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ABSTRACT

As the number of automated guided vehicles (AGVs) within automated container terminals (ACT) continues to rise,
conflicts have become more frequent. Addressing point and edge conflicts of AGVs, a multi-AGV conflict-free path
planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards.
For larger terminal maps and complex environments, the grid method is employed to model AGVs’ road networks.
An improved bounded conflict-based search (IBCBS) algorithm tailored to ACT is proposed, leveraging the binary
tree principle to resolve conflicts and employing focal search to expand the search range. Comparative experiments
involving 60 AGVs indicate a reduction in computing time by 37.397% to 64.06% while maintaining the over
cost within 1.019%. Numerical experiments validate the proposed algorithm’s efficacy in enhancing efficiency and
ensuring solution quality.
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1 Introduction

Automated guided vehicles (AGVs) are the primary tool for container transport and crucial
pieces of equipment for horizontal transportation operations in automated terminals. The number
of AGVs is growing, which also causes issues like waiting, conflict, and deadlock in the operation
of the equipment. These issues are caused by manual operation, large-scale operation, and the rising
difficulty of intelligent terminals. At the level of automated terminals, increasing AGV operating speed
is a critical issue that must be resolved since it has an impact on the efficiency of AGV transportation.

In various scenarios, research has been conducted on challenges related to multi-AGV path
planning, spanning warehouses [1], electric vehicles [2], and terminals [3]. It closely addresses the
challenges of job dispatch, scheduling, and routing. For warehouses and workshops, Yuan et al. [4]
proposed a bi-level path planning algorithm employing an improved A∗ method at the first level
and a rapidly exploring random tree approach at the second level to enhance search effectiveness.
Wang et al. [5] suggested using a heuristic ant colony algorithm to solve the model, demonstrating its
efficacy. Fazlollahtabar et al. [6] utilized a modified network simplex algorithm (NSA) to optimize
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the model. Ivica et al. [7] based their approach on a vehicle priority scheme to resolve conflicts.
Chen et al. [8] utilized the ant agent optimized by a repulsive potential field to improve collision
avoidance, transportation distance, and efficiency. Li et al. [9] proposed a novel quantum ant colony
optimization algorithm that combines the advantages of various methods. Choi et al. [10] proposed
a QMIX-based scheme for cooperative path control of multiple AGVs. For automated container
terminals, Guo et al. [11] proposed an improved Dijkstra algorithm and an enhanced acceleration
control method to solve the path planning problem for 42 AGVs. Hu et al. [12] combined the A∗
algorithm with a time window principle to plan each AGV’s path, with a maximum of 12 AGVs.
Zhong et al. [13] validated the effectiveness of a hybrid genetic algorithm particle swarm optimization
(HGA-PSO) in solving path planning problems for 24 AGVs. Zhong et al. [14] utilized a priority-based
speed control strategy in conjunction with the Dijkstra depth-first search algorithm to solve the model.
The AGV scheduling problem has been established as an non-deterministic polynomial (NP)-hard
problem [15]. Luo et al. [16] proposed a genetic algorithm to obtain a mixed-integer linear optimization
model (MILP), considering up to 10 AGVs. In existing literature, single-AGV path planning is often
applied to solve multi-AGV path planning in automated container terminals (ACT). Simple traffic
rules are employed when two AGVs might collide. However, as the number or density of robots
increases, congestion occurs, leading to decreased system efficiency. In contrast, Multi-agent Path
Finding (MAPF) plans paths for all AGVs simultaneously, considering various collision possibilities.
Limited literature exists on multi-AGV path planning in ACT using the MAPF method.

MAPF problems involve finding the optimal set of paths from the starting position to the target
position for multiple agents without conflicts. These problems can be divided into two classes: optimal
and sub-optimal solvers. One approach to solving MAPF is by reducing it to other problems. For
instance, Ma et al. [17] introduced a hierarchical algorithm within a Markov decision processes frame-
work and utilized Integer Linear Programming (ILP) [18] and Answer Set Programming (ASP) [19].
Andreychuk et al. [20] used a branch-and-cut-and-price method to address the issue, incorporating
a shortest-path pricing problem for locating paths for each agent independently and incorporating
thirteen types of constraints to resolve various conflict situations. However, these methods are less
efficient, especially for the sum of the cost function. While the optimal solver is preferable for small-
scale scenarios, the NP-hard nature of the problem leads to an increased state space as the number of
agents grows, making sub-optimal solvers more suitable.

For optimal solvers, Goldenberg et al. [21] presented another A∗ variant called enhanced partial
expansion A∗ (EPEA∗). Sharon et al. [22] proposed an increasing cost tree search (ICTS) algorithm
that transforms MAPF into a set of faster-to-solve problems. Sharon et al. [23] introduced the conflict-
based search (CBS), dividing the MAPF problem into two levels: a low level to solve single-agent
pathfinding problems and a high level using a conflict tree to resolve conflicts between different
agents. Regarding sub-optimal solvers, most are unbounded and do not guarantee the quality of the
returned path. Pearl et al. [24] introduced three sub-optimal algorithms, including focal search, which
avoids excessive excellence in A∗, enhancing algorithm efficiency within bounded sub-optimality.
The extension of CBS to greedy conflict-based search (GCBS) [25] uses greedy best-first search to
relax high-level and low-level search. However, the absence of time and bounded limits often leads to
timeouts or excessively large solution sizes. Barer et al. [26] proposed Bounded CBS (BCBS), utilizing
focal search, and Enhanced CBS (ECBS), which employs an open list. ECBS tends to get caught in
local searches and lacks guaranteed efficiency, whereas BCBS offers more flexibility to adjust the
bounded depth and search strategy according to the model. It generally avoids expanding too many
nodes in the search, particularly in ACT scenarios with lower complexity or fewer conflicts.
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The multi-AGV conflict-free path planning challenge for ACT is referred to in this work as the
MAPF problem. An improved bounded conflict-based search (IBCBS) was used to plan the AGVs’
paths in automated terminals to reduce the overall path length of AGVs between the shore bridge and
the yard while considering point and edge conflict between AGVs. It creates an AGV road network
utilizing the grid method. The following are the primary contributions made to this paper:

• Enabling large-scale AGVs on automated terminals to use conflict-free route planning.

• Statute of automated terminals using MAPF and grid method modeling of terminal maps.

• Verifies the efficacy of the algorithm using a bounded conflict-based search that shortens
calculation time, maintains quality within reasonable bounds, and speeds up computation.

The remaining portions of this essay are listed below. Section 2 describes the issue. Section 3
outlines the model. Section 4 details the method. Section 5 presents the findings and results of our
simulations. Finally, conclusions are drawn in Section 6.

2 Problem Description and Design
2.1 AGV Road Network Modelling

The model uses a yard plane that is perpendicular to the quay shoreline, ensuring that no
horizontal transportation equipment enters the box area and transfers operation with yards at both
ends of the box area. Fig. 1 depicts the layout of the automated quay with 4 shore bridges and 12 yards
built up. In this paper, a two-way single-lane path is chosen, and the AGV can travel to the nearby
passable four nodes or wait in place. The grey obstacle designates the yard buffer region, which is
regarded as an obstruction while the AGV conducts horizontal transportation operations.

The automated terminal’s AGV path planning system is a sophisticated system made up of
numerous components, including shore bridges, yards, buffer zones, magnetic pegs, etc. The AGV
horizontal transport area is taken into consideration, and the map is modeled using the grid method.
Cells are used to represent the obstacle information of the AGV horizontal transport area, and their
weights are Boolean variables where passable nodes are represented by 0 and impassable nodes by 1.
The obstacle cells and the AGV cannot overlap.

2.2 Communication Interaction Protocols
A centralized control strategy is employed to discover a solution for all AGVs using a single

central processing unit for horizontal transport operations at terminals with changeable surroundings.
A wireless communication system, such as a communication interaction protocol between AGVs
and the console, is required to implement communication between AGVs due to their constant
movement and variety of horizontal transport tasks. The AGV sends the task starting point, the task
deadline, and the following task receipt. Then, the AGV communicates the task start point, task finish
point, and AGV cart number to the console, which then sends each cart the determined conflict-free
path. This paper chooses user datagram protocol (UDP) wireless network communication, sets the
network IP addresses of the AGV and console in the same IP network segment, and uses a wireless
Wi-Fi signal to connect to the router to realize the communication between them while taking the cost
of communication and the convenience of task operation into account. In the four corners and the
center, a total of five WiFi access points (APs) are placed, using dual-band (2.4 and 5 GHz) APs, and
installed at a height of 2–3 m above the ground to achieve complete WiFi coverage.
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Figure 1: The layout of automated container terminals

2.3 Multi-AGV Conflict Avoidance Strategy
1. Intersection conflict;

The intersection conflict is produced, as seen in Fig. 2a, when AGVi, AGVj move vertically toward
the intersecting grid Vm and reach the same grid point Vm at once at time point t. Add constraints
(AGVi, Vm, t) for AGVi and

(
AGVj, Vm, t

)
for AGVj, respectively, to this conflict binary tree node and

treat it as a point conflict
(
AGVi, AGVj, Vm, t

)
.
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Figure 2: AGV main conflict types (a) intersection conflict; (b) phase conflict; (c) exchange conflict;
(d) AGV failure

2. Phase conflict;

A phase conflict develops when AGVi and AGVj travel to the same grid node Vn from opposing
directions and arrive at the same grid point Vn at the same time at time point t, as shown in Fig. 2b. As
with the intersection conflict, it is referred to as a point conflict

(
AGVi, AGVj, Vn, t

)
and constraints

are added to AGVi (AGVi, Vn, t) and AGVj

(
AGVj, Vn, t

)
on the conflict binary tree nodes, respectively.

3. Exchange conflict;

As seen in Fig. 2c, an exchange conflict occurs when AGVi, AGVj move in opposite directions
to exchange the positions of grid points Vm, Vn at time point t. Think of it as an edge conflict(
AGVi, AGVj, Vm, Vn, t

)
, and apply constraints toAGVi (AGVi, Vm, Vn, t) and AGVj

(
AGVj, Vm, Vn, t

)
on

the conflict binary tree nodes, respectively.

4. AGV failure.

As seen in Fig. 2d, the equipment must wait while the faulty AGVi stops at the grid point Vm and
the planned path AGVj crosses the fault point. This model does not take into account the possibility
of an AGV conflict due to a fault.

On the automated terminal, both point conflicts and edge conflicts occur. After determining the
shortest path for each AGV using the Manhattan distance-based A ∗ algorithm, the search proceeds on
the conflict binomial tree. AGV mobility is constrained by each node on the conflict tree, comprising
a set of constraints (N.constraints), a solution (N.solution), and a total cost (N.cost).

Fig. 3 illustrates an instance of AGV conflict at the terminal. Each AGV must plan its entire
route from the shore bridge to the stacking yard. In the diagram, and represent two shore bridges
S1 and S2, while G1 and G2 denote two stacking areas. Both AGVs’ routes have lengths of 3:
AGV1 : S1, A1, D, G1; AGV2 : S2, B1, D, G2. They simultaneously reach grid point D at time step t2,
resulting in a conflict. The decision AGV1 is for to wait until a certain time point, and the AGV with the
shortest total path length is designated to apply the restriction. Consequently, N.solution = 7 emerges
as the optimal solution in this scenario.
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Figure 3: AGV conflict example

Fig. 4 displays the related conflict binary tree. The initial paths of AGV1 and AGV2 from the shore
bridge to the heap and the yard are calculated using the underlying A∗ algorithm as N.solution =
{AGV1 : S1, A1, D, G1}, {AGV2 : S2, B1, D, G2}; this results in N.cost = 6. The root node of the conflict
tree corresponds to an empty constraint set, denoted as N.constraints = {φ}. The root node is where
this data is kept. A conflict (AGV1, AGV2, D, t2) occurs when both AGVs arrive at the raster point D at
the time t2 during the verification of the supplied solution. Hence, the target node is not the root node.

N.constraints:
{}

N.constraints:
{(AGV1,D,t2)}

N.constraints:
{(AGV2,D,t2)}

Goal Goal

N.solution:
{AGV1-S1,A1,D,G1
AGV2-S2,A2,D,G2}

N.solution:
{AGV1-S1,A1,A1,D,G1
AGV2-S2,A2,D,G2}

N.solution:
{AGV1-S1,A1,D,G1
AGV2-S2,A2,A2,D,G2}

N.cost:
6

N.cost:
7

N.cost:
7

Figure 4: Conflict tree example

Two new child nodes are created to resolve the dispute. In contrast to the right child node, which
adds constraints N.constraints = {(AGV2, D, t2)}, the left child node adds constraints N.constraints =
{(AGV1, D, t2)}. To determine the best path while adhering to the new constraint, the left child node’s
underlying A∗ search is invoked. To execute this, AGV1 must wait for a time point at A1 or S1, after
which its new path becomes: {S1, A1, A1, D, G1}, whereas AGV2’s path in the left child node remains
unchanged. The total cost for the left child node N.cost is 7.

Similarly, in creating the appropriate child node, the cost for Node N is 7. The OPEN node
contains both child nodes. The left child node, which exhibits the lowest cost, is selected for expansion
in the subsequent iteration of the while loop, confirming the underlying path. The left child node is
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identified as the target node because no conflict exists, making its solution N.solution the optimal one
for this particular dock conflict case.

3 Mathematical Model
3.1 Assumptions

1. The shore bridge and yard are located in a fixed and well-known location, and there is one shore
bridge for each section of the yard box;

2. Every AGV has an identical type definition;

3. The AGV runs at a steady pace, even while turning;

4. Without taking into account the impact of variables like failure, weather, and electricity while
AGVs are being driven;

5. The idle AGV parking space is built up as a static obstruction in the buffer zone between the
shore bridge and the yard, making it impossible for the AGV to move through when performing
horizontal transportation operations;

6. AGVs can load and unload containers quickly between the yard and the beach bridge;

7. Every AGV grid route is accessible from both directions;

8. Several AGVs may be permitted to occupy the grid at the shore bridge, but only one AGV is
permitted to occupy each grid at any time point.

3.2 Variable Setting
In representing the path network of AGVs in the horizontal transport area of the automated

terminal, the path network of AGVs is represented by the G = (V , E, ob) directed weighted graph.
where V denotes the set of all node numbers of the AGV grid graph on the automated terminal,
V = [(x1, y1), (x2, y2), . . . , (xn, yn)], where n × n denotes the number of grids, and E is the set of edges
of V , which denotes the length corresponding to each V . obdenotes the set of obstacle coordinates
ob = [(xm, y1), (xm, y2), . . . , (xm, yn)]. Other variables are set as shown in Table 1.

Table 1: Variables table

Variable name Definition

L The length of the AGV equipment
g The length of each grid
v The average speed of the AGVs during operation
T The time is taken by all AGVs to complete the task
K The number of AGVs
j The number of AGV conflicts using the underlying algorithm, j <= k
Q The set of shore bridge loading and unloading nodes, Q ∈ V , Q = (Q1, Q2, . . . , Qa)

here a denotes the number of shore bridges
D The set of yard loading and unloading nodes, D ∈ V , D = (D1, D2, . . . , Db), where

b denotes the number of yards
Si The set of starting nodes, si ∈ Q, D
gi The set of target nodes, gi ∈ Q, D,gi [0] denotes the X-axis coordinate of the target

nodes, gi [1] denotes the Y-axis coordinate of the target nodes,

(Continued)
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Table 1 (continued)

Variable name Definition

A The set of AGVs, A = (AGV1, AGV2, . . . , AGVk)

cf The set of conflicts between paths, where
(
AGVi, AGVj, Vm, t

)
indicates that AGVi

and AGVj have point conflicts at the node Vm at time point t, and(
AGVi, AGVj, Vm, Vn, t

)
indicates that AGVi and AGVj have edge conflicts at time

points t
cs The constraint of AGV,

(
AGVi, Vj, t

)
means AGVi cannot occupy the node Vj at

time point t, (AGVi, Vm, Vn, t) means AGVi is forbidden to move from Vm to Vn at
time point t

Csi The constraint set of the i-th AGV, Csi = [
(AGVi, V2, 0), . . . ,

(
AGVi, Vj, t

)]
C The set of constraints for all AGVs, C = [Cs1, Cs2, . . . , Csk]
Pi The path of the i-th AGV, Pi = [V1, V2, . . . , Vc], Pi [t] denotes the coordinates of

AGVi at time point t, denotes the X-axis coordinate of at time point t, denotes the
Y-axis coordinate of at time point t

tdi The time that the i-th AGV waits in the path Pi

P The set of paths of all AGVs, P = (P1, P2, . . . , Pk), with a total of k paths
ni The node i on the binary tree, with a total of N nodes
Sni The solution corresponding to node i of the binary tree
S The set of final solutions of k paths, i.e., the solutions of conflict-free path

planning for all AGVs, and S [i] denotes the path solution of the ith AGV
Coni The total cost corresponding to binomial tree node i
Co The total cost corresponding to the final solution S
Csni The set of constraints corresponding to binomial tree node i; Csni is the set of

constraints corresponding to binomial tree node i
CT The constraint tree, CT = (Csni, Sni, Coni)

3.3 Variable Setting
They should also be separated from the surrounding text by one space.

Objective function:

min
N∑

i=1

Coni (1)

Constraints:

Xij =
{

1, AGVa accesses node j after accessing node i
0, Otherwise

}
(2)

N∑
i=1

N∑
j=1

Xij = 1 (3)

T = Co
v

(4)
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f (i) = g (i) + h (i) (5)

h (i) = |Pi [t] [0] − gi [0]| + |Pi [t] [1] − gi [1]| (6)

Td =
k∑

i=1

tdi (7)

mov =
{

1, Indicates that the AGV is waiting in place
0, Otherwise

}
(8)

Co =
k∑

i=1

Pi − 1 (9)

Eq. (1) indicates that the objective function of this model is the total cost minimization, Eqs. (2)
and (3) indicates that each node is visited by AGV at most once at the same time, Eq. (4) indicates the
time for all AGVs to complete the task, Eq. (5) indicates the A∗ algorithm used at the bottom, where
f(i) is the estimation function, g(i) is the actual cost from the starting node to node i, h(i) is the estimated
node i to the target node cost, Eq. (6) denotes the heuristic function using the Manhattan distance-
based A∗ algorithm, Eq. (7) denotes the total waiting time, Eq. (8) denotes the choice of movement
method for the AGVs, including waiting in place or moving one time step to a neighboring node, and
Eq. (9) denotes the total cost of all AGVs to complete the task.

4 An Improved Bounded Conflicted-Based Search Algorithm on Automated Container Terminals

The solutions to MAPF problems are divided into two main categories: optimal solvers and
suboptimal solvers. Optimal solvers work better when the number of AGVs is small, but as the number
of AGVs increases, the state space grows exponentially, making finding the optimal solution NP-hard.
However, in the case of AGV path planning on the automated terminal studied in this paper, with
large map size and numerous AGVs, optimal solvers are not viable. Suboptimal solvers, known for
their rapid solving speed, are usually preferred in scenarios involving a high number of AGVs.

Optimal solvers and suboptimal solvers constitute the primary solutions for MAPF issues.
Finding the best solution for the MAPF problem is NP-hard because optimal solvers perform
better with a low number of AGVs, but as the number grows, the state space expands exponentially.
Unfortunately, due to the enormous map area and high AGV density in the automated terminal
analyzed in this paper, optimal solvers cannot be applied. The swift-solving ability of suboptimal
solvers makes them a popular choice in scenarios involving numerous AGVs.

This article employs the IBCBS algorithm, considering both point conflicts and determining edge
conflicts in the binary tree. Furthermore, constraints are added to child nodes with edge conflicts to
achieve multi-AGV conflict-free path planning. The utilization of focal search in both high-level and
low-level tasks is employed to ensure solution quality while accelerating solution times.

The IBCBS algorithm flowchart is shown in Fig. 5, the left is a high level search and the right is
a low-level single A∗ search. There are two lists of nodes in focal search which include Open_list and
Focal_list. Open_list is a regular Open_list of A∗. Focal_list is a subset of Open_list. The focal search
uses two functions f1 and f2, f1 defines where nodes are in Focal_list and f2 defines which node from
Focal_list to expand.



2714 CMES, 2024, vol.139, no.3

Set the starting point and end point of a single AGV
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of k AGVs 
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into two child nodes. Add new 
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No solution

Figure 5: IBCBS algorithm flowchart

After setting start points and endpoints, conducted a single A∗ search for each agent to get paths.
At the low-level of IBCBS, apply focal search (f , hc) for single AGV pathfinding where f (n) is the
regular f (n) = g (n) + h (n), h (n) is the number of conflicts. At the high-level of IBCBS, search a
binary tree called CT. Each node N in the tree consists of N.constraints, N.solution and N.cost. Each
constraint belongs to an AGV and the root of CT is an empty set. There are k conflict-free paths in
the solution and consistent with constraints. N.cost is the sum of all the paths. Apply focal search
(g, hc) to search the CT, where g (n) is the cost of the CT node n and hc (n) is the number of conflicts.
Determined no conflict in the locations reserved in all agents at all time steps and if no two AGVs
plan to be at the same location at the same time, the paths are the solution. If a conflict exists, add a
constraint to the CT node, and the low-level invoke again.
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4.1 The Quality of the Solution
IBCBS (ωH , ωL) denote IBCBS uses ωH in high level and ωL in low level. IBCBS (ω, 1) is a special

case that focal search only used at a high level and IBCBS (1, ω) is focal search only used at a low level.
The cost of IBCBS (ωH , ωL) is at most ωH ∗ωL ∗C∗. This also proves the boundedness of the algorithm.

4.2 The Completeness of the Algorithm
The expansion cost of both IBCBS is no more than ω times higher than the ideal solution.

Moreover, within OPEN, at least one CT node consistently aligns with every viable answer. Due to
its systematic search, it eventually identifies all solutions. Consequently, IBCBS concludes.

Algorithm 1 presents the pseudo-code for a low level of IBCBS which uses a Manhattan distance-
based A∗ algorithm with focal search (f , hc) for each single AGV path planning.

Algorithm 1: low-level of IBCBS
Input: Automated container terminal single-AGV instance
1 Open_list = ∅

2 Focal_list = ∅

3 insert start point to Open_list
4 while Open_list is not empty do
5 insert c ≤ ω ∗ costmin in Open_list to Focal_list
6 P←lowest hc in Focal_list
7 delete P in Open_list and Focal_list
8 Validate the path in P until a conflict occurs
9 if P has no conflict then
10 return P is the goal
11 A ← new node
12 A.constraints ← P.constraints + (AGVi, vm, t)
13 Insert A to Open_list

Algorithm 2 presents the pseudo-code for a high level of IBCBS which use focal-search (g, hc) to
choose the cost of nodes in CT lower than ω ∗ g.

Algorithm 2: high-level of IBCBS
Input: Automated container terminal single-AGV instance
1 R.constraints = ∅

2 R.solution = find individual paths using A∗
3 R.cost = SIC (R.solution)
4 insert R to Open_list
5 while Open_list is not empty do
6 insert f ≤ ω ∗ fmin in Open_list to Focal_list
7 P←lowest hc in Focal_list
8 delete P in Open_list and Focal_list
9 Validate the paths in P until a conflict occurs
10 if P has no conflict then
11 return P is the goal
12 C ← first conflict (AGVi, AGVj, vm, t) or conflict (AGVi, AGVj, vm, vn, t) in P

(Continued)
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Algorithm 2 (continued)
13 A ← new node
14 A.constraints ← P.constraints + (AGVi, vm, t)
15 A.solution ← P.solution
16 Update A.solution by invoking low-level (AGVi)
17 A.cost = SIC (A.solution)
18 Insert A to Open_list

5 Experimental Results and Analysis

Referring to the actual situation of the automated terminal, a two-way grid road network diagram
is designed, as depicted in Fig. 6. In the road network layout, Q1–Q10 represents the location of the
quay crane, while D1–D30 signifies the location of the container yard. The white grid denotes an
access point, whereas the grey indicates a static obstacle that is inaccessible. The program is written in
Python and runs on an Intel® AMD5-2500U CPU @ 2.00 GHz with 8 GB memory on a Windows 10
computer.
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Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

D1
D2
D3

D4
D5
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D14
D15

D16
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D19
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Figure 6: AGV road network layout
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The following criteria are utilized in this example: The AGV road network size is set to 40 × 40
with a grid length of 2 m. The starting point and endpoint information can be found in Table 2. Both
the starting point and endpoint are selected according to the operating mode, either from the shore
bridge to the container yard or from the container yard to the shore bridge. Each AGV maintains a
constant speed of 2 m/s, with a length of 2 m.

Table 2: AGVs start and end point table

Start point End point Start point End point

(2, 1) (3, 39), (2, 39), (4, 39) (3, 39), (2, 39), (4, 39) (2, 1)
(6, 1) (7, 39), (6, 39), (8, 39) (7, 39), (6, 39), (8, 39) (6, 1)
(10, 1) (11, 39), (10,39), (12,39) (11, 39), (10,39), (12,39) (10, 1)
(14, 1) (15, 39), (14,39), (16,39) (15, 39), (14,39), (16,39) (14, 1)
(18, 1) (19, 39), (18,39), (20,39) (19, 39), (18,39), (20,39) (18, 1)
(22, 1) (23, 39), (22,39), (24,39) (23, 39), (22,39), (24,39) (22, 1)
(26, 1) (27, 39), (26,39), (28,39) (27, 39), (26,39), (28,39) (26, 1)
(30, 1) (31, 39), (30,39), (32,39) (31, 39), (30,39), (32,39) (30, 1)
(34, 1) (35, 39), (34,39), (36,39) (35, 39), (34,39), (36,39) (34, 1)
(38, 1) (39, 39), (38,39), (40,39) (39, 39), (38,39), (40,39) (38, 1)

5.1 Performance Comparison Experiments between CBS and IBCBS Algorithms for Different
Numbers of AGVs with Starting Endpoints

Set the number of AGVs as 10, 20, 30, 40, 50, and 60, and then randomly select the starting and
endpoint based on Table 1. The shore bridge can be repeatedly selected. For AGV = 10, 20, 30, the
starting point includes all shore bridges, and the endpoint is the yard. For AGV = 30, the endpoint
includes all yards. However, for AGV = 40, 50, 60, 30 units move from the shore bridge to the yard,
while the others move from the yard to the shore bridge. The starting point and endpoint remain fixed
after random selection.

Set ω = 1.1. Four methods—IBCBS (ω, 1), IBCBS (1, ω), IBCBS (
√

ω,
√

ω) and CBS—are utilized
for 100 experiments each. The effective time is set to 60 s, and if a solution cannot be obtained within
this time, it is considered as unsolvable. Despite fixing the number of AGVs and algorithms, the
computing time for each experiment differs while maintaining the same total path length. Thus, the
computing time for 2400 experiments is depicted in Fig. 7.

It is evident from Fig. 7 that with a smaller AGV scale of 10, 20, 30, conflicts among AGVs
are fewer. The effectiveness of focal search between the high-level and low-level in IBCBS is less
pronounced. Additionally, the discrepancy between CBS and IBCBS (ω, 1), IBCBS (1, ω), IBCBS
(
√

ω,
√

ω) is marginal. However, as the AGV scale increases to 40, 50, 60, AGV conflicts surge. IBCBS
sacrifices optimality, leading to a slackening effect in both the high-level and low-level operations.
Notably, CBS’s operational time is significantly longer compared to IBCBS (ω, 1), IBCBS (1, ω),
IBCBS (

√
ω,

√
ω).
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(a) AGV=10
(b) AGV=20

(c) AGV=30 (d) AGV=40

(e) AGV=50 (f) AGV=60

Figure 7: Run time of IBCBS (ω, 1), IBCBS (1, ω), IBCBS (
√

ω,
√

ω) and CBS. (a) AGV = 10; (b) AGV
= 20; (c) AGV = 30; (d) AGV = 40; (e) AGV = 50; (f) AGV = 60
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Fig. 8 illustrates that the effectiveness of bounded suboptimal search is not immediately evident
with a low number of AGVs. Conflicts are minimal, below 30 units, resulting in comparable computing
times for the six methods. However, as the AGV count exceeds 30 units, both point and edge conflicts
rise, consequently escalating computing times for all six methods. The CBS algorithm consistently
strives for optimal solutions, resulting in longer operational times. Due to convergence, GCBS
algorithm operation times are extended, while BCBS operation times are marginally better than CBS
and less than the other three IBCBS algorithms. The three IBCBS algorithms adopt focal search with
different levels of permissive optimality constraints, substantially reducing runtime and enhancing
computational efficiency. Among them, IBCBS (1.0488, 1.0488) uses focal search at both high and
low levels, exhibiting the shortest operational time.

Figure 8: Average run time of IBCBS (ω, 1), IBCBS (1, ω), IBCBS (
√

ω,
√

ω), GCBS, BCBS and CBS,
when the number of AGVs is 10, 20, 30, 40, 50, 60

Fig. 9 indicates that CBS consistently yields the shortest total path length regardless of AGV
count, with IBCBS following as the second shortest. At 10 AGVs, where path conflicts are absent, the
total path length is identical for all four methods. Even with an increased AGV count, the total path
length of the three IBCBS methods cannot exceed 1.1 times that of CBS due to CBS’s optimal nature,
resulting in the shortest total path length. IBCBS is constrained by ∗cost, set at 1.1. By incorporating
additional measures at the low level, potential conflicts can be averted. Consequently, IBCBS (1, 1)
displays a shorter path length than IBCBS (1.0488, 1.0488) and IBCBS (1.1, 1).

Table 3 presents specific experimental data. The reduced time is calculated as (CBS’s average run
time-IBCBS’s average run time)/CBS’s average run time, expressed as a percentage. Meanwhile, the
over cost is determined by (IBCBS’s total path length-CBS’s total path length)/CBS’s total path length,
also as a percentage. The results indicate that, in line with the analyses in Figs. 7 and 8, CBS exhibits
the lowest operation time at AGV = 10, 20, 30; whereas, at AGV = 40, 50, 60, IBCBS (1.0488, 1.0488)
demonstrates the lowest time, reduced by up to 64.06%. Regarding the total path length, as observed in
Fig. 9, the sequence from shortest to longest is CBS, IBCBS (1, 1.1), IBCBS (1.0488, 1.0488), IBCBS
(1.1, 1). All variants of IBCBS maintain an over the cost of no more than 1.2%.
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Figure 9: When the number of AGVs is 10, 20, 30, 40, 50, 60, (a) total path length (b) over the cost of
IBCBS (ω, 1), IBCBS (1, ω), IBCBS (

√
ω,

√
ω) and CBS

Table 3: Specific values of CBS and IBCBS

The number
of AGVs

Parameters Algorithms
IBCBS
(1.1, 1)

IBCBS
(1, 1.1)

IBCBS (1.0488,
1.0488)

CBS

10

Average run-time (s) 0.132 0.137 0.138 0.130
Reduced time(%) −1.538 −5.384 −6.154 /
Total path length (m) 800 800 800 800
Over cost (%) 0 0 0 /

20

Average run-time (s) 0.627 0.679 0.588 0.530
Reduced time (%) −18.302 −28.113 −10.943 /
Total path length (m) 1620 1620 1620 1608
Over cost (%) 0.746 0.746 0.746 /

30

Average run-time (s) 1.545 1.370 1.181 1.155
Reduced time (%) −33.766 −18.615 −2.251 /
Total path length (m) 2452 2452 2452 2424
Over cost (%) 1.155 1.155 1.155 /

40

Average run-time (s) 3.309 3.189 2.469 4.408
Reduced time (%) 24.932 27.654 43.988 /
Total path length (m) 3606 3570 3598 3568
Over cost (%) 1.065 0.056 0.841 /

50

Average run-time (s) 7.741 6.717 4.889 9.331
Reduced time (%) 17.040 28.014 47.605 /
Total path length (m) 4766 4738 4764 4724
Over cost (%) 0.889 0.296 0.847 /

(Continued)
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Table 3 (continued)

The number
of AGVs

Parameters Algorithms
IBCBS
(1.1, 1)

IBCBS
(1, 1.1)

IBCBS (1.0488,
1.0488)

CBS

60

Average run-time (s) 10.054 8.044 5.772 16.060
Reduced time (%) 37.397 49.913 64.060 /
Total path length (m) 5946 5904 5944 5886
Over cost (%) 1.019 0.306 0.985 /

Based on the analysis, when a low total path length is desired, the CBS algorithm is automatically
preferred. For fewer AGVs (10, 20, or 30), CBS stands as the best choice due to its shorter computation
time and total path length. On the other hand, when more AGVs are involved (40, 50, or 60), the IBCBS
algorithm becomes the selection due to its shorter computation time and its ability to accept a more
costly solution (1.0488, 1.0488).

5.2 Performance Comparison Experiments of Three IBCBS Algorithms with Randomly Selected
Starting Endpoints

AGV counts were set to 10, 20, 30, 40, 50, and 60, with starting and ending points chosen randomly
from Table 1. The shore bridge can be selected repeatedly, without considering potential conflicts. For
AGV = 10, 20, 30, the starting and ending points are selected from the shore bridge to the yard. For
AGV = 40, 50, 60, 30 units are chosen from the shore bridge to the yard, while the remaining units are
from the yard to the shore bridge.

In Fig. 10, a horizontal comparison highlights that as the number of AGVs increases, conflicts
intensify, resulting in fewer valid points and declining success rates across all three algorithms.
However, with the same AGV count, employing focal searches at the high level extends the search
range and enhances the success rate, leading to an increased number of green points. These green
points surpass the red and blue ones because only IBCBS (1, 1.1) and IBCBS (1.0488, 1.0488), which
conduct focal search solely at the low level, might avoid potential conflicts and exhibit lower operation
times.

Figure 10: (Continued)
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Figure 10: Run time of IBCBS (ω, 1), IBCBS (1, ω) and IBCBS (
√

ω,
√

ω). (a) AGV = 10; (b) AGV =
20; (c) AGV = 30;(d) AGV = 40;(e) AGV = 50; (f) AGV = 60

Fig. 11, following the analysis from Fig. 10, displays the average run times of the three algorithms
across 100 experiments. As the number of AGVs increases, all three algorithms take longer to compute.
Notably, IBCBS (1.1, 1) takes significantly more time than IBCBS (1, 1.1) and IBCBS (1.0488, 1.0488).
However, IBCBS (1.0488, 1.0488) exhibits the fastest operation time, employing focal search at both
top and bottom levels, encompassing a wider search range.

Table 4 demonstrates specific success rates and average operation times using the three algorithms
after randomly choosing starting and ending points. Based on the analysis, IBCBS (1.1, 1) attains the
highest success rate among the three algorithms, while IBCBS (1.0488, 1.0488) records the shortest
operation time. If the problem model prioritizes a higher success rate over operation time, selecting
IBCBS (1.1, 1) is recommended, despite its longer operation time. Conversely, if a higher operation
time is required, choosing IBCBS (1.0488, 1.0488) would be preferable.
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Figure 11: Average run time of three kinds of IBCBS

Table 4: Success rate and average run time of three kinds of IBCBS

Number of
AGVs

IBCBS (1.1, 1) IBCBS (1, 1.1) IBCBS (1.0488, 1.0488)

Success rate Average run
time

Success rate Average run
time

Success rate Average
run time

10 82% 1.345 70% 0.522 71% 0.495
20 75% 2.001 55% 0.785 57% 0.765
30 67% 2.493 43% 1.066 43% 0.979
40 63% 3.636 31% 1.545 32% 1.375
50 42% 4.676 16% 2.204 17% 2.001
60 40% 7.380 7% 2.416 8% 2.203

5.3 Experimental Analysis of the Value of ω in IBCBS (ω, 1) on the Performance When AGV = 60
Units

Set the effective time limit at 60 s, beyond which the solution is considered invalid. Choose 60
AGVs, with half of them moving from the shore bridge to the yard and the other half from the yard
to the shore bridge. Fix the values at 1.01, 1.05, 1.1, 1.5, and 2.0 for ω, and opt for IBCBS (ω, 1) with
the highest success rate among the three methods. Conduct 100 experiments.

Fig. 12 depicts the computing time for 500 experiments, where times exceeding 60 s are deemed
invalid. Experiment configurations, particularly the starting and endpoint selections, are random,
occasionally resulting in computing times surpassing the limit. For instance, at ω = 1.01 and 1.05, some
instances exceed 60 s, while other data cluster around 7.0 s. At ω = 1.01, the operation takes longer
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(illustrated by the green squares), with fewer instances indicating the lowest success rate compared to
other data.

Figure 12: Run time of IBCBS (1.01, 1), IBCBS (1.05, 1), IBCBS (1.1, 1), IBCBS (1.5, 1) and IBCBS
(2.0, 1)

Fig. 13 displays the average operation time and success rate, excluding invalid data where opera-
tion times exceeded 60 s. With smaller ω values, the focal search scope decreases, making it challenging
to find valid solutions through Focal_list traversal. Therefore, success rates rise and average run times
decline as ω increases from 1.01 to 1.05 and 1.1. As ω grows larger, the Focal_list node count increases,
enhancing the chance of the target node’s existence. Beyond ω = 1.1, the success rate plateaus, yet
increasing ω widens the search range, enabling faster discovery of nodes with fewer conflicts, thereby
enhancing algorithm efficiency.

Figure 13: Success rate and average run time of IBCBS (ω, 1)
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Table 5 presents specific success rates and average operation time data for varying ω values in
IBCBS (ω, 1). Based on the analysis, when dealing with 60 AGVs in the automated terminal, ω =
2.0 is preferable for high success rates and rapid computing times, whereas ω = 1.1 is preferable for
maintaining a high success rate with excellent solution quality.

Table 5: Success rate and average run time of IBCBS (ω, 1)

Value of ω 1.01 1.05 1.1 1.5 2.0

Rate of success 33% 37% 40% 40% 40%
Average run time 7.786 7.559 7.380 7.167 6.663

6 Conclusions

To enhance productivity and minimize conflicts, a novel bounded conflict-based search method
was introduced for ACT. Addressing AGV point and edge conflicts, the approach aimed to minimize
AGVs’ total path length. We developed a multi-AGV conflict-free path planning model and solved
it using the IBCBS algorithm with focal search. Our study compared the efficiency of IBCBS and
CBS algorithms through several numerical experiments. The comparison was conducted across four
techniques involving varying AGV numbers in three sets of experiments. Initially, with fixed start and
endpoints and ω value set at 1.1, all three IBCBS algorithms outperformed CBS. At 30 to 60 AGVs,
IBCBS (1.0488, 1.0488) exhibited the highest speed and maintained an over cost of no more than
1.2%. Subsequently, employing randomly selected start and endpoints demonstrated the swiftness of
IBCBS (1.0488, 1.0488) and the higher success rate of IBCBS (1.1, 1). Finally, using the IBCBS (ω, 1)
algorithm revealed a higher success rate with ω above 1.1 and shorter average run times specifically
at ω = 2.0. Our experiments indicate the practical applicability of the proposed IBCBS algorithm to
existing automatic terminals, promising a significant enhancement in efficiency.

In our study, AGV speed remained constant. However, in practical scenarios, AGV speed might
decrease or halt during turns or malfunctions. Future work could consider increasing the turning
factor to minimize turns and better reflect real ACT scenarios. Additionally, employing reinforcement
learning in future studies might further enhance solution speed.
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