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ABSTRACT

This study explores the implementation of computed tomography (CT) reconstruction and simulation techniques
for patient-specific valves, aiming to dissect the mechanical attributes of calcified valves within transcatheter heart
valve replacement (TAVR) procedures. In order to facilitate this exploration, it derives pertinent formulas for
3D multi-material isogeometric hyperelastic analysis based on Hounsfield unit (HU) values, thereby unlocking
foundational capabilities for isogeometric analysis in calcified aortic valves. A series of uniaxial and biaxial tensile
tests is executed to obtain an accurate constitutive model for calcified active valves. To mitigate discretization
errors, methodologies for reconstructing volumetric parametric models, integrating both geometric and material
attributes, are introduced. Applying these analytical formulas, constitutive models, and precise analytical models
to isogeometric analyses of calcified valves, the research ascertains their close alignment with experimental results
through the close fit in displacement-stress curves, compellingly validating the accuracy and reliability of the
method. This study presents a step-by-step approach to analyzing the mechanical characteristics of patient-specific
valves obtained from CT images, holding significant clinical implications and assisting in the selection of treatment
strategies and surgical intervention approaches in TAVR procedures.

KEYWORDS
Calcified aortic valves; tensile test; constitutive relations; CT reconstruction; isogeometric hyperelastic analysis

1 Introduction

Calcific aortic valve disease (CAVD) is a significant cardiac valve pathology, particularly afflicting
the elderly population, and ranks as the third most prevalent cause of heart disease, as shown in Fig. 1
[1]. Tongji Medical College in Hubei Province, China, conducted an extensive investigation focusing
on individuals aged 60 years and older. Among the analyzed pool of 3,948 samples, a notable 1.93%
exhibited severe heart disease, primarily manifesting as aortic insufficiency [2]. The urgency of this
issue is underscored by the aging trend in China, with data from the National Health Commission
predicting that the elderly population (aged 60 years and above) will surpass 400 million by 2035.
Extrapolating from these figures, it is projected that approximately 7.72 million individuals might
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grapple with aortic insufficiency, consequently imposing a considerable medical burden. This scenario
highlights the critical importance of comprehensively and promptly addressing CAVD.

Figure 1: Heart valves

Transcatheter heart valve replacement (TAVR) offers a less invasive alternative for treating valve
disorders via peripheral vascular pathways, thereby avoiding sternotomy and the risks associated with
cardio-pulmonary circulation. However, selecting the right replacement valve without damaging the
native aortic valve and successfully replacing it remains challenging for surgeons. Mu et al. demon-
strated that rupture dramatically impacts hemodynamics [3]. Previous investigations involving TAVR
patients afflicted with aortic root rupture have conclusively identified the rupture site as a high-stress
region [4]. As TAVR demand grows, the computer simulation of patient-specific valve mechanical
properties significantly enhances the feasibility assessment of surgical procedures and augments the
success rate, also aiding in choosing the size of the replacement valves [5].

In order to achieve a more precise simulation of patient-specific valve mechanical properties,
two aspects should be considered: the selection of a constitutive model accurately reflecting the
mechanical behavior of the calcified valve and employing a calculation method with high precision
and computational efficiency.

Global researchers have extensively explored the constitutive model of heart valves. Noteworthy
work in 1995 by May-Newman and Yin exposed mitral valve traits, emphasizing nonlinear hyperelas-
ticity and anisotropy [6]. Li et al. found differing results in leaflet deformations, stress magnitudes,
and distributions between isotropic and anisotropic models, with the maximum longitudinal normal
stress increased, and the maximum transversal normal stress and in-plane shear stress decreased
with the inclusion of anisotropy [7]. In 2005, Sun et al. used a Fung-elastic material model that
incorporated material parameters and axes derived from actual leaflet biaxial tests and measured
leaflet collagen fiber structure to perform stress-strain analysis of the lobules [8]. Progressing to 2009,
May-Newman et al. introduced hyperelastic constitutive equations for aortic valves [9]. Advancements
by Sirois et al. in 2011 generalized the Fung-elastic model for fluid simulation of prosthesis valves [10].
In 2012, a Mooney–Rivlin hyperelastic constitutive law was adopted at stent implantation [11,12].
Almost concurrently, based on the fiber-reinforced material model, an anisotropic hyperelastic model
was adopted to characterize the mechanical behaviors of aortic tissues [13,14]. In 2014, Wang et al. used
the anisotropic hyperelastic Holzapfel–Gasser–Ogden material model to analyze human heart tissues
[15]. However, there is no constitutive model that accurately captures the mechanical properties of
calcified valves.
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Isogeometric analysis, presented by Hughes et al. [16], incorporates the exact geometrical descrip-
tion inherent in a computer-aided design (CAD) model into the analysis by employing the same spline
basis functions utilized in the CAD system. Unlike the traditional finite element method, isogeometric
analysis (IGA) demonstrates enhanced performance in dealing with nonlinear problems. The use of
spline technology ensures a more precise construction of patient-specific valve geometry. High-order
precision non-uniform rational B-splines (NURBS) surfaces facilitate effective mesh computation,
even under significant deformation. Additionally, IGA obviates the need for repeated mesh refinement
during nonlinear analysis, resulting in a substantial reduction in computational time. Furthermore,
IGA is proficient in constructing and analyzing models involving dispersive and diffusive multi-
materials by assigning material properties to control points [17–19]. Recently, it has gained substantial
significance in analyzing the mechanical properties of heart valves [20–24].

Morganti et al. [25] and Xu et al. [20] employed NURBS to extract heart valve geome-
try from computed tomography (CT) images for model reconstruction. Additionally, in 2015,
Kamenskya et al. introduced a geometric flexibility technique for computational fluid-structure
coupling (FSI), successfully simulating the dynamic function of a three-valve biological valve
throughout the cardiac cycle [23]. In 2017, Takizawa et al. utilized the Space-Time Topology Change
(ST-TC) method for moving grid calculations in flow problems, focusing particularly on the inter-
leaflet contact of heart valves and preserving high-resolution representation near the blade surface
while effectively addressing contact regions [26]. In 2019, Bianchi conducted patient-specific aortic
reconstruction using NURBS splines [27]. Building on these advancements, Zhang et al. in 2021,
presented an effective computational analysis framework for simulating primary and replacement
three-leaf heart valves based on isogeometric analysis [28]. Concurrently, Johnson et al. established a
parameter-based approach for modeling tricuspid valves in a utility program, providing a robust and
versatile method for assessing the performance and efficiency of various leaflets through isogeometric
analysis [29].

Although extensive research has been conducted on the mechanical attributes of heart valves,
certain issues persist. Initially, valve materials are often oversimplified, adopting isotropic linear
characteristics or described using classical constitutive models [13,30]. Subsequently, the lack of
consideration for valve thickening at calcification sites results in an ideal model with uniform thickness,
significantly diverging from authentic valve morphology. Moreover, the precise extent and distribution
of valve calcification remain inadequately captured. To address these issues, this paper proposes a
method for studying the mechanical characteristics of patient-specific heart valves using CT images,
aiming to maintain model authenticity and enhance the accuracy of valve mechanical analysis. The
key contributions of this paper are outlined as follows:

1. The pertinent formulas for 3D multi-material isogeometric hyperelastic analysis based on
Hounsfield unit (HU) values are derived, enabling the foundational capabilities of isogeometric
analysis for calcified aortic valves. The feasibility of these formulas is verified by the analysis
results of ideal heart valves.

2. Various constitutive models are fitted to accurately capture the stress-strain behavior of
calcified heart valves via a range of uniaxial, equiaxial, and non-equiaxial experiments on
human calcified valves. The best-performing model is chosen based on its fitting results, and
its accuracy is confirmed through experimental comparisons.

3. Aortic valve models with patient-specific material distribution are created from CT images
using NURBS splines to build accurate volume parametric models for isogeometric analysis.
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This approach addresses challenges such as high computational costs, convergence difficulties,
and mesh distortions commonly encountered in traditional dense mesh methods.

4. The fitting quality of the displacement-load diagrams obtained from biaxial tensile tests
on heart valves is compared with the displacement-load diagrams from the experimental
simulation results of the reconstructed valves, validating the feasibility and accuracy of the
methods and procedures employed in this study.

The structure of this paper is as follows: Section 2 presents the derivation of basic formulas for
3D isogeometric hyperelastic analysis. Section 3 details the fitting process of constitutive equations.
Section 4 presents the valve CT reconstruction procedure, accompanied by numerical examples and
validation of the proposed method through real valve simulations. The outcomes and significance of
the findings are elucidated in Section 5. Section 6 summarizes the conclusions and future works.

2 Basic Formulas of Isogeometric Hyperelastic
2.1 Basic Theories of Isogeometric Analysis

Current CAD systems usually use NURBS for geometric representation and use basis functions
instead of shape functions of finite elements. The ith p degree (p + 1 order) B-spline basis function is
defined as:⎧⎪⎪⎨
⎪⎪⎩

Ni,p (u) =
{

1, if ui ≤ u < ui+1

0, otherwise

Ni,p (u) = u − ui

ui+p − ui

Ni,p−1 (u) + ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u), p ≥ 1
(1)

where U = {
u0, u1, · · · , un+p+1

}
is the knot vector; [ui, ui+k+1] is the support interval of the basis function

Ni,p (u).

With the definition of the B-spline basis function, a 3D NURBS patch can be defined by three-
knot vectors with the following expressions:

V (u, v, w) =
n∑

i=0

m∑
j=0

l∑
k=0

Rp,q,r
i,j,k (ξ , η, ζ ) Pi,j,k (2)

where ξ , η, and ζ are parameter coordinates; p, q, and r are the degrees of the basic function in different
directions; Pi,j,k is the control point. The expression of the basis function R is as follows:

Rp,q,r
i,j,k (ξ , η, ζ ) = Ni,p (ξ) Mj,q (η) Qk,r (ζ ) ωi,j,k

n∑
i=0

m∑
j=0

l∑
k=0

Ni,p (ξ) Mj,q (η) Qk,r (ζ ) ωi,j,k

(3)

where Ni,p (ξ), Mj,q (η), and Qk,r (ζ ) are the B-spline basis functions in each direction; ωi,j,k is the weight
corresponding to the control point Pi,j,k [31].

2.2 Isogeometric Hyperelastic Numerical Formula
In a nonlinear system, the deformation gradient F is typically defined as the geometric relationship

between the coordinates of the current geometry change x and the coordinates of the initial unde-
formed shape X [32–34]:

F = ∂x
∂X

= I + ∇q (4)
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F =
⎛
⎝x

y
z

⎞
⎠(

∂

∂X
∂

∂Y
∂

∂Z

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

where F = 1 means there is no deformation. A right Cauchy–Green deformation tensor C is defined
as

C = FTF (6)

Meanwhile, the Lagrangian strain E can be defined as follows:

E = 1
2

(C − 1) = 1
2

(∇qT + ∇q + ∇qT∇q
)

(7)

Thereafter, the three-dimensional Lagrange strain variation can be derived as follows:

δE = [
δE11 δE22 δE33 2δE12 2δE23 2δE13

]T = 1
2

(
δFTF + FT

δF
) = BNδq (8)

with

q = [
u0 v0 w0 u1 v1 w1 · · · uncp vncp wncp

]T
(9)

BN = [
B0 B1 · · · BI · · · Bncp

]
(10)

BI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11RI ,1 F21RI ,1 F31RI ,1

F12RI ,2 F22RI ,2 F32RI ,2

F13RI ,3 F23RI ,3 F33RI ,3

F11RI ,2 + F12RI ,1 F21RI ,2 + F22RI ,1 F31RI ,2 + F32RI ,1

F12RI ,3 + F13RI ,2 F22RI ,3 + F23RI ,2 F32RI ,3 + F33RI ,2

F13RI ,1 + F11RI ,3 F23RI ,1 + F21RI ,3 F33RI ,1 + F31RI ,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

R =
⎡
⎣R0 0 0 R1 0 0 · · · Rncp 0 0

0 R0 0 0 R1 0 · · · 0 Rncp 0
0 0 R0 0 0 R1 · · · 0 0 Rncp

⎤
⎦

T

(12)

where Rij denotes the derivative of Ri with respect to the reference configuration X in the jth direction.

Then, the increment of the three-dimensional Lagrange strain can be defined as follows:

ΔE = BNΔq (13)

The relationship between the variation and increment of the second Piola–Kirchhoff stress S and
Lagrange strain E can be derived as follows:

δS = DδE = DBNδq (14)

ΔS = DΔE = DBNΔq (15)
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where D denotes tangent constitutive tensor, which can be derived from the total strain energy density
of different material properties.

The strain energy can be defined as follows:

�int (q) =
∫

	

S : Ed	 (16)

Thereafter, strain energy variation can be derived as follows:

δ�int (q, δq) =
∫

	

S : δEd	 (17)

Since nonlinear equations cannot be solved directly, they can be iteratively solved using the
Newton-Raphson method. To find the displacement increment, one must linearize the weak form
of the governing equation.

L
[
δ�int (q, δq)

] =
∫

	

( ΔS : δE + S : ΔδE) d	 = δqTKΔq (18)

with

K =
∫

	

(
BT

NDBN + BT
G ��S�� BG

)
d	 (19)

��S�� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0 0 0 0
S12 S22 S23 0 0 0 0 0 0
S13 S23 S33 0 0 0 0 0 0
0 0 0 S11 S12 S13 0 0 0
0 0 0 S12 S22 S23 0 0 0
0 0 0 S13 S23 S33 0 0 0
0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S12 S22 S23

0 0 0 0 0 0 S13 S23 S33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

BG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0,1 0 0 R1,1 0 0 · · · Rncp,1 0 0
R0,2 0 0 R1,2 0 0 · · · Rncp,2 0 0
R0,3 0 0 R1,3 0 0 · · · Rncp,3 0 0
0 R0,1 0 0 R1,1 0 · · · 0 Rncp,1 0
0 R0,2 0 0 R1,2 0 · · · 0 Rncp,2 0
0 R0,3 0 0 R1,3 0 · · · 0 Rncp,3 0
0 0 R0,1 0 0 R1,1 · · · 0 0 Rncp,1

0 0 R0,2 0 0 R1,2 · · · 0 0 Rncp,2

0 0 R0,3 0 0 R1,3 · · · 0 0 Rncp,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

2.3 Multi-Materials Realization Based on Hu Value
2.3.1 Strain Energy Density Function

When a material state can be entirely described by a given total strain, it is termed hyperelasticity.
For hyperelastic materials, the stored strain energy remains constant as long as the strain within
the material is constant, as demonstrated in Fig. 2. Consequently, the strain energy density function
emerges as the optimal choice for analyzing hyperelastic material models. In such materials, the strain
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energy density exists as a function of strain, allowing stress to be derived through differentiation
[32,35].

Figure 2: Stress-strain relationship of hyperelastic material

Since the invariant does not vary with the reference coordinate system, regardless of the loading
conditions an object undergoes, the strain energy density can be defined using the invariants of strain
or alternatively, those of the deformation tensor. The three invariants of the right Cauchy–Green
deformation tensor C are presented as follows:

I1 = tr (C) = λ2
1 + λ2

2 + λ2
3, (22)

I2 = 1
2

[
tr2 (C) − tr

(
C 2)] = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (23)

I3 = det (C) = λ2
1λ

2
2λ

2
3. (24)

where the square root of I3 measures the volume change of the material. If the material is incompress-
ible, it is clear that I3 = 1. In Eqs. (22)–(24), λ1, λ2, λ3 are the main stretch in three directions x, y, z,
which can be defined as:

λ1 = lx

Lx

, λ2 = ly

Ly

, λ3 = lz

Lz

(25)

Incompressibility in materials can lead to numerous challenges in constitutive relations, partic-
ularly when combined with nonlinearities such as large displacements, large strains, and contact. In
order to separate the distortion part from dilatation, it is necessary to introduce the so-called reduced
invariants J1, J2 and J3, defined by

J1 = I−1/3
3 I1, J2 = I−2/3

3 I2, J3 = I 1/2
3 . (26)

Several typical hyperelastic models are listed in Table A1 of the Appendix.

The nominal stress (first Piola-Kirchhoff stress) in the direction of stretch is obtained by
differentiating the strain energy density with respect to the principal stretch as follows:

P = ∂W
∂λ

(27)

Moreover, the second Piola-Kirchhoff stress is calculated by differentiating the strain energy
density with respect to the Lagrangian strain:

S = ∂W
∂E

(28)
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The Mooney-Rivlin model, frequently utilized as a strain energy density function, facilitates the
specific solving process of the second Piola-Kirchhoff stress S and the tangent constitutive tensor D,
as will be presented subsequently.

Furthermore, the two-parameter strain energy density function of the Mooney-Rivlin model,
including the incompressibility coefficient, is defined as

Ws = C10 (J1 − 3) + C01 (J2 − 3) + κ

2
(J3 − 1)

2 (29)

The second Piola-Kirchhoff stress S can be derived as

S = ∂W
∂E

= 2
∂W
∂C

= 2
∂W
∂J1

∂J1

∂C
+ 2

∂W
∂J2

∂J2

∂C
+ 2

∂W
∂J3

∂J3

∂C
(30)

which can be rewritten as

s = 2C10J1,C + 2C01J2,C + 2k (J3 − 1) J3,C (31)

with

J1,C = I−1/3
3 I1,C − 1

3
I1I−4/3

3 I3,C , (32)

J2,C = I−2/3
3 I2,C − 2

3
I2I−5/3

3 I3,C , (33)

J3,C = 1
2

I−1/2
3 I3,C (34)

where the subscribed comma denotes derivative, i.e., J1,C = 2∂J1/∂C . And I1,C , I2,C , I3,C can be obtained
from

I1,C = 2I (35)

I2,C = 2 (I1I − C) (36)

I3,C = 2I3C
−1 (37)

Based on Eq. (14), the tangent constitutive tensor D can be derived as follows:

D = ∂S
∂E

= 2
∂S
∂C

= C10J1,CC + 4C01J2,CC + 4κJ3,CJT
3,C + 4κ (J3 − 1) J3,CC (38)

with

J1,CC = I−1/3
3 I1,CC + 4

9
I1I−7/3

3

(
I3,CI

′
3,C

) − 1
3

I−4/3
3 (I1,CI

′
3,C + I3,CI

′
1,C + I1I3,CC), (39)

J2,CC = I−2/3
3 I2,CC + 10

9
I2I−8/3

3

(
I3,CI

′
3,C

) − 2
3

I−5/3
3 (I2,CI

′
3,C + I3,CI

′
2,C + I2I3,CC), (40)

J3,CC = 1
2

I−1/2
3 I3,CC − 1

4
I−3/2

3 (I3,CI
′
3,C). (41)

The formulas for the second Piola-Kirchhoff stress S and the tangent constitutive tensor D of
several typical hyperelastic models are listed in Table A2 of the Appendix.
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2.3.2 Multi-Material Formula

Mimics integrates both intuitive manual tools and fully automated algorithms for knee joint and
cardiac segmentation, aiding medical practitioners in accurately processing patients’ medical images.
During calcified region annotation via thresholding in Mimics, the Hu highest was observed at the
center of each calcified area, diminishing in a circular pattern outwardly, as depicted in Fig. 3 [36].

Figure 3: The distribution of Hu valve

Therefore, treating individual calcified regions of the valve as the same material results in relatively
weak accuracy. Isogeometric analysis methods inherently offer advantages in multi-material model
analysis. Material properties are assigned to various control points, and continuous refinement of the
calcified regions allows the simulation to progressively approximate the real calcification scenario.

This study only considers hyperelastic materials, and the material properties at control points are
defined based on the gray value Hu from the CT images. The material properties of each element
Hun (ic) are represented by interpolating the values at the element’s center point, with the calculation
formula as follows:

Huei = Hun (ic) =
∑
j∈ci

Nij (ic) Hunij (42)

where Hun is the gray value Hu of the control point; ic is the center of ith element; ci is the control
point set influencing the element i; cij is the jth control point of set ci, as shown in Fig. 4; Nij (ic) is the
NURBS basis function for the control point geometry cij of the ith element [37].

Figure 4: The relationship of element and control points
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Thus, the second Piola-Kirchhoff stress S and the tangent constitutive tensor D can be rewritten
as

Se (Hun) = Se (Hun (ic)) = [Hun (ic) ∗ Smax + (Humax − Hun (ic)) ∗ Smin]/Humax (43)

De (Hun) = De (Hun (ic)) = [Hun (ic) ∗ Dmax + (Humax − Hun (ic)) ∗ Dmin]/Humax (44)

3 Constitutive Model Experiment

Existing research on heart valve mechanical properties often utilizes fresh pig, cow, donkey, and
other mammalian valve tissues for experimental testing [38,39]. However, due to these animals’ shorter
lifespans, their aortic valve tissue rarely undergoes calcification, making it less suitable for this study.
The heart valve tissue utilized in our experiment was provided by the Department of Cardiac Surgery at
Zhongshan Hospital, affiliated with Fudan University. Previous studies have shown that valve tissue’s
mechanical properties can be preserved at low temperatures [40]. Obtaining human valve samples
is challenging, so the valves used in this study were refrigerated prior to batch testing. The degree of
calcification in heart valves can be categorized into three types [41,42]: Fig. 5a shows mild calcification;
Fig. 5b moderate calcification; Fig. 5c severe calcification. Severe calcification, which makes the valve
material akin to linear material and significantly stiffer than native valves, is unsuitable for TAVR
surgery and, thus, of limited significance in this study. Instead, the primary focus is on cases of mild
and moderate calcification.

Figure 5: Calcified heart valves

3.1 Biaxial Tensile Test
Biaxial stretching experiments provide a more precise characterization of mechanical properties

than uniaxial stretching [43]. May-Newman et al. have extensively described biaxial mechanical testing
methods for valve leaflet tissues [44,45], forming the basis of this study. Additionally, early research
discovered the anisotropic behavior and collagen fiber structure of aortic valve tissue. Stiffness is higher
parallel to collagen fibers and lower in the transverse direction. Therefore, distinguishing between the
circumferential and radial directions of the valve is essential during experiments.

The experimental instrument employed in this study is the CellScale Biotester biaxial testing
system, as illustrated in Fig. 6. This system, specifically designed for biological materials, features a
comprehensive biaxial testing setup. Its sample clamps, made of tungsten alloy and electrochemically
sharpened, facilitate easy penetration of sample structures. Moreover, the system maintains the
biological activity of samples by providing temperature-controlled water bath conditions during
experiments.
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Figure 6: CellScale Biotester

Given the smaller size of human valves compared to those of other animals such as pigs and
cows, and considering the susceptibility of calcified valve leaflets to tearing and delamination during
stretching, the researchers decided not to trim the valves in the biaxial experiments. The overall
experimental procedure is outlined below:

1. Before clamping the samples, a vernier caliper was used to measure the thickness of the leaflet
in the central plane area ten times. The average of these measurements was then taken as the
overall sample thickness for subsequent stress calculations.

2. Using the measured thickness plane area from Step 1 as the clamping center, marking points
were positioned at the sample’s center using carbon powder or ink for real-time displacement
tracking during software processing.

3. The sample was placed on the clamping fixture board, aligning its circumferential (Circ) and
radial (Rad) directions with the main axes of the biaxial testing system.

4. The distance between the dual suture hooks was adjusted to 7.5 mm × 7.5 mm, and physio-
logical saline was injected into the water bath tank.

5. The sample was clamped onto the biaxial testing system, and the lifting mechanism was
lowered to submerge the sample in the water environment. Fig. 7 illustrates the sample
clamping setup.

6. Loading distances were set in both the axial and radial directions for equiaxial and non-
equiaxial stretching experiments. In equiaxial stretching experiments, the axial and radial step
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distances were identical, i.e., 1:1. In non-equiaxial stretching experiments, the axial and radial
step distances differed, i.e., 1:2 and 2:1.

Figure 7: Biaxial tensile sample preparation and clamping

Due to the reliance on the quality of carbon powder and ink marks for marker point displacement
tracking, this study employs a quality filtering process to minimize the influence of this error. A square
region at the center of the clamping area is divided, containing 30 mm × 30 mm marker points within it.
The coordinates at time 0 s are considered the initial coordinates, and the coordinates at each moment
during stretching are used as the final coordinates. Fig. 8 shows the trajectories of the marker points,
with red points denoting the marker points and white curves representing their trajectories. It can be
observed that marker points with clear ink marks exhibit smaller trajectory fluctuations.

Figure 8: Movement trajectory of the mark point

In order to select marker points with better trajectory detection quality, this study calculates the
slope of the line connecting the end and start coordinates of each marker point at each moment. If the
sum of the slope deviations does not exceed a predetermined error value, the point is deemed to have
good trajectory detection quality. The distance between the marked points in the circumferential and
radial directions is calculated using the Euclidean distance formula, as depicted in Fig. 9.

Assuming the sample holding area resembles a rectangular shape, and FC (N) and FR (N) are two
pairs of forces acting on its edges. The initial dimensions of the rectangle are LC0 (mm) and LR0 (mm),
which then reduce to LC (mm) and LR (mm) under stress. Additionally, the initial thickness and the
thickness after deformation are h0 (mm) and h (mm), respectively. With these parameters in place,
the deformation of the sample during biaxial stretching can be accurately computed. Fig. 10 visually
represents the deformation process.
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Figure 9: Sample marking points

Figure 10: Schematic diagram before and after sample deformation

Cauchy stress on circumferential:

TC

(
N/mm2 = MPa

) = FC

A1

= FC

LRh
= FC

LR

LC0h0LR0

LCLR

= λCFC

LR0h0

(45)

Cauchy stress on radial:

TR

(
N/mm2 = MPa

) = FR

A2

= FR

LCh
= FR

LC

LC0h0LR0

LCLR

= λRFR

LC0h0

(46)

Stretch (Tensile ratio):

λC = LC

LC0

, λR = LR

LR0

(47)

Green-Lagrangian strain:

EC = 1
2
(λ2

C − 1), ER = 1
2

(
λ2

R − 1
)

(48)

Fig. 11a illustrates the tensile ratio-stress curves of various samples during equiaxial stretching.
The curves of the same color depict the response under circumferential and radial stretching conditions
for each stretching degree.
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Figure 11: Cauchy stress-stretch curves of biaxial stretch

Figs. 11b and 11c show the tensile ratio-stress curves of various samples during non-equiaxial
stretching. The curves of the same color represent the response under circumferential and radial
stretching conditions for each stretching degree.
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The implementation of strain energy functions in modeling the material properties of soft tissues
has demonstrated significant success in biomechanics. The coefficients of the constitutive model,
shown in Table A2 of the Appendix, are intricately linked to the strain energy density function, which is
unique to the material under consideration. Among the most widely adopted energy density functions
used to capture the nonlinear behavior of soft tissue is the Fung strain energy density function, which
has proven effective in characterizing the behavior of heart, artery, and mitral valve tissues [46,47].
Despite the progress made, it is worth noting that, to date, no constitutive model has precisely captured
the complex stress-strain relationship exhibited by heart valves.

This study employs five representative constitutive equations: the Mooney-Rivlin 9-parameter,
Yeoh, Ogden, Fung, and May-Newman models. Nonlinear least squares fitting codes were developed
to fit these constitutive models. Experimental data from equiaxial and non-equiaxial tests were
fitted with these equations, and the best-fitting model was selected for simulating valve mechanical
characteristics. Fig. 12 displays a portion of the experimental data and the effect of curve fitting.

Figure 12: (Continued)
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Figure 12: Cauchy stress-stretch curves of biaxial stretch

Curve fitting errors of tensile experimental data under different models are presented in Table 1.

Curve fitting errors, compared in Table 1, reveal that the Mooney-Rivlin 9-parameter model
and the Yeoh model exhibit the best fitting performance, accurately representing the stress-strain
relationship of calcified heart valve leaflets. Variations may exist among different heart valve tissues
and even within the same type of valve tissue among various individuals. The complexity of the model
should be carefully balanced, considering the available data and computational resources, to avoid
overfitting and excessive parameterization. Due to the higher number of coefficients required for
the Mooney-Rivlin 9-parameter model and the similar fitting errors of both models under different
stretching conditions, the Yeoh model is chosen for simulating the mechanical characteristics of
calcified heart valve leaflets in this study.

Table 1: Fitting error of equiaxial and non-equiaxial tensile constitutive equation

Stretch Model Mooney-Rivlin Yeoh Ogden Fung May-Newman

Equiaxial

Errormin_C 5.29E-07 1.19E-06 1.17E-06 6.75E-07 1.89E-05
Errormax_C 1.33E-05 3.63E-05 1.18E-04 1.78E-04 5.91E-04
Errormin_R 1.52E-07 6.14E-07 1.68E-06 8.34E-06 1.67E-05
Errormin_R 6.88E-06 1.68E-05 0.000761 0.0007482 0.0008818

Non-
equiaxial
1:2

Errormin_C 1.26E-08 1.10E-07 7.22E-07 3.33E-07 6.60E-06
Errormax_C 6.89E-06 6.14E-05 1.13E-04 3.56E-05 8.08E-05
Errormin_R 2.56E-08 7.34E-08 2.60E-07 2.47E-07 3.23E-06
Errormin_R 3.48E-06 5.04 E-04 5.05E-04 5.04E-04 4.22E-04

Non-
equiaxial
2:1

Errormin_C 2.21E-08 1.33E-08 1.45E-07 3.16E-07 9.42E-06
Errormax_C 1.74E-05 2.84E-04 9.68E-04 2.84E-04 2.01E-04
Errormin_R 3.01E-08 1.95E-07 1.82E-06 7.14E-07 2.85E-06
Errormin_R 6.13E-06 8.29E-05 8.32E-05 7.86E-05 8.22E-05
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Yeoh [48] initially proposed the Yeoh model in 1993. It is a polynomial hyperelastic constitutive
model that utilizes polynomial expansion to fit the stress-strain relationship of materials, expressed in
the following general form:

W =
N∑

i=1

Ci0 (I1 − 3)
i +

N∑
k=1

1
Dk

(J − 1)
2k (49)

where W is the strain energy density function; Ci0 is the model parameter representing the material
characteristics; N is a non-negative integer; I1 is the strain invariant; J is the volume proportion of
deformation.

Fig. 13 depicts the fitting results of various experimental data using the fixed Yeoh model. As
the biaxial stretching experiments did not precisely align with the fiber orientation, some associated
errors might be present in the experimental outcomes. Nevertheless, the fitting performance indicates
satisfactory alignment with circumferential stretching.

Figure 13: Fitting effect of the constitutive model

3.2 Uniaxial Tensile Test
The uniaxial tensile test, a common method for measuring the mechanical properties of heart

valves [49], was used in this study. Aortic valves with pronounced calcification areas and clear
distribution directions were selected for uniaxial stretching experiments. In order to ensure accurate
representation, each semilunar valve was meticulously sampled, with one sample taken from each.

The uniaxial tensile experiments were conducted using a YG026G multifunctional electronic
fabric strength tester. During sample clamping, the edges were wrapped with gauze to prevent sample
slippage. The clamping direction followed the direction of valve calcification to avoid tearing at the
junction between the native and calcified valve during stretching. The clamping length was set to
10 mm, based on the available sample area, as shown in Fig. 14.

Figure 14: Uniaxial tensile sample preparation and clamping
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A force termination target of 5N was set during the experiments, with force and displacement
recorded at each time point. Subsequently, the recorded data were used to calculate stress and strain
values at each point using the following formulas:

Cauchy stress:

T
(
N/mm2 = MPa

) = F
A

= F
Lxh

= F

Ly

Lx0h0Ly0

LxLy

= λF
Ly0h0

(50)

Stretch (Tensile ratio):

λ = Ly

Ly0

(51)

Green-Lagrangian strain:

E = 1
2

(
λ2 − 1

)
(52)

The study reveals that severe calcification of the valve leads to higher stiffness and a tendency
toward a linear stress-strain relationship. This trend is further illustrated in Fig. 15a, where the stress-
strain curve tends to become linear beyond a certain tensile extent. To more accurately determine
the constitutive model coefficients of the calcified valve through uniaxial tensile testing, both the
original and fully calcified valve segments were subjected to separate tensile tests. The Yeoh model
was employed for curve fitting. The outcomes for these two extreme cases are depicted in Figs. 15b
and 15c, and the corresponding constitutive model coefficients are presented in Table 2.

Figure 15: Uniaxial stretch

Table 2: Fitting error of uniaxial and biaxial tensile constitutive equation

Stretch C10 C20 C30 C40 C50 C60 C70

Calcification −0.029482 0.200000 0.160658 −0.143830 −0.17131 0.333133 0.135306
Primary −0.006390 0.200000 0.169394 16.934520 2.407428 1.248054 0.340853



CMES, 2024, vol.139, no.3 2791

4 Numerical Implementation
4.1 CTA Image Model Reconstruction

Due to the significant variations in calcified leaflet properties, especially regarding thickness,
it is challenging to describe the leaflet model using a limited set of parameters. Utilizing patient-
specific clinical imaging data for reconstruction, the models offer robust support for the accuracy
of mechanical calculations and analysis.

Image Data Import and Orientation Adjustment:

The initial step involved importing the patient’s CT scan outcomes in DICOM format into
Mimics. Subsequently, precise adjustments were made to ensure that the orientation of the view aligned
perpendicularly with the aortic cross-section.

Segmentation of Aortic Valve Root Area:

Segmentation of the aortic valve root area, including both the native valve and the calcified region,
was performed based on the variation in Hu values, as illustrated in Fig. 16.

Figure 16: Threshold segmentation

Triangular Mesh Generation and Material Data Derivation:

A triangular mesh model of the aortic valve root area was generated through 3D reconstruction.
Additionally, Hu values corresponding to the mesh vertices and interior points were acquired.

Leaflets Cutting and Smoothing:

The reverse engineering software Geomagic Wrap was employed to trim and smooth the triangular
mesh model of the aortic valve leaflets, as depicted in Fig. 17.

Figure 17: 3D reconstruction and processing

Upon completing the triangular mesh processing, the volume parametric geometry model of the
aortic valve leaflet was created utilizing NURBS splines. Initially, the vertices of leaflets triangular
mesh, also known as data points {Pl}l=0,1,··· ,m, were grouped into six boundary regions. Subsequently,
these data points were approximated for each region using NURBS surfaces {Si}i=0,1,··· ,5. Lastly, the
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six surfaces were seamlessly joined, and a volumetric boolean sum [50] was applied to generate a
volume parametric geometry model in Eq.(2). Fig. 18 displays the construction process of the volume
parametric geometry model.

Figure 18: Construction of volume parametric model

When constructing the patient-specific model, both the material model and the geometry model
are equally important. The material field M(ξ , η, ζ ) shares base functions Rp,q,r

i,j,k (ξ , η, ζ ) with the
geometry model above as shown in follows:

M (u, v, w) =
m∑

i=0

n∑
j=0

l∑
k=0

Rp,q,r
i,j,k (ξ , η, ζ ) Mijk (53)

At m iteration, the difference vector is calculated by subtracting M (m) (ul, vl, wl), Hu value acquired
by projection of Pl, from Ml which is the exact Hu value of the point Pl.

δ(m)

l = Ml − M (m) (ul, vl, wl) (54)

The difference vector δ
(m)

l is distributed to M (m)

ijk with a combination coefficient given by
Rp,q,r

i,j,k (ξ , η, ζ ) 
= 0. M (m)

ijk is the Hu values at control points Pijk in Eqs. (53) and (54). In this way,
the difference vector Δ(m)

ijk of control points Pijk can be obtained [51]

Δ(m)

ijk =
∑

l∈Iijk
Ri,p (ul) Rj,q (vl) Rk,r (wl) δ

(m)

l∑
l∈Iijk

Ri,p (ul) Rj,q (vl) Rk,r (wl)
(55)

where Iijk is the index set that includes all cases of Rp,q,r
i,j,k (ξ , η, ζ ) 
= 0. It can be demonstrated that the

limiting form of the iterative results is the least square fitting of the Hu value of data points, and the
spectral radius of the iterative matrix is less than 1, indicating the convergence of the iterative results.
The procedure is detailed in Algorithm 1.

Algorithm 1: Construction of geometry and material model
Input: data point set {Pl}l=0,1,··· ,m with Hu value {Ml}, tolerance tol = 0.001
Output: volume parametric geometry and material model V (u, v, w) and M (u, v, w)

1: Initiate the surface set
{
S(0)

i

}
i=0,1,··· ,5

by the data point set
{
P′

l

}
i=0,1,··· ,n

at the surface.
Calculate difference vector sets of data point coordinates

{
ε

(0)

l = P(0)

l − V (ul, vl, wl)
}

by the
surface data point and its projection point

2: while
∣∣∣∑l

∥∥ε(m+1)

l

∥∥2
/
∑

l

∥∥ε(m)

l

∥∥2
∣∣∣ > tol do

(Continued)
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Algorithm 1 (continued)
3: Calculate the difference vector ε

(m)

l similar to Eq. (54)
4: Calculate the difference vector E (m)

ij with ε
(m)

ij similar to Eq. (55)

5: Renew control point P(m+1)

ij = P(m)

ij + E
(m)

ij at each surface Si

6: end while
7: Create volume V (ξ , η, ζ ) by {S(m)

i } using volumetric boolean sum

8: Initiate Hu value set
{

M (0)

ijk

}
of a volume control point by Hu value of the nearest data point, the

difference vector set
{
δ

(0)

l = Ml − M (0) (ξl, ηl, ζl)
}

by Hu value at data point and its projection
point Hu value

9: while
∣∣∣∑l

∥∥δ(m+1)

l

∥∥2 /∑
l

∥∥δ(m)

l

∥∥2
∣∣∣ > tol do

10: Calculate the difference vector δ
(m)

l by Eq. (54)
11: Calculate the difference vector Δ(m)

ij with δ
(m)

l by Eq. (55)
12: Renew Hu value M (m+1)

ijk = M (m)

ijk + Δ(m)

ijk at V
13: end while
14: Create a material field M(ξ , η, ζ ) in Eq. (53)
15: return the geometry V and material field M

4.2 Algorithm for Nonlinear Solving
Fig. 19 displays the flowcharts of the source code for linear and nonlinear analyses, differing

notably in the resolution of unknown variables.

Figure 19: Source code flowchart
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Nonlinear equations cannot be effectively solved using direct methods to achieve a relatively
precise solution. This study adopts an automatic load increment approach similar to that in ABAQUS
[52], employing the Newton-Raphson method to resolve nonlinear equations. The procedure is detailed
in Algorithm 2.

Algorithm 2: The algorithm of Newton–Raphson method
Input: tolerance tol = 0.001, iterations k = 0, maximum iterations maxiter = 20, convergence conv =
1e6

Output: the displacement q
1: Calculate residual R = f − P (q)

2: while conv < tol do
3: if k > maxiter then
4: Stop with an error message
5: else
6: Calculate the stiffness matrix K under the current situation and solve the

displacement increment KΔq = f − P (q)

7: Update solution by q = q + Δq
8: Update solution by conv = (

∑num

i=1 R2
i )/(1 +∑num

i=1 f 2
i ), num indicates the number of control

points
9: end if
10 Set iterations k = k + 1
11: end while
12: return the displacement q

The automatic load incrementation scheme is given in Algorithm 3.

Algorithm 3: The automatic load incrementation scheme
Input: the maximum load Pmax, maximum decrease times maxreit = 20
1: Set initial increment ΔP = Pmax

2: P = P + ΔP
3: if convergence conv > tol and P 
= Pmax do
4: Reduce the load increment to ΔP = ΔP/4
5: Restore the current displacement q and load values P to the previous step
6: if n > maxreit and conv > tol then
7: Stop with an error message
8: else
9: Increase the load increment to ΔP = 1.5 ∗ ΔP
10: end if
11: end if
12: return iteration finished
13: Enter to the post-processing phase

4.3 Verification of Algorithm
In order to prove the correctness of the method in this study, two hyperelastic models are simulated

by an isogeometric analysis program.
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1. The model is a square plate with a thickness much smaller than its side length. As shown
in Fig. 20a, the length and width of the model are 10 mm, and the thickness is 0.2 mm.
Constraints are applied to the lower surface, front surface, and left surface of the plate.
The right and back surfaces of the plate are given a prescribed horizontal displacement
ux = 10 mm, uy = 10 mm. Fig. 20b shows the calcification of the model, and the material
parameters are set as follows:

Material 1: C10 = 0.01863 MPa, C01 = 0.00979 MPa, k = 1e5

Material 2: C10 = 0.5516 MPa, C01 = 0.1379 MPa, k = 1e5

Figure 20: Model constraint

In order to verify the accuracy of isogeometric analysis in hyperelastic materials more accurately,
two cases are considered: for a single material, results from both FEA and IGA 3D analyses are
displayed in Figs. 21a, 21b, 21d, and 21e. For multiple materials, IGA 3D analysis results are depicted
in Figs. 21c and 21f.

Figure 21: Model analysis results
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2. The model represents a leaflet of an ideal aortic valve. A fixed constraint is applied at the
junction of the coronary valve and the aorta (valve ring), marked in red in Fig. 22b, and a
displacement constraint is applied at the center of the free edge of the coronary valve, marked
in blue in Fig. 22a. Fig. 22c illustrates the model’s calcification. The material parameters are
set as follows:

Material 1: C10 = 0.01863 MPa, C01 = 0.00979 MPa, k = 1e5

Material 2: C10 = 0.5516 MPa, C01 = 0.1379 MPa, k = 1e5

Figure 22: Model constraint and calcification region map

The Von Mises diagram for IGA analysis without calcification is shown in Fig. 23a and with
calcification in Fig. 23b. The stress distribution in the x-direction of IGA analysis without calcification
is depicted in Fig. 24a and with calcification in Fig. 24b. Fig. 25a displays the displacement distribu-
tion in the z-direction of IGA analysis without calcification, while Fig. 25b shows this distribution in
the case of calcification. The stress and displacement distribution in both calcified and non-calcified
models demonstrate a consistent overall trend. However, in calcified valve regions, a distinct stress
concentration pattern is observed, corresponding to actual mechanical analysis.

When comparing the analysis results of a non-calcified square plate in FEA and IGA, similarities
in stress-displacement distribution are apparent. The maximum and minimum values fall within a
specific error range, confirming the effectiveness of stress analysis for a basic hyperelastic model in
this study. Moreover, these two simulation examples reveal that Hu effectively distinguishes calcified
regions from non-calcified ones, with notable differences in Hu value between the two models. Stress
concentration in calcified areas is visibly distinct, with stress distribution patterns reflecting the form
of calcification.

Figure 23: Von Mises
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Figure 24: x-direction stress

Figure 25: z-direction displacement

4.4 Analysis and Comparison of Mechanical Properties of Valve
Considering that valve CT data is scanned while the valve is operational, the reconstructed valve

shape may deviate from its form under experimental conditions. In order to facilitate a comprehensive
comparison between the experiment and simulation during biaxial valve stretching, the simulation
valve model is meticulously adjusted to closely emulate the experimental valve’s configuration. This
involves a procedure to flatten the valve before conducting model analysis and fine-tuning the valve’s
orientation to align the circumferential and radial directions parallel to the corresponding coordinate
axes, as illustrated in Fig. 26.

Figure 26: Valve unfold diagram

A square with a side length of 6.7 mm is formed around the restraint and loading ends in the
circumferential and radial directions of the valve. The specific constraints and loading modes are
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shown in Fig. 27. The two adjacent sides of the valve are fixed, and the other two sides are subjected
to displacement constraints.

Figure 27: Model constraint and load

The following figures display the biaxial tensile simulation results of the valve under varying
calcification conditions. Figs. 28a–28c exhibit the calcification of one leaflet in each of the three
patients. The color bar on the right represents the Hu value in the CT image of the valve. Figs. 28d–
28f illustrate the displacement change in the direction of valve thickness under simulation conditions,
showing a smaller displacement change in more severely calcified cases, consistent with an increase
in valve stiffness after calcification. Figs. 28g–28i present the valve strain diagram under simulated
conditions, with the strain region indicating the biaxial tensile region and more severe calcification
resulting in smaller strain. The black box in Figs. 28d–28i highlight the biaxial stretching area of the
valve.

Figure 28: Biaxial tensile simulation results of the valves
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In Section 2.3, the strain energy density function is fitted to the stress-strain curve obtained from
processing experimental data, resulting in the best-fit constitutive model and model coefficients. This
model is then applied to simulate the valve reconstruction model in Section 3.1, replicating the valve’s
biaxial tensile test. The simulation produces a displacement-load curve, which is compared with the
actual experimental results. The curve’s conformity analysis verifies the simulation approach used
in this study and indirectly corroborates the appropriateness of the selected constitutive model, as
outlined in Section 2.3. The specific comparison process is shown in Fig. 29.

Figure 29: Comparison flow chart

Considering the significantly greater stiffness of the calcified region of the valve compared to
the non-calcified region, it is imperative in the simulation to position the maximum load point at the
calcification center. Concurrently, displacement measurements should be recorded at the clamping
edge proximal to this center, as delineated in Fig. 30.

Figure 30: Contrast data selection

The displacement-load curves derived from various experimental samples at differing stretching
ratios were juxtaposed with those procured from the simulation, as shown in Fig. 31.

Fig. 28 reveals that within the stretching region, the valve’s strain and displacement distribution
closely mirrors the actual calcified area. Furthermore, as depicted in Fig. 31, a noteworthy congruence
exists between displacement-load curves from both biaxial stretching simulations and experimental
data. This congruence not only affirms the simulation method’s relevance but also indirectly validates
the accuracy of the selected constitutive model in replicating the valve’s mechanical characteristics.
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Figure 31: Comparison of experimental and simulation displacement-load curves
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5 Discussion

In this investigation, a thorough analysis was conducted on the mechanical properties of patient-
specific calcified valves using CT imaging, thereby introducing an innovative perspective into the
feasibility of TAVR surgery.

Constitutive Model Fitting: The comparison between equiaxial and non-equiaxial stretching
scenarios reveals the fitting errors of various classical constitutive models to experimental data.
Notably, the Yeoh model exhibited the smallest fitting error, indicating its superior ability to express
the strain energy density function of calcified valves. The favorable fitting results of the Yeoh model,
as shown in Fig. 13, provide empirical evidence supporting the model’s validity.

Multi-material based on Hu value: The square plate model’s analytical outcomes indicate con-
gruent stress-strain distributions under biaxial stretching conditions, validating the correctness of the
derived three-dimensional isogeometric hyperelastic multi-material correlation formula based on the
Hu value. Furthermore, the analysis of an ideal valve model underscores the significant impact of
calcification patterns on valve stress-strain results, thereby emphasizing the importance of simulating
valve surgeries.

Comparison of experimental and simulation results: Fig. 31 displays a satisfactory alignment
between experimental and simulated displacement-load curves for three reconstructed valve models
under equiaxial and non-equiaxial stretching conditions. This alignment corroborates the validity of
the approach employed in this study for investigating valve mechanical properties derived from CT
images.

6 Conclusion

In summary, this study has advanced the analysis of the mechanical characteristics of patient-
specific aortic valves obtained from CT images. Compared to prior studies, this study presents three
principal contributions. Firstly, it utilizes the Hu value to achieve a multi-material representation of
biological tissue, subsequently deriving an isogeometric hyperelastic three-dimensional multi-material
correlation formula. Secondly, investigations confirm the Yeoh model as the most suitable constitutive
model for expressing the stress-strain behavior of calcified valves, validated through multiple single
and double experiments. Lastly, building upon existing CT reconstruction methodologies, the paper
details the comprehensive process of reconstructing calcified valves. The resulting patient-specific
valve parametric model not only embodies precise geometric properties but also retains material
characteristics accurately. The congruence between the results from calcified valve analysis and
experimental findings substantiates and lends theoretical support to the feasibility of the proposed
research framework. However, due to the intricate interplay of factors influencing TAVR surgery under
real-world conditions, this study does not conduct a comprehensive analysis encompassing surgical
simulation of actual cases. Despite these limitations, the study introduces an effective simulation
approach for TAVR surgery. Future efforts will focus on modeling and simulating real-world case
studies, which will significantly enhance the practical implications and applicability of these research
findings.
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Appendix A. Several typical hyperelastic models

Table A1 lists several typical hyperelastic models.

Table A1: Several typical hyperelastic models

Model Strain energy density Parameters

Neo-Hookean W = 1
2

C10 (J1 − 3) + 1
2
κ (J3 − 1)

2 C10, k

Mooney-Rivlin 2-parameters Ws = C10 (J1 − 3) + C01 (J2 − 3) + κ

2
(J3 − 1)

2 C10, C01, k

Mooney-Rivlin 5-parameters
Ws = C10 (J1 − 3) + C01 (J2 − 3) + C20 (J1 − 3)

2 +
C11 (J1 − 3) (J2 − 3) + C02 (J2 − 3)

2 + κ

2
(J3 − 1)

2
C10, C01,

C11, C02, k

Yeoh Ws = C10 (J1 − 3) + C20 (J1 − 3)
2 +

C30 (J1 − 3)
3 + κ

2
(J3 − 1)

2

C10, C20, C30, k

Table A2 lists the formulas for the second Piola-Kirchhoff stress S and the tangent constitutive
tensor D of several typical hyperelastic models.

Table A2: The S and D of several typical hyperelastic models

Model Stress and tangential stiffness

Neo-Hookean
S = 2C10J1,C + 2κ (J3 − 1) J3,C,
D = 4C10J1,CC + 4κ

(
J3,C ∗ J ′

3,C

) + 4κ (J3 − 1) J3,CC

(Continued)
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Table A2 (continued)

Model Stress and tangential stiffness

Mooney-Rivlin
2-parameters

S = 2C10J1,C + 2C01J2,C + 2κ (J3 − 1) J3,C

D = 4C10J1,CC + 4C01J2,CC + 4κJ3,CJT
3,C + 4κ (J3 − 1) J3,CC

Mooney-Rivlin
5-parameters

S = 2C10J1,C + 2C01J2,C + 4C20 (J1 − 3) J1,C + 2C11 (J1 − 3) J2,C+
2C11J1,C (J2 − 3) + 4C02 (J2 − 3) J2,C + 2κ (J3 − 1) J3,C

D = 4C10J1,CC + 4C01J2,CC + 8C20 (J1 − 3) J1,CC + 8C20J1,CJ1,C+
4C11 (J1 − 3) J2,CC + 4C11J1,CJ2,C + 4C11J1,CC (J2 − 3) + 4C11J1,CJ2,C

+8C02 (J2 − 3) J2,CC + 8C02J2,CJ2,C + 4κJ3,CJT
3,C + 4κ (J3 − 1) J3,CC

Yeoh
S = 2

[
C10J1,C + 2C20 (J1 − 3) J1,C + 3C30 (J1 − 3)

2 J1,C + κ (J3 − 1) J3,C

]
D = 4 [C10J1,CC + 2C20J1,CJ1,C + 2C20 (J1 − 3) J1,CC + 6C30 (J1 − 3) J1,CJ1,C . . .

+3C30 (J1 − 3)
2 J1,CC + κJ3,CJT

3,C + κ (J3 − 1) J3,CC

]
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