαβ

= tCαβγ δεγ δ

m = mαβAα ⊗ Aβ , mαβ = ∂W
∂καβ

= t3

12
Cαβγ δκγ δ

(31)

Eq. (30) is solved iteratively. Assuming ui+1 = ui + Δu, the variational Eq. (30) is linearized as
follows: Find Δu ∈ U such that

Km

(
ui, δu, Δu

) + Kb

(
ui, δu, Δu

) = −δΠ
(
ui, δu

)
, ∀δu ∈ U (32)

where Km and Kb are the membrane stiffness and bending stiffness, respectively, and are expressed as:

Km (ui, δu, Δu) =
∫

Ω

δε (u, δu) : δn (u, Δu) + δε (u, δu, Δu) : n (u) dΩ

Kb (ui, δu, Δu) =
∫

Ω

δκ (u, δu) : δm (u, Δu) + δκ (u, δu, Δu) : m (u) dΩ

(33)

Eq. (32) can be converted into a discrete equation by numerical integration:

Ku = f (34)

where K is the positive definite stiffness matrix, u is the displacement vector, and f is the force load
vector. Eq. (34) is also the equilibrium equation in Eq. (6). Furthermore, in IGA, u is expressed by the
linear combination of the displacement ui,j at the control point and the corresponding NURBS basis
function Rp,q

i,j , as follows:

u
(
ξ 1, ξ 2

) =
n∑

i=1

m∑
j=1

Rp,q
i,j

(
ξ 1, ξ 2

)
ui,j (35)

Similarly, the coordinates r
(
ξ 1, ξ 2

)
of any point on the mid-surface of the shell can be expressed

as:

r
(
ξ 1, ξ 2

) =
n∑

i=1

m∑
j=1

Rp,q
i,j

(
ξ 1, ξ 2

)
ri,j (36)

The stiffness matrix K is composed of the element stiffness matrix Ke. Ke is composed of the
element membrane stiffness matrix Km

e and element bending stiffness matrix Kb
e , as follows:

Ke =
3∑

i=1

3∑
j=1

{(
Km

e + Kb
e

) |J1| |J2|ωij

} =
3∑

i=1

3∑
j=1

{[
t (Bm

)
T CeB

m + t3

12

(
Bb

)T
CeB

b

]
|J1| |J2|ωij

}
(37)
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where Ce is the element material tensor, Bm is the membrane strain-displacement matrix, and Bb is the
bending strain-displacement matrix. 3 × 3 Gauss-quadrature points are selected in each element to
calculate the element stiffness matrix. ωij is the weight of the Gauss-quadrature point in each element.
J1 is the Jacobian matrix mapped from the parametric domain to the physical domain, and J2 is the
Jacobian matrix mapped from the parent domain to the parametric domain. Here, Gauss-Legendre
quadrature rules are employed for numerical integration in IGA.

3 Numerical Implementation and Framework
3.1 Sensitivity Analysis

Since the above full-scale ITO model involves multiple constraint functions, method of moving
asymptotes (MMA) algorithm is adopted to update the design variables [41]. The MMA method
requires calculating the sensitivity of the objective function and constraints. The sensitivity of the
objective function J (ρi) with respect to the design variable ρi is calculated as follows:

∂J (ρi)

∂ρi

= uT
e

∂K̃ e (ρi)

∂ρi

ue = ∂x (ρi)

∂ρi

uT
e Keue (38)

where
∂x (ρi)

∂ρi

is calculated according to Eqs. (8) and (9) as follows:

∂x (ρi)

∂ρi

= τRi (φi (ρi))
τ−1 ·

σ

[
1 − tanh2

(
σ

(
1
2

− ρi

))]

2 tan h
(σ

2

) (39)

Using the chain rule, the sensitivity of local volume constraint g (ρi) with respect to design variable
ρi is calculated as follows:

∂g (ρi)

∂ρi

= ∂g (ρi)

∂Lj (ρi)
· ∂Lj (ρi)

∂ρi

(40)

Using Eqs. (5) and (1),
∂g (ρi)

∂Lj (ρi)
and

∂Lj (ρi)

∂ρi

are calculated as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂g (ρi)

∂Lj (ρi)
=

(∑
c

(Lc (ρi))
p

) 1
p −1

· (
Lj (ρi)

)p−1

∂Lj (ρi)

∂ρi

= 1∑
j∈nc

1

(41)

Similarly, the sensitivity of the global volume constraint G (ρi) with respect to the design variable
ρi is as follows:

∂G (ρi)

∂ρi

= 1
|Ω|ν · ∂x (ρi)

∂ρi

= 1
|Ω|ν · τRi (φi (ρi))

τ−1 ·
σ

[
1 − tanh2

(
σ

(
1
2

− ρi

))]

2 tanh
(σ

2

)
(42)
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3.2 Optimization Design Framework
The optimization design framework of the cellular thin-shell structure is shown in Fig. 2. The

specific steps of the framework are as follows:

Figure 2: Optimization flow chart

Step 1: Construct the design domain of the thin shell based on the NURBS basis function and set
boundary conditions;

Step 2: Construct the effective density field and local volume fraction field;

Step 3: Compute the displacement field of the thin-shell structure by IGA;

Step 4: Calculate the objective function and constraints and conduct sensitivity analysis;

Step 5: Update effective densities by the MMA method;

Step 6: If the maximum change in effective density between two iterations is less than 1% or the
number of iteration steps reaches 800, stop the iteration; otherwise, repeat steps 3-6;

Step 7: Output the optimized result to obtain the final cellular thin-shell structure.
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4 Numerical Examples

In this section, several numerical examples are provided to demonstrate the effectiveness of the
proposed method. Unless otherwise specified, stainless steel material with Young’s modulus E = 200
GPa and Poisson’s ratio v = 0.3 is used in all examples. The upper limits of the global and local volume
constraints are set to 0.5 and 0.6, respectively. Both the penalty factor and the filter radius are set to 3.

4.1 Scordelis–Lo Roof
First, a benchmark example is used to verify the accuracy of the proposed method. Fig. 3 displays

the design domain of the Scordelis–Lo Roof, a very popular and extremely severe example. Fig. 4
shows the IGA mesh of the Scordelis–Lo Roof. The thickness of the shell is 0.25 mm. Two curved
edges are fixed, and a uniform vertical load F = 90 N is imposed on the entire shell. To align with the
standard description of this benchmark problem, the material properties are set to Young’s modulus
E = 432 MPa and Poisson’s ratio v = 0 here. The detailed data of the NURBS on the Scordelis–Lo
Roof are displayed in Table 1.

Figure 3: Design domain of the Scordelis–Lo Roof

Figure 4: IGA mesh of the Scordelis–Lo Roof
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Table 1: Detailed data of NURBS on the Scordelis–Lo Roof

Degrees of
NURBS

Number of
control points

Number of
IGA elements

Number of
element nodes

Open knot vectors

p = 3 m = 45 42 × 42 43 × 43 � = {0, 0, 0, 0, 0.0238,
0.0476, . . . , 0.9524,
0.9762, 1, 1, 1, 1}

q = 3 n = 45 H = {0, 0, 0, 0, 0.0238,
0.0476, . . . , 0.9524,
0.9762, 1, 1, 1, 1}

The vertical displacement field obtained by the proposed method is shown in Fig. 5. The maximum
vertical displacement of the middle side calculated by the proposed method is 0.3077, which is close
to the reference solution of 0.3086 in [42] and the solution of 0.308 in [15]. Hence, the accuracy of the
proposed method is demonstrated through this benchmark example of the Scordelis–Lo Roof.

Figure 5: Vertical displacement field of the Scordelis–Lo Roof obtained by the proposed method

4.2 Blunt Cone Shell
A design domain of a blunt cone shell is shown in Fig. 6. The four corners of the blunt cone shell

are fixed, and a vertical downward force load F = 100 N is applied at its center point. The thickness
of the thin shell is 1 mm. The design domain of the blunt cone shell is divided into 200 × 200 IGA
elements for topology optimization, as shown in Fig. 7. The parameters of the corresponding IGA
mesh are provided in Table 2. In the optimization model, the influence radius of the local volume
fraction is set to 10.

To verify the analysis results of IGA, the analysis result of the blunt cone shell obtained by the
commercial FEM software COMSOL is compared with that obtained by IGA. By importing the STL
file of the blunt cone shell into COMSOL, the same geometric modeling can be obtained. Fig. 8
depicts the displacement fields obtained by IGA and COMSOL. Here, the number of elements of
IGA is set to 50 × 50 to demonstrate the analysis accuracy of IGA, while the number of elements in
COMSOL is 7942. Comparison reveals that the contour lines of the two displacement fields by IGA
and COMSOL are almost identical. Meanwhile, the maximum displacements of the analysis results
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of the two methods are very similar. Therefore, this comparison illustrates that IGA requires fewer
elements to achieve the same level of accuracy as the FEM.

Figure 6: Design domain of the blunt cone shell

Figure 7: IGA mesh of the blunt cone shell, where the mesh resolution is set to one-tenth of the actual
resolution for better visualization

Table 2: Detailed data of NURBS on the blunt cone shell

Degrees of
NURBS

Number of
control points

Number of
IGA elements

Number of
element nodes

Open knot vectors

p = 2 m = 202 200 × 200 201 × 201 � = {0, 0, 0, 0.005, 0.01,
. . . , 0.99, 0.995, 1, 1, 1}

(Continued)
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Table 2 (continued)

Degrees of
NURBS

Number of
control points

Number of
IGA elements

Number of
element nodes

Open knot vectors

q = 2 n = 202 H = {0, 0, 0, 0.005, 0.01,
. . . , 0.99, 0.995, 1, 1, 1}

Figure 8: Displacement fields of the blunt cone shell: (a) by IGA; (b) by COMSOL

The iteration curves of the blunt cone shell are shown in Fig. 9. The iteration curves fluctuate
significantly in the first 200 steps due to σ in the Heaviside function doubling every 50 steps, as
described in Section 2.2. After 200 iterations, the iteration curves are stable, and the compliance reaches
the minimum while meeting the volume constraint. Fig. 10 displays the final optimized result, namely,
the optimized effective density distribution. Many small voids are produced in the optimized results
due to local volume constraints. The material is primarily distributed along the main force transmission
path from the load application point at the center of the blunt cone shell to the four fixed corners.

Figure 9: Iteration curves of the blunt cone shell
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(a) (b)

Figure 10: Optimized result of the blunt cone shell: (a) optimized cellular thin-shell structure; (b) top
view of the cellular thin-shell structure

The influences of different parameters on the optimized result are also discussed through this
numerical example. Fig. 11 shows four optimized results under different upper limits Lmax of the local
volume constraint and influence radius r. The upper limit of the local volume constraint controls the
local porosity, while the influence radius affects the size of the holes. The larger the influence radius is,
the larger the size of the holes. Therefore, the size of the holes in the optimized result can be controlled
by adjusting the upper limit of the local volume constraint and the influence radius.

(a) (b)

Figure 11: (Continued)
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(c) (d)

Figure 11: Optimized results of the blunt cone shell under different upper limits Lmax of the local
volume constraint and influence radius r: (a) the optimized result under Lmax = 0.6 and r = 10;
(b) the optimized result under Lmax = 0.8 and r = 10; (c) the optimized result under Lmax = 0.6 and
r = 20; (d) the optimized result under Lmax = 0.8 and r = 20

4.3 Free-Form Surface
Fig. 12 shows the design domain of a free-form surface, where F1 = 50 N and F2 = 10 N. The

design domain is discretized into 200 × 200 IGA elements, as displayed in Fig. 13. The thickness of
the free-form surface is 1 mm. The parameters of the corresponding NURBS patch are provided in
Table 3. The influence radius of the local volume fraction is set to 16.

Figure 12: Design domain of the free-form surface
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Figure 13: IGA mesh of the free-form surface, where the mesh resolution is set to one-tenth of the
actual resolution for better visualization

Table 3: Detailed data of NURBS on the free-form surface

Degrees of
NURBS

Number of
control points

Number of
IGA elements

Number of
element nodes

Open knot vectors

p = 2 m = 204 202 × 202 203 × 203 � = {0, 0, 0, 0.005, 0.01,
. . . , 0.99, 0.995, 1, 1, 1}

q = 2 n = 204 H = {0, 0, 0, 0.005, 0.01,
. . . , 0.99, 0.995, 1, 1, 1}

Fig. 14 depicts the iteration curves of the free-form surface. The iteration curves become stable
after 200 iterations and the convergence condition is satisfied at the 653rd iteration step. Fig. 15
shows the optimized results obtained by the proposed method. A free-form surface with many holes is
generated, and the material is mainly distributed along the main force transmission path. Fig. 16 shows
the 3D-printed sample obtained by additive manufacturing for the optimized result of the free-form
surface.

Figure 14: Iteration curves of the free-form surface
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(b)(a)

Figure 15: Optimized results of the free-form surface: (a) optimized cellular thin-shell structure; (b)
top view of the cellular thin-shell structure

Figure 16: The 3D-printed sample of the optimized result of the free-form surface

In Fig. 17, the optimized structure obtained by the proposed method and the thin-shell structure
with uniformly distributed holes are imported into COMSOL for simulation comparison. The same
material properties and loading and boundary conditions are set in COMSOL. The optimized
structure obtained by the proposed method has a 31.3% lower compliance and a 48.0% lower
maximum displacement than the thin-shell structure with uniformly distributed holes. These results
demonstrate that the proposed method can effectively improve the mechanical properties of thin-shell
structures.
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Figure 17: The free-form surfaces and corresponding displacement fields for (a) and (b): the proposed
method, and (c) and (d): uniformly distributed holes

4.4 Cylindrical Shell
Fig. 18 displays a design domain of the thin cylindrical shell, where the tangential force

F = 100 N. The thickness of the cylindrical shell is 1 mm. The design domain is meshed with 300
× 120 IGA elements, as shown in Fig. 19. The parameters of the corresponding IGA mesh are listed
in Table 4. In the initial setting, the influence radius of the local volume fraction is set to 12.
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Figure 18: Design domain of the cylindrical shell

Figure 19: IGA mesh of the cylindrical shell, where the mesh resolution is set to one-tenth of the actual
resolution for better visualization
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Table 4: Detailed data of NURBS on the cylindrical shell

Degrees of
NURBS

Number of
control points

Number of
IGA elements

Number of
element nodes

Open knot vectors

p = 2 m = 305 300 × 120 301 × 121 � = {0, 0, 0, 0.0033,
. . . , 0.9967, 1, 1, 1}

q = 2 n = 122 H = {0, 0, 0, 0.0083,
. . . , 0.9917, 1, 1, 1}

The iteration curves of the cylindrical shell are shown in Fig. 20. Due to changes in σ , the iteration
curves still exhibit slight oscillations in the first 200 iterations. Then, the iteration curves become stable
and reach the minimum compliance at the 800th iteration step. Fig. 21 displays the optimized result
of the cylindrical shell by the proposed method. The material is mainly distributed along the main
force transmission path from the load application points at the top of the cylindrical shell to the
fixed bottom. Since the applied forces are all tangential forces with the same magnitude and clockwise
direction, the optimized structure is highly symmetrical. Meanwhile, many bone-like cellular structures
are present in the cylindrical shell due to the influence of local volume constraints. Fig. 22 shows the
3D-printed sample obtained by additive manufacturing for the optimized result of the cylindrical shell.

Figure 20: Iteration curves of the cylindrical shell

A major advantage of the cellular thin-shell structure optimized by the proposed method is its
excellent damage tolerance ability. Even if the structure is damaged to a certain extent, the performance
of the structure will not be greatly impacted. Figs. 23a and 23b show the optimized results by the
proposed method and classical topology optimization, respectively. Unlike the proposed method, the
classical topology optimization method does not set local volume constraints. The material in the blue
area is removed to simulate local failure. Comparing the compliances of the two structures before
and after local failure reveals that before the local failure, the compliance of the optimized structure
obtained by the proposed method is 20.3% greater than that by the classical topology optimization;
however, after the local failure, the compliance of the optimized structure obtained by the proposed
method is 39.4% less than that by the classical topology optimization. In addition, the compliance of
the optimized structure obtained by the proposed method is 21.2% greater after local failure, while the
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compliance of that by the classical topology optimization is 140.6% greater. These results demonstrate
that local failure has less influence on the mechanical properties of the structure optimized by the
proposed method than on the structure optimized by classical topology optimization.

Figure 21: Optimized results of the cylindrical shell: (a) optimized cellular thin-shell structure; (b)
elevation view of the cellular thin-shell structure

Figure 22: The 3D-printed sample of the optimized result of the cylindrical shell

The two structures after local failure are then imported into COMSOL for simulation. The
same material properties and loading and boundary conditions are applied in COMSOL. The
displacement fields of the two structures are shown in Figs. 23c and 23d. The maximum displacement
of the optimized structure obtained by the proposed method is 80.1% smaller than the maximum
displacement of that by the classical topology optimization. Therefore, the cellular thin-shell structure
optimized by the proposed method has excellent robustness to local failure.



2502 CMES, 2024, vol.139, no.3

Figure 23: Optimized results of the cylindrical shell after local failure: (a) and (b) the optimized
results by the proposed method and classical topology optimization after local failure; (c) and (d)
displacement fields of optimized results by the proposed method and classical topology optimization
after local failure

5 Conclusions

This paper presents a full-scale ITO method to realize the design of cellular thin-shell structures
with excellent bearing capacity and damage tolerance. High-order continuous NURBS is adopted
to build the geometric and Kirchhoff–Love models of thin shells. The displacement field of a thin-
shell structure is computed by IGA with high computational accuracy. A full-scale ITO framework
is established by introducing local volume constraints, which can generate bone-like structures on
thin shells. The size of the holes in the cellular thin-shell structures can be adjusted by changing the
local volume constraints and their influence on radii. Local volume constraints are aggregated by
the p-norm function to facilitate an effective optimization process. The effectiveness of the proposed
method is verified by several numerical examples. These numerical examples show that the proposed
full-scale ITO method can steadily generate cellular structures in various irregular design domains
of thin shells. The comparative discussion demonstrates that the optimized structure obtained by the
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proposed method has high bearing capacity and great robustness to local damage, enabling its use in
practical engineering applications with high requirements for safety factors.

However, importantly, the optimized results obtained by the proposed method may have buckling
or stress constraint problems due to the presence of overly thin substructures. To address these issues,
future work will consider incorporating buckling and stress constraints into the optimization process
to optimize the mechanical properties of cellular thin-shell structures more comprehensively.
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