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ABSTRACT

Near-fault impulsive ground-shaking is highly destructive to engineering structures, so its accurate identification
ground-shaking is a top priority in the engineering field. However, due to the lack of a comprehensive consideration
of the ground-shaking characteristics in traditional methods, the generalization and accuracy of the identification
process are low. To address these problems, an impulsive ground-shaking identification method combined with
deep learning named PCA-LSTM is proposed. Firstly, ground-shaking characteristics were analyzed and ground-
shaking the data was annotated using Baker’s method. Secondly, the Principal Component Analysis (PCA) method
was used to extract the most relevant features related to impulsive ground-shaking. Thirdly, a Long Short-Term
Memory network (LSTM) was constructed, and the extracted features were used as the input for training. Finally,
the identification results for the Artificial Neural Network (ANN), Convolutional Neural Network (CNN), LSTM,
and PCA-LSTM models were compared and analyzed. The experimental results showed that the proposed method
improved the accuracy of pulsed ground-shaking identification by >8.358% and identification speed by >26.168%,
compared to other benchmark models ground-shaking.
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1 Introduction

In recent times, several studies have shown that impulsive ground-shaking has a particularly
destructive effect on buildings and structures [1–4]. It is more likely to result in high-impact forces
and deformations in engineering structures during near-fault ground-shaking compared to other
types of ground-shaking. For example, significant damage due to impulsive ground-shaking was
observed after the Northridge earthquake in 1994 [5], the Kobe earthquake in 1995 [6], the Chi-
Chi earthquake in 1999 [7], and the Wenchuan earthquake in 2008 [8]. Therefore, (i) early warning
and assessment of ground-shaking hazards to engineering structures, (ii) in-depth exploration of the
generation mechanism and propagation law of impulsive ground-shaking, and (iii) the establishment
of accurate and reliable identification models, are the most urgent issues in seismological research at
present.
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Numerous studies have proposed a series of different identification methods for impulsive ground-
shaking, which essentially solve the problems due to manual subjective identification. Baker et al. [9]
proposed and improved a quantitative method based on wavelet analysis for reproducible iden-
tification of impulsive ground-shaking recordings. It adopts a fourth-order Daubechies wavelet
basis, extracts the maximum velocity pulse during the ground-shaking time course using wavelet
decomposition, and gives quantitative discrimination criteria for the pulse by analyzing the energy
and peak velocity ratio between the residual and original records. Chang et al. [10] proposed a method
that relies on the pulse amplitude, pulse period, number of half-cyclic pulses, and phase to capture the
main features of the velocity pulse. This method extracts the velocity pulse through the pulse model and
then identifies it quantitatively based on the relative energy index. Zhao et al. [11] used trigonometric
functions and proposed a quantitative identification method that uses the value of the detected pulse
energy with respect to the original ground-shaking energy as a discriminant criterion, and refined the
single- and multi-pulse identification methods. However, due to the strong nonlinear characteristics
and complexity of the ground-shaking data, manual analysis may be required for specific cases as the
established models may not be suitable due to poor generality. Moreover, the complexity of the models
built by the traditional methods slows down the ground-shaking analysis. Therefore, novel impulsive
ground-shaking identification methods are required to simplify the model and make it more universal.

With the rapid development of key technologies in the field of computing, deep learning (DL), an
important branch of artificial intelligence, originated from the research and development of Artificial
Neural Network (ANN) [12]. Unlike the traditional “shallow learning” methods, such as support
vector machines, boosting, and maximum entropy, DL models possess a deeper structure, usually
with non-linear operations occurring at the hidden layer levels, and enhanced feature learning and
expressive capabilities. Instead of depending on manual experience to extract sample features, these
models automatically learn to achieve hierarchical feature representations by performing layer-by-
layer feature transformations on raw data [13]. The core of DL lies in efficiently selecting valuable
features by constructing hierarchical neural network (NN) models with vast amounts of training data.

In recent years, DL has become an effective mathematical analysis tool, gradually applied to
various types of geophysical studies [14–17]. Zhang et al. [18] applied Convolutional Neural Network
(CNN) to realize the classification of microseismic waveforms, combined with wavelet transform
for decomposing the frequency spectrum into a time-frequency spectrum and distinguished between
seismic signals and interference noises. Chen et al. [19] combined the K-averaging algorithm and
CNN (K-CNN) to accurately classify seismic waveforms by training the model on synthetic and
field microseismic data with varying noise levels. Ku et al. [20] developed an attention-based feature
aggregation framework embedded in a multitasking learning architecture for accurate earthquake
event type classification. In summary, although DL has been widely used in seismic fields, there is
a lack of methods for impulsive ground-shaking identification.

Compared to other DL methods, the Long Short-Term Memory network (LSTM) [21] offers
the advantages of robust data processing capabilities and simplicity, which make it a highly feasible
method for impulsive ground-shaking identification. However, earthquakes produce a large number
of complex feature data, which contain redundant ground-shaking features. If not processed properly,
these features will inevitably lead to computational inefficiency and wastage of resources, which will
negatively impact the subsequent prediction results [22]. This study addressed the aforementioned
issues through (1) comprehensively analyzing the impulsive ground-shaking features and performing
preliminary feature screening; (2) extracting features directly related to impulsive ground-shaking
by Principal Component Analysis (PCA), removing redundant feature data, and obtaining more
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value with fewer data points; and (3) establishing a PCA-LSTM model by combining with ANN to
accurately and efficiently identify impulsive ground-shaking.

The remainder of this paper is organized as follows: Section 2 presents the theory of impulsive
ground-shaking and the identification method. Section 3 presents the analysis of the training and
evaluation of the impulsive ground-shaking identification model. Section 4 provides the conclusions
of the study. Finally, Section 5 focuses on the possible improvements to the model in future works.

2 Theory and Methods

As shown in Fig. 1, the overall framework of the impulsive ground-shaking identification method
consists of three main components: 1) pre-processing of ground-shaking data; 2) ground-shaking
feature extraction; and 3) training and evaluation of the impulsive ground-shaking identification
model.

Figure 1: The overall framework of the impulsive ground-shaking identification method

2.1 Pre-Processing of Ground Shaking Data
2.1.1 Overview of the Chi-Chi Earthquake

The ground-shaking data used in this paper was obtained from the earthquake database provided
by the United States Geological Survey (USGS). The Chi-Chi earthquake of 1999 [23] was the largest
earthquake of its magnitude to have occurred on the Taiwanese islands. This event has been of
great significance in earthquake research [24–26]. The extent of its impact and damages observed by
seismic stations is illustrated in Fig. 2. This earthquake resulted in substantial damage and casualties,
exerting a profound socio-economic impact on Taiwan. Official statistics reported 2,470 fatalities,
11,305 injuries, damage to over 100,000 structures, including the collapse of several bridges and
dams, and economic losses totaling approximately US$ 9.2 B. Due to the evident impulsive ground-
shaking characteristics and its severe impact on engineering structures, the data from the Chi-Chi
earthquake was selected for this study. The ground-shaking dataset was obtained from 421 seismic
stations observing the earthquake, which contained a total of 592 ground-shaking datasets including
ground-shaking velocity and acceleration information (Fig. 3).

The velocity impulse ground-shaking data is often characterized by large amplitudes, long
characteristic periods, large instantaneous cumulative energies, and strong non-stationarity [27,28].
The amplitude and period of the ground-shaking velocity impulse are two main parameters to control
the structure deformation. These parameters can reflect the intensity and frequency characteristics of
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impulsive ground-shaking, which impact the degree of damage to the engineering structures [29,30].
Therefore, considering the feasibility of verifying the velocity shock characteristics in existing studies
and the convenience of practical measurements, the seismic wave velocity characteristics were selected
to accurately assess the damage of shocks to structures as the criterion for impulsive ground-shaking
identification.

Figure 2: Taiwan Chi-Chi earthquake impact distribution (1999)

After the screening, the acceleration data was removed from the dataset and all the subsequent
studies were based on the remaining ground-shaking velocity datasets (a total of 356 data points).

2.1.2 Labeling of Raw Data

The velocity impulse type ground-shaking usually has the following characteristics: 1) energy
concentration: releases a large amount of energy in a short period of time; 2) sudden and unpredictable
increase/decrease in a short period of time; and 3) large peak velocity to peak acceleration ratio. These
velocity impulse characteristics were combined with a widely used energy-based pulse identification
method. The velocity and acceleration information in the raw data for labeling are shown in Fig. 3. In
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the original dataset, when the ground-shaking data meets the following conditions, it is characterized
as impulsive ground-shaking.

Figure 3: Examples of ground-shaking (a) velocity and (b) acceleration information from the raw data

In the raw data,

1) Peak ground velocity: PGV > 30 cm/s

2) Pulse indicator: PI > 0.85, which can be expressed as Eq. (1).

PI = 1
1 + e−23.3+14.6PGVratio+20.5Eratio

, (1)
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where PGVratio is the ratio of the peak surface velocity residual of the extracted velocity pulse in the
original data (PGVresidual) and the peak ground velocity (PGVorginal) in the original data, as shown in
Eq. (2):

PGVratio = PGVresidual

PGVoriginal

, (2)

where Eratio is the ratio of the residual energy that remains after extracting the velocity pulse from the
original data (Eresidual) and the energy in the original data (Eoriginal), as shown in Eq. (3):

Eratio = Eresidual

Eoriginal

. (3)

3) The timing of the appearance of the large velocity pulse should match

t20%,original > t10%,pulse, (4)

where t20%,original is when the cumulative velocity leveling method for the original recorded velocity
reaches 20%, and t10%,pulse is when the cumulative velocity leveling method for the velocity pulse reaches
10%.

2.1.3 Screening of Ground-Shaking Features

Because of its complexity, the entire original ground-shaking data cannot be input into the ANN
for training, as it will decrease the training efficiency. Accordingly, processing the original data before
training becomes imperative. Utilizing a selection of key eigenvalues to characterize ground-shaking
and relying on a limited sample effectively represents the entire population.

Comprehensively characterizing the ground-shaking data involves the consideration of several
key eigenvalues, including the earthquake duration (T), PGV, time required for seismic intensity to
reach the 5% (T5), 75% (T75), and 95% (T95) peaks, and the duration for the seismic intensity to
transition from the 5% to 75% (D5_75) and 75% to 95% (D5_95) peaks. Due to the connection
between the physical quantities, the velocity pulse data can reflect the characteristics of the acceleration
pulse data to a certain extent. The introduction of the acceleration data can lead to a significant
increase in computational complexity. Therefore, considering various factors, only the velocity pulse
data was used as the input for this study. Additionally, for the purpose of facilitating both training
and testing, the ground-shaking data was appropriately labeled (Section 2.1.2). A new ‘Label’ column
was added to the dataset, with a value of 1 denoting impulsive ground-shaking and 0 denoting non-
impulsive ground-shaking. After feature selection and labeling, the dataset for impulsive ground-
shaking identification was completed (Table 1).

Table 1: Excerpt of pre-processed ground-shaking features

No. T PGV T5 T75 T95 D5_75 D5_95 Label

1 149.98 40.4224 6.62 11.3 16.32 4.68 9.70 1
2 149.98 91.6714 7.58 11.78 15.96 4.20 8.38 1
3 149.98 76.1410 7.58 11.92 17.12 4.34 9.54 1
4 149.98 5.0782 9.76 22.00 34.60 12.24 24.84 0
5 149.98 5.2000 18.32 24.38 31.92 6.06 13.60 0

(Continued)
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Table 1 (continued)

No. T PGV T5 T75 T95 D5_75 D5_95 Label

6 140.77 8.1114 44.8 62.82 78.75 18.02 33.95 0
7 152.99 19.1733 17.87 28.09 50.10 10.22 32.23 0
... ... ... ... ... ... ... ... ...

2.2 PCA
PCA is one of the most commonly used methods for complex input data processing and removing

data with low correlations. The low-dimensional dataset output from PCA was mapped from the
original high-dimensional dataset. The processed data reflected the key features of the original dataset
to the greatest possible extent, reducing the risk of overfitting. Simultaneously, the PCA method
downsizes the original data to reduce the volume and vastly improves the ANN training speed. In
this study, due to the complexity of the ground-shaking data and the strong correlation between the
different parameters, it is necessary to use PCA to reduce the number of parameters and maximize the
retention of the key features of the original data to increase model training speed and identification
efficiency.

The feature extraction steps for the ground-shaking data by PCA included: 1) data normalization;
2) covariance matrix calculation; 3) eigenvalue and eigenvector calculation; 4) eigenvalue ranking and
selection; 5) dimensionality reduction and feature selection. Each of these steps is explained below in
detail.

2.2.1 Data Standardization

Data standardization refers to the process of transforming data with different units and scales to
scale-free data for comparability. For machine learning models, the scale difference will have a large
impact on the model accuracy. Standardization makes the model more stable and accurate in training
and prediction. In this study, the different entries of the ground-shaking data were corrected with large
variations in parameter scales and distribution intervals by standardized transformations, to make
values of the different parameters fall in an interval with small differences. The specific process is as
follows.

Let S = [g1, g2, g3, . . . , gi, . . . , gn]
T be the ground-shaking data description matrix, where gi

represents the entries of all the system attributes in a certain operating state, i.e., an n-dimensional
spatial vector describing a piece of ground-shaking data. By using xij to represent the elements of gi,
the matrix M

(
xij

)
can be obtained as:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 . . . x1j . . . x1n

x21 x22 . . . x2j . . . x2n

...
...

. . .
...

...
xi1 xi2 . . . xij . . . xin

...
...

...
. . .

...
xm1 xm2 . . . xmj . . . xmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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Subsequently, a standardization transformation is applied to all elements of the matrix:

xij = xij − μj

σj

, (6)

where xij is the transformed data point; xij is the value of the ith parameter before the jth data
correction; μj and σj are the mean and variance of all the parameters in column j of M(xij), respectively.

2.2.2 Covariance Matrix Calculation

Firstly, the covariance matrix is calculated for the normalized data, and the eigenvalues are
obtained using the decomposition method. Then, the eigenvalues are sorted and the largest r
eigenvalues are selected as the principal components (where r is the dimension after dimensionality
reduction). Finally, the original data is linearly transformed using the selected principal components
to map the high-dimensional data into the low-dimensional feature space. The specific processing flow
is as follows:

If the ground-shaking data in the matrix is represented by xij, all elements, ρij, of the correlation
coefficient matrix, R, can be computed as Eq. (7).

ρij = cov
(
xi, xj

)
√

σiiσjj

, (7)

where

xi = 1
n

n∑
i=1

xij, (8)

and

xj = 1
m

m∑
i=1

xij. (9)

2.2.3 Eigenvalue and Eigenvector Calculation

A linear transformation can usually be fully described by the eigenvalues and eigenvectors.
Therefore, in the PCA process, it is necessary to use the eigen-equations and eigenvectors to transform
the vector space formed by the original data. In this method, the non-negative eigenvalues, λ1 > λ2 >

· · · > λn, of R can be found from the eigen-equation, |R − λE| = 0, where the eigenvectors of λi are
[vi1, vi2, vi3, . . . , vin].

2.2.4 Eigenvalue Ranking and Selection

To indicate the reflection of the principal components on the original dataset information,
the concepts of principal component and cumulative contribution ratios can be introduced in the
selection process. They indicate the degree of expression of the original dataset information by using
single and multiple principal components, respectively. The contribution ratio of the ith principal
component can be defined as the proportion of its corresponding eigenvalue in the sum of all
eigenvalues of the covariance matrix; the larger the contribution ratio, the stronger the ability of the
ith principal component to synthesize the information of the original index. Let the eigenvalue of the
ith principal component be λi. Then, the contribution ratio, Ai, of the ith principal component can be
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expressed as Eq. (10).

Ai = λi

n∑
i=1

λi

. (10)

By analogy, the weight of the sum of the eigenvalues of the first r principal components in the sum
of all eigenvalues symbolizes their ability to summarize the information of the original data. Thus, in
the method used in this study, the cumulative contribution, ηr, of the first r principal components can
be expressed as Eq. (11).

ηr =

r∑
i=1

λi

n∑
i=1

λi

. (11)

Comprehensively considering the accuracy and realistic conditions, when ηr reaches a value of
0.85, it is considered that the analytical accuracy meets the standard, and the use of the chosen r
principal components meets the requirements for further analysis.

2.2.5 Downscaling and Feature Selection

Let the required principal component vector be Y1, Y2, Y3, . . . , Yr. If gi denotes the original n-
dimensional vector describing the seismic data, the principal component vector can be expressed as
Eq. (12).

Yi = v1gi + v2gi + v3gi + . . . + vngi (12)

2.3 LSTM
In this study, to identify impulsive ground-shaking, LSTM were used which are highly effective in

processing time-series data.

2.3.1 Introduction to LSTM

LSTM is based on the development of recurrent neural networks (RNN). RNN is primarily used
for sequence-type data. All the neurons in the hidden layer are connected in a chain structure, which
is capable of realizing cyclic transmission of data in the network and memorizing the input data.

The horizontal structure of LSTM also forms a chain composed of repeated cellular units (Fig. 4),
which maintains the memory function of RNN and effectively solves the gradient disappearance and
long-range dependence problem of RNN through selective memorization and forgetting. Based on the
classical RNN, the LSTM introduces memory cells for storing long-range dependency information
along with forgetting, input, and output gates in a total of three gating unit layers in the hidden layer,
which realize the addition and deletion of cell state information. Each gating unit contains a sigmoid
activation function layer (σ in Fig. 4), with a value range of [0,1]: 0 means that the signal is not allowed
to pass, and all the information is discarded, whereas 1 means that the signal is allowed to pass and
the information is retained.
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Figure 4: LSTM structure

2.3.2 LSTM Prediction Principles

The principle of the LSTM model for impulsive ground-shaking prediction mainly includes the
following processes:

1) Input ground-shaking data: The ground-shaking data at time t is input into the LSTM cell unit
which is processed to obtain the signal output.

2) Forgetting gate calculation: The hidden layer state, ht−1, of the previous moment and the input,
a xt, of the current moment are read and the results are mapped to a range of [0,1] by the
sigmoid activation function, whose value determines how much information is retained in the
Ct−1 of the previous moment cell state. The forgetting gate discards the useless information in
the Ct−1, and its output, ft is calculated as Eq. (13).

ft = σ
(
Wf · [ht−1, xt] + bf

)
, (13)

where Wf is the corresponding weight matrix and bf is the bias term.

3) Input gate calculation: The input gate determines the amount of information to be added to
the cell state. It contains two layers: sigmoid and hyperbolic tangent (tanh). The hidden layer
state, ht−1, of the previous moment and the input, xt, of the current moment are passed through
the sigmoid layer to get the state value output, it, from the input gate, expressed as Eq. (14).

it = σ (Wi · [ht−1, xt] + bi) . (14)

and the candidate cell state, C̃t, is obtained through the tanh layer as Eq. (15).

C̃t = tanh (WC · [ht−1, xt] + bC), (15)

where Wi and WC are the corresponding weight matrices, bi and bC are the bias terms. The
tanh function, which is smooth, asymptotic, and monotonic, is more inclusive of the data and
maps the output between [−1,1]. The tanh formula, derivative, and the function plot (Fig. 5)
are shown below:

tanh (x) = ex − e−x

ex + e−x
, (16)

tanh′
(x) = 1 − tanh2

(x) . (17)
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4) Update cell state: The cell state, Ct, at t is obtained by a linear operation of the forgetting gate,
the output of the input gate, and the cell state at the previous moment. It can be expressed as
Eq. (18).

Ct = ft · Ct−1 + it · C̃t. (18)

5) Output gate calculation: The hidden layer state, ht−1, of the previous moment and the input,
xt, of the current moment are passed through the sigmoid layer, which produces the output, ot,
at the output gate. The output gate controls the information of the cell state output. The cell
state, Ct, at t is processed through the tanh layer, and the linear operation with ot is performed,
expressed as Eq. (19).

ot = σ (Wo · [ht−1, xt] + bo), (19)

and the hidden layer state, ht, at t is finally obtained as Eq. (20).

ht = ot · tanh (Ct), (20)

where Wo is the corresponding weight matrix and bo is the bias term.

Figure 5: Plots of tanh (x) and tanh�(x)

2.3.3 LSTM Model Training Principles

The predicted output of the LSTM model is then compared to the true results and the error
between the two is calculated and back-propagated to update the model parameters. The error
backpropagation is performed in the opposite direction to the forward propagation, i.e., layer by
layer backpropagation from the output to the input layer. At each layer, the error backpropagation
calculates the error gradient and accordingly updates the weights and thresholds. In this manner, the
NN can gradually reduce the error and get progressively closer to the desired output. During the
backpropagation process, by lending the output of the network to the previously delineated calibration
result, the error of the network can be quantized using the cross-entropy loss function. The loss
calculation process for a certain result can be expressed as Eq. (21).

Loss
(

Ŷ , Y
)

= − log
(

eYi∑
i eŶi

)
= −Yi + log

(∑
i
eŶi

)
, (21)
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where Loss is the error, Ŷ (i) is the network output, and Y (i) is the calibration result. Then, the
gradients are computed for all the required variables and accumulated as Eq. (22).

grad
(

Ŷ
)

=
n∑

i=1

d

dŶi

Loss
(

Ŷi, Yi

)
, (22)

where n is the number of nodes in the output layer.

After deriving the quantized error, the NN (i) back-propagates layer by layer according to the error
signal along the direction of the fastest descent of the relative error sum of squares, and (ii) calculates
the adjustment amount and updates the weights and thresholds of each neuron, to allow the network
outputs to gradually approximate the real value.

3 Experiment and Result Analysis

To validate the effectiveness of the proposed PCA-LSTM model, validation experiments based
on the impulsive ground-shaking dataset constructed in Section 2 and analyzed the results. All the
experiments performed in this study were conducted on a server with the following equipment
configuration: (i) CPU: Intel(R) Core(TM) i5-12600K, (ii) GPU: NVIDIA GeForce RTX 3070, (iii)
Windows 10 operating system, and (iv) algorithms and models written in Python.

3.1 PCA-LSTM Model Training
3.1.1 PCA

The PCA method can map high dimensional data to a lower dimension, and in the field of pulsed
ground-shaking recognition, it can extract the most important features of impulsive ground-shaking,
reduce the redundancy of data, highlight the key features, and help the LSTM model to better learn
and understand the impulsive ground-shaking. The results after PCA of the ground-shaking data are
shown in Table 2.

Table 2: PCA calculation results of ground-shaking characteristics

Ground-shaking features Variance Singular value Rank

T 0.1669 14.503 2
PGV 0.7049 29.803 1
T5 0.0668 9.1239 3
T75 0.0159 4.4858 5
T95 0.0461 7.6175 4
D5_75 0 0 6
D5_95 0 0 7

Finally, the ranking of the ground-shaking features was accomplished by PCA, and based on the
calculated variance and singularity values, the top five ranked features, namely PGV, T, T5, T95, and
T75, were selected as the five eigenvalues, which were used as the inputs for the subsequent LSTM
model training.
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3.1.2 LSTM Model Training

In order to guarantee optimal model performance, attention should be given to enhancing the
model’s generalizability and mitigating overfitting during the training process. The dataset based on
PCA to extract the main features was randomly divided into the training, validation, and test sets in a
ratio of 7:1:2. Among these, the training set was used to train the LSTM model and update the model
parameters for the model to determine whether it contains impulsive ground-shaking data points based
on the input data; the validation set was used to evaluate the model accuracy and generalization
performance during the training process; and the test set was used to evaluate the accuracy and
generalizability of the completed training model. Normally, the validation and test sets are not involved
in model updation.

When training the LSTM model, the parameters need to be defined, including the number of
model training rounds, the choice of optimizer, batch size, and so on (Table 3). The variation of the
training and validation loss during the training of the LSTM model is shown in Fig. 6.

Table 3: Model training parameters

Symbol Define Value

epoch number of training 100
lr learning rate 0.05
batch_size size of batch 20
Loss loss function Cross entropy loss
optimizer optimizer Stochastic gradient descent

Figure 6: Variation of loss during LSTM model training

Both loss metrics of the LSTM model gradually decreased and stabilized during the training
process. After ∼50 iterations, both training and validation losses plateaued. Eventually, the training
loss stabilized at 0.010 and the validation loss stabilized at ∼0.012. It can be seen that the model not
only obtains good performance on the training set, but also has a good fitting effect on the validation
set, verifying the generalizability of the model.
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3.2 Comparative Analysis of Models
3.2.1 Indicators of Model Assessment

To further verify the PCA-LSTM model performance, the evaluation system for the impulsive
ground-shaking identification was constructed, and the model was comprehensively evaluated in terms
of two important factors, i.e., accuracy rate Eq. (23) and identification speed Eq. (24). A high accuracy
rate implies that the algorithm can accurately determine which ground-shaking signals are impulsive.
Low accuracy will lead to misclassification and under-classification problems, which may result in
misinterpretation of earthquakes and lead to risks in earthquake engineering designs. Earthquakes
are unexpected events, and accurate and timely identification of impulsive ground shaking is crucial
for taking emergency measures and activating the earthquake early warning system. A high-speed
impulsive ground-shaking identification model can analyze seismic signals in real-time and respond
quickly to provide accurate seismic parameters, thus helping to mitigate the damage caused by
earthquakes.

P = T
T + F

× 100% (23)

where P, T , and F denote the accuracy rate of identification, the number of accurate and inaccurate
identifications of ground-shaking data.

S = data_size
time

(24)

where S donates the identification speed of the model, data_size denotes the size of the dataset, i.e.,
the number of ground-shaking data points in the test set, and time denotes the time required for the
model to predict the dataset.

3.2.2 Comparison of Models

To further illustrate the advantages of the proposed PCA-LSTM model, it was trained using the
same training set and parameters as the ANN, CNN, and LSTM models. Comparative analyses were
then performed for the same test set and the evaluation metrics described in Section 3.2.1 were used for
the assessment. The results of the comparative analyses involving the multiple models are presented
in Table 4. The recognition accuracy of the LSTM model for impulsive and non-impulsive ground-
shaking improved by >7.033% and >7.040%, respectively, compared to the other two models. The
LSTM model was more accurate than the ANN and CNN models as it has a good analytical processing
capacity for time series data. The reason why the identification accuracy for the non-impulsive ground-
shaking was higher than that of impulsive ground-shaking was mainly due to the abundance of the
former data in the training set, which trains the model more comprehensively. When comparing
LSTM and PCA-LSTM models, it becomes evident that the latter maintains model identification
accuracy while enabling low-dimensional data input. Additionally, the identification speed of the
model improved by 26.168% compared to LSTM due to the reduced dimensionality of the input data.
These findings demonstrated that the proposed model offers significant advantages in terms of both
accuracy and speed, affirming its effectiveness. The research conducted in this study provides a new
solution in the field of ground-shaking identification.
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Table 4: Results of comparative analysis of multiple models

Model Accuracy (%) Speed (s)
Pulsed Non pulsed

ANN 85.128 87.536 0.0432
CNN 89.642 89.971 0.0826
LSTM 96.675 97.011 0.0214
PCA-LSTM 96.670 97.001 0.0158

4 Discussion

Currently, due to limitations in resources, energy, and external conditions, certain shortcomings
in the presented work remain. The following aspects will need to be further investigated:

• Ground-shaking signals exhibit various features across different frequency ranges. Future
research can explore effective methods for integrating these multi-scale features to harness both
global and local characteristics of the ground-shaking signals.

• Subsequent research efforts may consider incorporating data augmentation techniques, model
integration methods, and anomaly detection algorithms to enhance the robustness and reliabil-
ity of the model.

5 Conclusion

To accurately and efficiently recognize impulsive ground-shaking and reduce the damage to
engineering structures, a combined DL recognition model, named PCA-LSTM, was introduced in
this paper. The detailed information of the model is presented as follows:

1. The model construction was mainly based on the analysis and identification of impulsive
ground-shaking features and the annotation of the ground-shaking data using the traditional
method proposed by Baker [9].

2. Training and testing of the model: After constructing the ground-shaking dataset, the most
relevant ground-shaking features were extracted using the PCA method. Subsequently, the
ground-shaking dataset was updated and only the extracted feature values were retained. This
reduced data redundancy and improved the efficiency of model training and identification.
Finally, the reconstructed dataset was divided, trained, and analyzed for comparison.

3. Advantages: Compared to other benchmark models, the proposed PCA-LSTM model showed
excellent performance in terms of identification accuracy and speed. It greatly improved
the accuracy and speed of pulsed ground-shaking identification. In addition, the model can
be applied to solve practical engineering problems. It is of great significance for seismic
monitoring and structural engineering design, thus, improving our ability to mitigate seismic
hazards to a certain extent and safeguarding lives and property.
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