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ABSTRACT

This paper proposes a novel approach for identifying distributed dynamic loads in the time domain. Using
polynomial and modal analysis, the load is transformed into modal space for coefficient identification. This allows
the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously
identified in the form of modal force, thereby achieving dimensionality reduction. The Impulse-based Force
Estimation Algorithm is proposed to identify dynamic loads in the time domain. Firstly, the algorithm establishes
a recursion scheme based on convolution integral, enabling it to identify loads with a long history and rapidly
changing forms over time. Secondly, the algorithm introduces moving mean and polynomial fitting to detrend,
enhancing its applicability in load estimation. The aforementioned methodology successfully accomplishes the
reconstruction of distributed, instead of centralized, dynamic loads on the continuum in the time domain by
utilizing acceleration response. To validate the effectiveness of the method, computational and experimental
verification were conducted.
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1 Introduction

Accurately reconstructing the dynamic forces acting on a structure holds significant importance in
various engineering applications. Frequently, direct measurements of the input are not feasible, while
limitations in practicality and cost prevent measurements of the structure’s response at all physical
locations. In such cases, the forces must be indirectly determined from dynamic response measurements
using system inversion techniques.

A distributed dynamic load, such as the air pressure load experienced by a building or the water
pressure load on ships, plays a critical role in the analysis of dynamic loads. Therefore, the recognition
of distributed dynamic loads has considerable practical significance. While numerous methods and
techniques [1,2] were developed to identify concentrated dynamic loads, there remains a dearth of
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research focused on distributed dynamic loads, particularly in the area of time-domain recognition
methods.

Two primary avenues have emerged for studying distributed dynamic loads: one involves the
technology of spatial fitting, while the other emphasizes establishing load relationships in either
the time or frequency domain. It is comparatively straightforward to identify the load with the
frequency response function [3–6] in the frequency domain because the time series information is
essentially lost in the frequency domain, thereby simplifying the calculation. The study of establishing
a temporal relationship in load is primarily observed in the context of concentrated loads, as evident
in the current scientific literature [1]. Several studies have employed a variety of methods to estimate
concentrated or distributed dynamic loads, primarily using Green’s kernel function to discretize the
acceleration response. For example, Li et al. [7,8] and Wan et al. [9] used the direct inverse method of
discretized Green’s kernel function to establish the relationship between load and response in the time
domain. Kazemi et al. [10] applied the trapezoidal rule to improve the accuracy of the discretization
method of Green’s kernel function. Liu et al. [11] proposed a time domain Galerkin method based on
discretized Green’s kernel function. The studies on the aforementioned time-domain techniques can be
grouped together, encompassing two main steps. The first step involves mathematically formulating
the mapping from input sequences to output sequences using an operational matrix, resulting in a
large matrix. The second step focuses on solving the ill-posed inverse problem through the application
of a regularization method. Many papers have studied ill-conditioned inverse problems. For example,
Wang et al. [12,13] adopted a new homotopy perturbation method and a new iterative regularization
method, Wang et al. [14] employed Tikhonov regularization, while Liu [15] utilized the multi-vector
iterative algorithm in a Krylov subspace. However, when the dimension of the matrix is significantly
increased, it becomes challenging or even impossible to solve the matrix and identify the force.
Liu et al. [16] and Jiang et al. [17] attempted to establish the load-response relationship in the
time domain using the Newmark method. Furthermore, a recursive approach for load identification
through joint input-state estimation was developed by Meas et al. [18] and Lourens et al. [19].
Li et al. [20] innovatively calculated the relationship of concentrated loads in the time domain using
function principles. As described above, these methods [16–20] are used in the identification of
concentrated loads. In the space fitting technique, shape functions [21,22], basic functions [16], and
generalized orthogonal polynomials [3–6] have been widely employed. In addition, Wu et al. [23–25]
have conducted research on the identification of randomly distributed dynamic loads. However, these
studies do not involve fixed-frequency excitation, particularly low-frequency excitation associated with
significant structural damage. In addition to parametric methods, there are non-parametric methods
such as artificial intelligence. Artificial intelligence [16,26,27] can recognize the structure of the training
target through a large number of prior trainings. However, this black box method is challenging to
explain at the principal level, so its applicability needs to be enhanced for structural dynamics, which
are sensitive to shape and boundary conditions.

This paper presents the Impulse-based Force Estimation Algorithm (IFEA), in which the recursive
algorithm based on convolution integral combined with the moving mean and polynomial fitting
methods can avoid the inversion of super-high dimensional matrices and, as a result, can accurately
identify loads with a long history and fast-changing characteristics over time. For distributed dynamic
load, the utilization of polynomial function and modal analysis has proven successful in converting
a dynamic load, which encompasses two dimensions of space and time, into coefficient identification
for a single-degree-of-freedom (SDOF) system. Ultimately, the successful identification of distributed
dynamic loads with a sufficiently long duration and diverse forms on a continuum with an infinite
number of degrees of freedom is achieved in the time domain, in contrast to the frequency domain
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proposed in [3–6], rather than the concentrated loads proposed in [16–20]. Moreover, the method
employs acceleration response instead of strain proposed in [21,28], making it more convenient to
measure in engineering applications.

The theoretical framework of this study commences with Section 2, which details the process
of dimension reduction for the distributed dynamic load and provides a mathematical derivation of
the IFEA. In Section 3, the proposed method is validated with numerical simulations, followed by
experimental verification of the IFEA in Section 4. Section 5 presents the conclusion of this research.

2 Principle of Distributed Dynamic Load Identification

A conventional point-load excitation is inherently constrained in terms of spatial degrees of
freedom, with a mathematical form of f (x1, x2, · · ·, xn, t), where x1, x2, · · ·, xn are discrete variables.
However, distributed dynamic loads, characterized by the mathematical form f (x, t), exhibit infinite-
dimensional spatial degrees of freedom. Consequently, the identification and calculation of distributed
dynamic loads present substantial challenges. Additionally, a limited number of measurement points in
engineering applications further complicates the estimation of infinite-dimensional distribution loads
based on such limited data.

2.1 Dimension Reduction
For deterministic structures, modal parameters can be obtained with modal testing or finite-

element modal-analysis technique [29]. The introduction of modal coordinates simplifies the problem
of identification, reducing it to that of a typical SDOF system. Let us consider the bending vibration
of a Bernoulli-Euler simply supported beam in a continuous system. By introducing the modal
coordinates w (x, t) = φn (x) qn (t), the vibration equation for this scenario is represented by Eq. (1).

q̈n (t) + 2ωnζnq̇n (t) + ω2
nqn (t) = fn (t)

mn

. (1)

where n stands for modal order. qn (t), q̇n (t) and q̈n (t) denote modal displacement, model velocity and
modal acceleration of each order, respectively. ωn and ζn represent natural frequency and damping ratio
of each order. mn is a modal mass and fn (t) is a modal force of each order after mass normalization,
given by fn (t) = ∫ l

0
φn (x) f (x, t) dx. l is the beam length. The modal truncation frequency is typically

set at 1.5 times the maximum dynamic response frequency, with a maximum limit of not exceeding
2 times. Modes beyond this frequency range have negligible contributions to the dynamic response,
aligning with the principle of the modal superposition method for calculating dynamic response.

For decoupled SDOF systems, the distributed dynamic load f (x, t) can be transformed into fn (t).
When time is discretized, the fitting target in this case is fn

(
tj

)
, where tj is the discrete and known

time. If the objective of the fitting is fn

(
tj

)
, it becomes possible to achieve dimensionality reduction

from two dimensions to one because fn

(
tj

)
is a scalar quantity, also referred to as the modal force

for each discrete time. Even if an analytical solution for the integral of x cannot be obtained, there
exists an approximate numerical solution at tj. Through modal analysis, the distributed dynamic load
is effectively reduced from the two dimensions of t and x to the numerical values of each mode at
discrete time instants, thereby achieving dimensionality reduction of the unknown variables. In this
manner, time and space can be simultaneously identified in the form of modal force, without the need
for sequential recognition of time and spatial functions.
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2.2 Recursion Principle of IFEA
Eq. (1) can be calculated using the convolution integral expressed in Eq. (2),

q (t) =
∫ t

0

h (t − τ) f (τ ) dτ . (2)

Here, h (t − τ) = e−ζω(t−τ)
sin (ωd (t − τ))

mωd

and ωd = ω
√

1 − ζ 2. It should be noted that the modal

order, represented by n, is not explicitly indicated in Eq. (2).

Considering a SDOF damped system subjected to an excitationf (t), in a separate sampling
interval

[
tjtj+1

]
, the responses of the two endpoints tj and tj+1 are known, enabling the determination of

the two unknowns of the functional form of the force within the sampling interval
[
tjtj+1

]
. Assuming

that the function of the force in the sampling interval
[
tjtj+1

]
is denoted as Eq. (3),

f (t) = a0 + a1t. (3)

Theoretically, Eq. (3) can be uniquely determined based on the aforementioned two response
points. Moreover, if the sampling interval is sufficiently small, it can be assumed that the excitation
force undergoes an approximately linear change within the interval

[
tjtj+1

]
. This establishes a relation-

ship between the force described by a first-order polynomial and the arbitrary excitation function, as
depicted in Fig. 1. Once the force within the interval

[
tjtj+1

]
is expressed by Eq. (3), its response at a

specific time t within the interval can be expressed as the sum of the three responses shown in Eq. (4),
based on the principle of linear superposition,

x (t) = x1 (t) + x2 (t) + x3 (t) . (4)

Among these, x1 (t) is the displacement of free vibration resulting from the displacement x
(
tj

)
and

velocity ẋ
(
tj

)
at time tj. x2 (t) represents the displacement response caused by a rectangular pulse with

an amplitude of a0. Similarly, x3 (t) represents the displacement response caused by a triangular pulse
with a slope of a1.

Figure 1: Schematic illustration of recursion principle

Upon substituting Eq. (3) into Eq. (2), the results are

x2 (t) = a0

∫ t

0

h (t − τ) dτ , (5)
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x3 (t) = a1

∫ t

0

h (t − τ) τdτ . (6)

From the perspective of impulse, Eqs. (5) and (6) are equivalent to Eqs. (7) and (8),

x2 (t) = f
(
tj

) ∫ t

0

h (t − τ) dτ , (7)

x3 (t) = f
(
tj+1

) − f
(
tj

)
tj+1 − tj

∫ t

0

h (t − τ) τdτ . (8)

Within each discrete time interval, the integrand function of the convolution integral comprises
known quantities, including the constant basis, basis t, and unit impulse response function. Hence,
the convolution integral can provide an analytical solution. There is an inherent analytical solution
for x1 (t), so arranging x1 (t), x2 (t), and x3 (t) yields,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 (t) = e−ζωt

[
x
(
tj

)
cos ωdt + ẋ

(
tj

) + ζωx
(
tj

)
ωd

sin ωdt

]

x2 (t) = f
(
tj

)
k

[
1 − e−ζωt

(
cos ωdt + ζω

ωd

sin ωdt
)]

x3 (t) = f
(
tj+1

) − f
(
tj

)
(
tj+1 − tj

)
kω2

[
ω2t − 2ζω + e−ζωt

(
2ζω cos ωdt − ω2

d − ζ 2ω2

ωd

sin ωdt
)]

. (9)

where k is the stiffness. By taking the first and second derivatives of t, the acceleration and velocity
can be obtained as Eq. (10),{

ẋ (t) = ẋ1 (t) + ẋ2 (t) + ẋ3 (t)
ẍ (t) = ẍ1 (t) + ẍ2 (t) + ẍ3 (t)

. (10)

The calculated velocity is shown in Eq. (11),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 (t) = e−ζωt

[
−

(
x
(
tj

)
ωd + ζω

ẋ
(
tj

) + ζωx
(
tj

)
ωd

)
sin ωdt + ẋ

(
tj

)
cos ωdt

]

ẋ2 (t) = f
(
tj

)
ω2

kωd

e−ζωt sin ωdt

ẋ3 (t) = f
(
tj+1

) − f
(
tj

)
(
tj+1 − tj

)
k

[
1 − e−ζωt

(
cos ωdt + ζω

ωd

sin ωdt
)]

. (11)

The calculated acceleration is given by Eq. (12),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 (t) = e−ζωt

[(
ω2

ζωx
(
tj

) + ẋ
(
tj

)
ωd

− 2ẋ
(
tj

)
ωd

)
sin ωdt − (

2ζωẋ
(
tj

) + ω2x
(
tj

))
cos ωdt

]

ẍ2 (t) = f
(
tj

)
ω2

k
e−ζωt

(
cos ωdt − ζω

ωd

sin ωdt
)

ẍ3 (t) =
[
f
(
tj+1

) − f
(
tj

)]
ω2e−ζωt sin ωdt(

tj+1 − tj

)
kωd

. (12)



2870 CMES, 2024, vol.139, no.3

At the end of the time interval tj+1, t becomes equal to tj+1 − tj. Thus, in Eqs. (9), (11) and (12),
there are only four unknowns, namely, the displacement x

(
tj

)
at time tj, the velocity ẋ

(
tj

)
at time tj,

the force f
(
tj

)
at time tj and the force f

(
tj+1

)
at time tj+1. Define Δt = tj+1 − tj, and combine the same

terms for the above four unknowns in Eqs. (4) and (10) to obtain Eq. (13),⎧⎪⎪⎨
⎪⎪⎩

x
(
tj+1

) = C1x
(
tj

) + C2ẋ
(
tj

) + (C1 − C4) f
(
tj

) + C4f
(
tj+1

)
ẋ
(
tj+1

) = C5x
(
tj

) + C6ẋ
(
tj

) + (C7 − C8) f
(
tj

) + C8f
(
tj+1

)
ẍ
(
tj+1

) = C9x
(
tj

) + C10ẋ
(
tj

) + (C11 − C12) f
(
tj

) + C12f
(
tj+1

) . (13)

Here, C1 to C12 are defined as follows:

C1 = e−ζωΔt

(
cos ωdΔt + ζω

ωd

sin ωdΔt
)

, C2 = 1
ωd

e−ζωΔt sin ωdΔt,

C3 = 1
k

(1 − C1), C4 = 1
Δtk

(Δt − 2ζωmC3 − C2), C5 = −ω2C2,

C6 = C1−2ζωC2, C7 = 1
m

C2, C8 = 1
Δt

C3, C9 = −ω2C1+2ω2ζωC2, C10 = (
4ζ 2ω2 − ω2

)
C2−2ζωC1,

C11 = 1
m

(C1 − 2ζωC2) and C12 = 1
Δtm

C2.

The convolution integration takes the form of a parametric integral in mathematics, namely the
form F (x) = ∫ d(x)

c(x)
f (x, y) dy. The derivative rule is shown in Eq. (14),

F ′ (x) = f (x, d (x)) d ′ (x) − f (x, c (x)) c′ (x) +
∫ d(x)

c(x)

∂f (x, y)

∂x
dy. (14)

Eqs. (15) and (16) can be obtained by Eq. (14),⎧⎪⎨
⎪⎩

ẋ (t) = ∫ t

0
ḣ (t − τ) f (τ ) dτ

ḣ (t − τ) = ∂h (t − τ)

∂t
= e−ζω(t−τ)

m

[
cos ωd (t − τ) − ζω

ωd

sin ωd (t − τ)

]
,

(15)

⎧⎪⎨
⎪⎩

ẍ (t) = f (t) + ∫ t

0
ḧ (t − τ) f (τ ) dτ

ḧ (t − τ) = e−ζω(t−τ)
[(

ζ 2ω2 − ω2
d

)
sin ωd (t − τ) − 2ζωωd cos ωd (t − τ)

]
mωd

.
(16)

Eqs. (15) and (16) represent velocity and the acceleration in the form of convolution integral. It
can be seen from Eqs. (2), (15), and (16) that at time 0, acceleration experiences a sudden change due to
excitation, consistent with Newton’s second law. However, displacement and velocity do not experience
such sudden changes due to excitation. Therefore, the recognition of initial excitation can be obtained
from Eq. (16). Consequently, a recursive relationship in time is established for all discrete time of the
excitation force. Fig. 2 displays the flowchart for force estimation.

The method reconstructs information regarding the force within the interval and a recursion
relationship was established for the load between the two discrete points. This approach enables
efficient handling of a large number of sampling points, as each step only requires solving the equation
at the current moment. Specifically, for 10,000 sampling points, a matrix with 10,000 rows and 10,000
columns needs to be constructed according to references [7–10]. This matrix construction method is
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commonly referred to as the Green kernel function discretization method, which essentially discretizes
acceleration. However, the method proposed in this paper only requires processing Eq. (13) for 10,000
times. For a larger number of sampling points, it is not feasible to calculate a super large-scale non-
sparse matrix using conventional methods and equipment. Moreover, these matrices are often ill-
conditioned in load identification, necessitating the use of regularization methods to process the
matrix. The recursion based on convolution integral, however, does not suffer from such disadvantages,
greatly increasing the engineering significance of our method. Of course, multiple iterations can
introduce trend errors, which are described in the following section.

Figure 2: Flow chart of recursion

2.3 Trend Elimination of IFEA
Through experiments and simulations, we have observed that multiple iterations can lead to

cumulative errors. To visualize these errors, we introduced the concept of Direct Current (DC) in the
circuit, which we refer to as DC trends. According to the process shown in Fig. 2, the error of force
estimation affects the entire process. After conducting numerous simulations and experiments, we have
found that for a SDOF system, although the recognition result after multiple iterations exhibits a DC
trend, the relative load estimation remains accurate. This means that the identified load fluctuates
around the DC trend with the correct relative amplitude.

To address the issue of DC trend, we incorporate a moving mean filtering algorithm. Let us
consider a set of time-series discrete signals denoted as s (i), where i represents the number of sampling
points and belongs to the range of non-negative integers. We define the moving window size as k. When
k is an odd number, the window is centered on the current element. When k is even, the window includes
the current element and its previous element, resulting in an odd-sized window. If there are insufficient
elements to fill the window at the end, the window will be automatically truncated. In such cases, the
average is calculated only based on the elements within the window. Mathematically, the moving mean
is represented as Eq. (17),

s = 1
k

[s (i) + s (i + 1) + · · · + s (i + k − 1)] . (17)

The schematic diagram is depicted in Fig. 3.

In the absence of a DC trend, the moving mean remains relatively constant. However, when a DC
trend is present, the moving mean also changes, reflecting the trend value. The sliding window should
be appropriately sized according to the sampling rate and frequency of the response. As the moving
mean is calculated using a sliding window, any change in the input signal’s characteristics will cause
fluctuations at the junctions of the two segments. To address this issue, we employ a polynomial fitting
method to fit the DC trend of each segment. By using a polynomial, we perform fitting based on the



2872 CMES, 2024, vol.139, no.3

least square index to approximate the DC trend from the sampled signal. Once the DC trend is fitted,
it can be removed from the recognized excitation signal.

Figure 3: Schematic diagram of the moving mean

2.4 Spatial Dimension Reconstruction
Section 2.1 converts the continuous system into a SDOF system with multiple modes, while

Section 2.2 establishes a recursive form in a SDOF system. Now it is merely necessary to establish
the relationship between the SDOF systems and the actual response, and each order of modal force
can be solved based on the actual response. At a specific discrete time tj, the modal forces of each order
are denoted as fn

(
tj

)
. Assuming there are k measuring points, the following system of linear equations

can be constructed according to the modal analysis theory:

ẍ
(
x1, tj

) =
∞∑

n=1

φn (x1)
[
C9

nx
(
tj−1

) + C10
n ẋ

(
tj−1

) + (
C11

n − C12
n

)
fn

(
tj−1

) + C12
n fn

(
tj

)]

ẍ
(
x2, tj

) =
∞∑

n=1

φn (x2)
[
C9

nx
(
tj−1

) + C10
n ẋ

(
tj−1

) + (
C11

n − C12
n

)
fn

(
tj−1

) + C12
n fn

(
tj

)]
...

ẍ
(
xk, tj

) =
∞∑

n=1

φn (xk)
[
C9

nx
(
tj−1

) + C10
n ẋ

(
tj−1

) + (
C11

n − C12
n

)
fn

(
tj−1

) + C12
n fn

(
tj

)]
.

(18)

where n still stands for modal order. Typically, the number of measuring points will be greater than
the modal truncation order. Therefore, Eq. (18) can be rapidly solved using the least square solution,
and the modal forces of each order at the discrete time fn

(
tj

)
can be obtained.

In accordance with Section 2.1, the modal force at discrete time tj is given by,

fn

(
tj

) =
∫ l

0

φn (x) f
(
x, tj

)
dx. (19)

This study assumes that the spatial distribution function of the distributed dynamic load displays
spatial smoothness, indicating a low spatial frequency. Consequently, multi-order polynomials are
utilized to approximate it. The modal load of each order at discrete time tj can be obtained as Eq. (20),

fn

(
tj

) =
∫ l

0

φn (x)
[
dx xdx x2dx · · · xkdx

] [
a0 a1 a2 · · · ak

]T
. (20)

where a0 to ak represent polynomial coefficients for each order. For multiple modes, Eq. (20) expands
to,
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⎡
⎢⎢⎢⎣

f1

(
tj

)
f2

(
tj

)
...

fn

(
tj

)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

∫ l

0
φ1 (x) dx

∫ l

0
φ1 (x) xdx · · · ∫ l

0
φ1 (x) xkdx∫ l

0
φ2 (x) dx

∫ l

0
φ2 (x) xdx · · · ∫ l

0
φ2 (x) xkdx

...
...

...∫ l

0
φn (x) dx

∫ l

0
φn (x) xdx · · · ∫ l

0
φn (x) xkdx

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

a0

a1

...
ak

⎤
⎥⎥⎦ . (21)

where n stands for modal order, as in the previous case. Eq. (21) can be abbreviated as,

F = HA. (22)

The matrix H is a small-scale matrix whose size depends solely on the modal order and the
polynomial order. As a result, the coefficient matrix A can be obtained by,

A = H+F. (23)

Hence, the distributed dynamic load at discrete time tj can be obtained, and subsequently,
the distributed dynamic load at each discrete time can be determined based on modal forces at
corresponding discrete time. When calculating the spatial distribution of the distributed dynamic load,
each discrete time is independent of one another, and there is no mutual influence of errors. This
overcomes the vulnerability of multi-order polynomials to error sensitivity.

3 Results of Simulation Validation and Discussion
3.1 Evaluation Index

In order to objectively and quantitatively describe the obtained dynamic load, commonly used
signal evaluation methods should be adopted. Let the theoretical load signal at time j be X (j), and
the reconstructed signal at time j be Y (j). The following equation defines the normalized mean error
of square (NMES),

NMES =

n∑
j=0

[X (j) − Y (j)]2

n∑
j=0

X (j)2
× 100%. (24)

where n is the number of discrete points. The smaller the value of this index, the closer the identification
is to the theoretical value. The correlation coefficient method (CCM) is also introduced as an
evaluation criterion, as demonstrated by Eq. (25),

CCM =

n∑
i=1

[
X (i) − X

] [
Y (i) − Y

]
√

n∑
i=1

[
X (i) − X

]2 n∑
i=1

[
Y (i) − Y

]2

× 100%. (25)

Here, X and Y respectively represent the mean value of X (i) and Y (i), n also represents
the number of discrete points, and the correlation coefficient is employed to signify the degree of
correlation between the theoretical signal X (i) and the recognized signal Y (i), with a maximum value
of 100% that indicates complete consistency between the two pieces of information. The closer the
value is to 100%, the stronger the correlation between the two signals, indicating higher recognition
accuracy.
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3.2 Fixed Frequency Plus Random Excitation
The IFEA is validated for the SDOF system depicted in Fig. 4. The system parameter is set to

m = 5 kg, k = 200 N/m and c = 0.1 N · s/m. the form of the applied load is sin (3πt) + 10 sin (5πt).
Additionally, a noise with a mean of 0 and a standard deviation of 1 is superimposed on the excitation
to simulate random excitation. Since random excitation should be represented in the form of a power
spectrum, simulating rapidly changing random excitation using noise is convenient in this context.

Figure 4: Schematic diagram of the SDOF system

The acceleration response of the example is illustrated in Fig. 5, the identified dynamic load is
depicted in Fig. 6, and the rating index is presented in Fig. 7.

Figure 5: Response of acceleration

Figure 6: Estimation of force
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Figure 7: The index of the example

Fixed frequency plus random excitation is a common condition in engineering, and the time-
domain algorithm has the potential to identify the excitation after fixed frequency and random
superposition simultaneously. However, this requires a smaller sampling interval and more sampling
points. It can be observed from Fig. 6 that the estimated force is largely consistent with the applied
excitation. The error indicator drops rapidly and approaches zero, except for the initial point where the
applied stimulus is zero, leading to a significant amplification of the error. The correlation coefficient
steadily increases during the identification process, indicating a growing similarity between the two
signals. The example demonstrates that IFEA can accurately identify dynamic loads in the time
domain, including long time-history loads, which is unachievable with the discrete Green’s function.

3.3 Distributed Dynamic Load of Fixed Frequency
In the field of structural dynamics, low-frequency loads induce low-order modes in a structure,

which typically exhibit larger amplitudes and have the potential to cause more damage. On the other
hand, high-frequency loads are often treated as random loads acting upon the structure in engineering
scenarios. Consequently, a simply supported beam model with a remarkably low first-order mode was
specifically designed, as depicted in Fig. 8. The beam has a length of 2 m and a rectangular cross-
sectional shape with dimensions of 0.02 m × 0.003 m (width × height). The material properties of the
beam are characterized by an elastic modulus of 70 GPa, a density of 2700 kg/m3, and a damping of
0.1 N · s/m. The first five natural frequencies of the simply supported beam are determined as 1.7, 6.9,
15.6, 27.7, and 43.3 Hz, respectively.

Figure 8: Simply-supported beam and boundary conditions

The distributed dynamic load, acting perpendicular to the beam, is described by the equation
sin (180 t) cos (0.5 πx)/2 + 0.7. This load exhibits an excitation frequency of approximately 28.6 Hz,
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effectively stimulating the fourth-order mode. The sampling step is defined as 0.0005 s, resulting in a
sampling rate of 2000 Hz. A total duration of 1s is considered, resulting in a total of 2001 sampling
points. The chosen measurement positions were 0.5, 0.9, 1.1, 1.3 and 1.7 m, as shown in Fig. 8, which
theoretically facilitate the determination of the fourth-order polynomial. The measuring point does
have an effect on the result of identification. Selecting the location of the sampling points is a complex
matter. The most crucial aspect is that the measurement point information should encompass as
much modal information as possible, and the dynamic response of the measurement point should
be uncorrelated. This is also the principle of selecting measuring points in this paper. The selection of
measuring points has significant criteria, which can be specifically viewed in papers [30,31] on optimal
sensor placement. The selection of the number of measurement points is dependent on the order of
modal truncation. In the case of the four modes, at least four measuring points are required to uniquely
determine each mode force.

The form of the load is shown in Fig. 9.

Figure 9: (Continued)
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Figure 9: Original load: (a) three-dimensional view; (b) x-z view; (c) x-y view

The estimation of each order of modal force is depicted in Fig. 10, while the index of modal force
is illustrated in Fig. 11. Furthermore, the three-dimensional distributed dynamic load identified is
presented in Fig. 12.

Figure 10: Modal forces: (a) first order (b) second order (c) third order (d) fourth order
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Figure 11: NMES and CCM: (a) first order (b) second order (c) third order (d) fourth order

Figure 12: (Continued)
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Figure 12: Reconstructed load: (a) three-dimensional view; (b) x-z view; (c) x-y view

Due to the linear nature of the first-order and third-order modal forces, the correlation coefficient
index yields a poor result and loses its functionality. However, by observing the NMES index and the
modal force curve, it is evident that the identified force fluctuates around a straight line with minimal
error. Overall, both the modal force curves and the index curves indicate a highly accurate recognition
of each order of modal force.

The errors between the reconstructed and original loads are shown in Fig. 13.

Figure 13: Errors of reconstructed load: (a) three-dimensional view; (b) x-z view

As depicted in Fig. 13, the absolute error is extremely small and nearly zero in the middle. The
increase in error at both ends can be attributed to the inherent error in fitting trigonometric functions
with polynomials. The utilization of spatial distribution in the form of trigonometric functions aims
to demonstrate that any error in the spatial fitting of each step remains confined to the space of the
current step and does not impact the accuracy of the modal force in the time domain. Consequently,
spatial errors do not result in cumulative errors over time. This observation is further supported by
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Fig. 13, as the spatial error does not exhibit an increase with an escalation in the number of recurrence
steps.

3.4 Distributed Dynamic Load Undergone a Mutation
Furthermore, to validate the method’s estimation capability for rapidly changing and long time-

history loads, we devised an excitation that undergoes a mutation. The mutation of this excitation
alternates in both spatial distribution and frequency, thereby testing the method’s recognition ability.
The form of excitation is shown in Eq. (26),

f (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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2
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. (26)

The excitation is continuous in the time domain. All other conditions remain unchanged from the
previous example, with the only alteration being the extension of sampling time to three seconds. The
form of excitation is illustrated in Fig. 14.

Figure 14: (Continued)
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Figure 14: Original load: (a) three-dimensional view; (b) x-z view; (c) x-y view

As evident from Fig. 14, there is a successive mutation in both the spatial distribution and
frequency. The estimation of each order of modal force is depicted in Fig. 15, while the modal force
index is illustrated in Fig. 16. Furthermore, the three-dimensional distributed dynamic load identified
is presented in Fig. 17.

Figure 15: Modal forces: (a) first order (b) second order (c) third order (d) fourth order
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Figure 16: NMES and CCM: (a) first order; (b) second order; (c) third order

Figure 17: (Continued)
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Figure 17: Reconstructed load: (a) three-dimensional view; (b) x-z; (c) x-y view

The third-order modal force is represented by a straight line with a value of 0, and it is evident
from the figure that the identification is highly accurate. Hence, calculating its index is not possible
as the denominator of the index becomes extremely small, resulting in an infinite value. Similarly, this
applies to the first 0.5 s of the first-order modal force, so the index for the first-order modal force is
calculated starting from 0.5 s. The modal force diagram and all indices demonstrate the accuracy of
the estimated force.

The errors between the reconstructed and original loads are shown in Fig. 18.

Figure 18: Errors of reconstructed load: (a) three-dimensional view; (b) x-z view

The example demonstrates that the proposed method can effectively identify long time-history
distributed dynamic loads undergone a mutation, with highly accurate identification results and
minimal error.
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3.5 Robustness to Noise
To assess the method’s robustness against noise, we introduced 2% Gaussian white noise to the

response stimulated in Section 3.3 for noise simulation, while keeping everything else unchanged. The
modal force is depicted in Fig. 19, the index is illustrated in Fig. 20, and the fitted distributed dynamic
load error is showcased in Fig. 21.

Figure 19: Modal forces with noise: (a) first order (b) second order (c) third order (d) fourth order

Figure 20: (Continued)
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Figure 20: NMES and CCM: (a) first order (b) second order (c) third order (d) fourth order

Figure 21: Reconstructed error for load with noise: (a) three-dimensional view; (b) x-z view

The first and third order modal force indices can also be elucidated by the analysis in Section 3.3.
From the aforementioned figures, it is evident that the method possesses a certain level of noise
resistance. Nevertheless, since the assessment of dynamic load relies on the accuracy of acceleration
response, any inaccuracies in the acceleration response will inevitably impact the precision of load
estimation.

4 Results of Experimental Verification and Discussion of Algorithm

The modal force for single-point concentrated loads is given by Eq. (27),

fn (t) =
∫ l

0

φn (x) f (x, t) δ (x − x1) dx, (27)

where x1 signifies the position at which the load is applied.

About contributions of single-point concentrated to the response, it can be obtained similarly
from Eq. (27) that the sole difference between concentrated loads and distributed lies in the modal
force of each mode order, while all other factors remain constant.
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Given the proposed nature of IFEA as a time-domain method in this study, it is feasible to
employ experimental data comprising concentrated excitations to verify the algorithm’s performance
in the time domain. Since concentrated dynamic loads are employed, the multi-order polynomial
fitting is unnecessary during the computation process. Merely utilizing zero-order polynomial fitting is
adequate. Among the various forms of concentrated excitations, impulsive loads, characterized by high
amplitude and rapid variations, pose more stringent demands on numerical computations, particularly
in terms of load tracking in the time domain and accuracy of amplitude reconstruction [32,33].

Considering the challenges associated with controlling and measuring spatially distributed
dynamic loads, including difficulties in accurately controlling the amplitude of distributed loads in the
spatial domain and challenges in measuring the amplitude of continuously distributed dynamic loads.
These challenges can lead to significant errors in experimental data, thereby impeding the validation
of the algorithm itself. Therefore, the validation procedure uses the mature and easily controllable
concentrated dynamic load to emphasize the performance of the time domain of the newly proposed
IFEA. If the experiment incorporates impulse loads, it would provide an opportunity to evaluate the
performance of the IFEA under an impulse load. Additionally, this would serve as a supplementary
demonstration of simulations. Thus, a pulsive load is the excitation source during the experimental
validation process.

The configuration of the simply supported beam model is depicted in Fig. 22, while the structural
and material parameters can be found in Table 1.

Figure 22: Physical model

Table 1: Structural dimensions and material parameters

Length/m Width/m Height/m Elasticity modulus/GPa Density/kg/m3

0.7 0.04 0.008 210 7800

A modal experiment was performed on the simply supported beam employing the hammer impact
technique, wherein the natural frequencies and modal damping ratios of the simply supported beam
were measured and are presented in Table 2.
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Table 2: Modal parameters

First order Second order Third order

Modal frequency/Hz 39.37 153.41 346.74
Modal damping ratio 0.026 0.013 0.009

Given the instantaneous characteristics and brief duration of impact loads, there are stringent
demands for dynamic-load identification algorithms. To assess the accuracy of amplitude recognition,
the peak relative error is introduced,

PRE = | max Y (i) − max X (i) |
max X (i)

× 100%. (28)

An impact load was imparted using a force hammer at a distance of 0.37 m. Accelerome-
ters were strategically positioned at response point 1 (located at 0.28 m) and response point 2
(located at 0.49 m) to capture the acceleration responses, as depicted in Fig. 23.

Figure 23: Experimental diagram

Notably, in the magnified section of Fig. 24, the dynamic response promptly initiates after 0.49 s,
signifying the application of the impact load on the beam is between 0.49 and 0.492 s.

Figure 24: Acceleration response to impact load
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The reconstructed load is shown in Fig. 25.

Figure 25: Reconstructed impact load

Similarly, in the identified impact-load graph, the zoomed-in segment illustrates the load attaining
its peak at 0.492 s and commencing its effects between 0.49 and 0.492 s. These findings affirm the
experiment’s success in verifying the algorithm’s precision in reconstructing the load duration. In
Fig. 24, the temporal and amplitude values of the peaks are visually discernible, with the peak relative
error calculated using Eq. (28) amounting to 17.96%. Overall, this algorithm accurately determines
the application time of the impact load and reasonably determines its amplitude and trend. Although
this paper focuses on distributed dynamic loads, it can be observed from experiments and Eq. (27) that
when the concentrated loads and distributed loads are converted into modal forces at a specific discrete
time, there is no significant difference in their forms, and both are scalar. Therefore, the algorithm
can still accurately identify the modal forces. This is why the experiment is conducted to verify the
algorithm with a concentrated load that is easily controlled and accurately measured. Hence, this
method can also identify a specific form of distributed dynamic load, namely a point load, on the
premise of knowing the position of the point load. For an unknown position of the point load or a
moving point load, the method cannot determine the excitation position, so it needs to be adjusted
accordingly.

5 Conclusion

In this study, a novel approach for distributed load identification in the time domain is introduced.
The novelty of the methodology can be summarized as follows:

(1) By employing polynomials and modal analysis, the task of recognizing a dynamic distribution
load which has two dimensions of space and time is converted into the identification of coefficients
within a single-degree-of-freedom system. This method can effectively reduce the dimension of the
system and recognize the spatial and temporal distribution simultaneously in the form of model force.
In coefficient recognition, each step of the reconstruction is solely based on the modal force at the
current time. This prevents the accumulation of spatial reconstruction errors and has no impact on the
errors in the time domain. Through this approach, the distributed dynamic loads on a continuum are
effectively established, not for discrete systems with multiple degrees of freedom, nor for concentrated
loads.
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(2) Based on the convolution integral, a recursive algorithm is proposed. The recursive scheme
possesses the ability to calculate long time-history loads undergone a mutation in the time domain.
This is an ability that ultra-high-dimensional matrices, which require regularization, do not possess.
Utilizing the response of the sampling point, the algorithm reconstructs the force in the sampling
interval while considering the pulse energy. This enhancement obtains the analytical solution of the
convolution integral of the reconstructed force in discrete time, instead of assuming a constant interval
force. Additionally, the method employs acceleration response instead of strain, making it easier to
measure in engineering applications.

(3) The strategy of moving mean and polynomial fitting to eliminate trend is introduced, providing
IFEA with the capability to accurately estimate the dynamic loads of structures in the time domain.

As demonstrated by the examples, IFEA possesses the capability to estimate rapidly changing
loads in the time domain after converting the loads into modal space, which is also an advantage of
this algorithm. However, when identifying the spatial distribution, this paper assumes a smooth spatial
distribution of load. For loads that exhibit significant spatial variations, higher-order polynomials are
necessary for fitting, but correspondingly more measurement points are required, potentially leading
to overfitting. However, as the spatial distribution recognition is confined to each individual step, any
inaccuracy in spatial recognition does not impact the accuracy of the modal forces in the time domain.
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