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ABSTRACT

Angular contact ball bearings have been widely used in machine tool spindles, and the bearing preload plays an
important role in the performance of the spindle. In order to solve the problems of the traditional optimal preload
prediction method limited by actual conditions and uncertainties, a roller bearing preload test method based on the
improved D-S evidence theory multi-sensor fusion method was proposed. First, a novel controllable preload system
is proposed and evaluated. Subsequently, multiple sensors are employed to collect data on the bearing parameters
during preload application. Finally, a multisensor fusion algorithm is used to make predictions, and a neural
network is used to optimize the fitting of the preload data. The limitations of conventional preload testing methods
are identified, and the integration of complementary information from multiple sensors is used to achieve accurate
predictions, offering valuable insights into the optimal preload force. Experimental results demonstrate that the
multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for
rolling bearings.
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Nomenclature

dm Pitch circle diameter
D Ball or roller diameter
nm Ball or roller track speed
nr The speed at which a ball or roller rotates around its own axis
Mg Gyroscopic moment
Pd Radial clearance
q Roller/raceway unit length load
Q Ball or roller normal load
Qa Axial load on a ball or roller
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Qr Radial load on a ball or roller
Qia Ball thrust load
α Contact angle
β Ball stance angle
δ Displacement or contact deformation
J Moment of inertia
ω Angular velocity of rotation
ωR Ball or roller track speed
ωm The speed at which the ball or roller rotates around its own axis
Δψ Angular spacing between rolling elements

1 Introduction

As a basic industrial component, bearings reflect industrial development [1–3]. The bearing
preload is a crucial mechanical connection technique that establishes a robust link between the
shaft and bearing by applying an appropriate pressure or tension. It effectively minimises clearance,
enhances bearing rigidity and precision, reduces operational vibrations and noise, improves the load
capacity of the machine, and ensures stable machinery operation [4,5].

Bearing preloads can be applied in various ways, such as electromagnetic control, hydraulic
control, and centrifugal force control [6–9]. The mechanical control method offers the benefits
of automation and stability, enabling more precise torque and position control while providing a
consistent control torque. For instance, Tian et al. [10] used a fixture equipped with a pressure sensor to
study the influence of a preload on the nonlinear dynamic response of typical bolt cantilever structures
through finite element analysis. The hydraulic preload control method is primarily employed for large
structures because of its high accuracy and ability to perform a wide range of torque adjustments.
Xu et al. [11] studied the temperature rise in the outer ring of a bearing under varying preload
and speed conditions by implementing hydraulic preload control. However, notably, this method
entails higher equipment costs and requires specific operational and maintenance requirements. The
centrifugal force preload control method offers advantages such as no additional energy consumption
and uniform loading. However, it is dependent on the rotating equipment and has limitations in terms
of the preload torque that can be achieved. Choi et al. [12] used the centrifugal force and rubber
pressure to enhance the preload force and proposed an elbow joint mechanism for accommodating
variable preloads. Considering the test conditions and requirements, an enhanced mechanical preload-
ing method was employed for the experiments. In contrast to conventional mechanical preloading
methods, which typically involve hardware replacement to modify the preload size, this test allows for
the direct real-time adjustment of the preload magnitude while facilitating simultaneous observation
and recording. Notably, hardware improvements and the integration of multisensor fusion and field-
programmable gate array (FPGA) contribute to improved precision and accuracy of the test [13,14].

A data-driven approach is one that analyzes and leverages large amounts of data to drive
problem-solving and decision-making, and deep learning and neural networks are typical data-driven
approaches. With the widespread application of deep learning technology and the development of
transfer learning and self-supervised learning, data-driven methods have become more and more
important in industrial applications [15]. However, it also has limitations such as data bias and limited
data generalization ability.

Multi-sensor fusion is widely used in industrial system monitoring, fault diagnosis, spatial
positioning, logistics management and other fields. By fusing data from multiple sensors, the accuracy



CMES, 2024, vol.139, no.3 3331

and reliability of information can be improved, which in turn can achieve more accurate measurement
and sensing results, providing important support for efficient data processing and decision-making
[16,17]. Table 1 describes the mainstream methods of multi-sensor fusion and their advantages and
disadvantages.

Table 1: Mainstream multi-sensor fusion methods

Multi-sensor fusion approach Merit Shortcoming

Bayesian estimation method Ability to effectively handle
uncertainty information and
provide a flexible data fusion
framework

The dependence on prior
information is high, the
computational complexity
is high

Maximum likelihood estimation
method

Simple, efficient,
parameter-free, no sensor
weights

Depends on sample size,
data distribution has
assumptions, and
uncertainty cannot be
handled

Kalman filter method Ability to handle linear systems,
dynamic changes, and high
efficiency

Assumptions about linear
systems and noise errors,
dependence on prior
information

Neural network method Non-linear modeling capability,
Adaptive learning ability,
Handling large-scale data

Demands on large
amounts of data, complex
models, poor
interpretability, and
overfitting

Fuzzy logic method Flexible knowledge expression,
strong ability to deal with
uncertainty, good robustness
and interpretability

It is difficult to acquire
knowledge,
computationally complex,
ambiguous, and potentially
lose information

Lee et al. [18] proposed a centralised fusion algorithm for sensor systems along with a filter
algorithm particularly designed for distributed sensor systems. The study concluded that this approach
yielded higher effectiveness and accuracy than using a single sensor. Yu et al. [19] proposed a single-
sensor network and a multisensor network and conducted a comparative analysis to validate the
superiority of the multisensor network. Furthermore, they extensively discussed the optimal placement
of multiple sensors. Peng et al. [20] proposed an improved Dempster-Shafer (D-S) synthesis formula
based on the concept of evidence information and focus element generated by it and applied it to
multisensor information fusion technology. Zhang et al. [21] proposed an asynchronous track fusion
algorithm with information feedback, which was combined with a target quality management model
for weight allocation to improve the performance of an asynchronous multisensor fusion system. These
studies illustrated the feasibility and advantages of multisensor fusion. Therefore, a multisensor fusion
method was selected to analyse the bearing preloads.
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In this article, a variety of sensors are used to capture signals such as sound, vibration, temperature,
and torque. When the system works after receiving the influence of preload, compared with normal
operation, the generated parameters such as sound vibration and temperature rise will change due to
the change of force. Torque is different from other signals, the change of torque will change the initial
state of the system, and the preload force can be applied to the system in different situations, as a
variable group to obtain more data, so that the experimental accuracy and stability are improved. In
this paper, the improved D-S evidence theory method is used to process the data, and the results are
more accurate and stable than those of the traditional methods.

To the best of our knowledge, predicting the bearing preload using multisensor fusion is a relatively
new method, and the contributions of the current study are as follows:

1) A new type of precision controllable mechanical preload test bench was established, and the
mechanical preload data was measured in various aspects and scales.

2) An improved multisensor fusion method is proposed to analyse and predict the measured
bearing preload and propose a more accurate optimal bearing preload.

The remainder of this paper is organised as follows: The second section introduces the principle of
bearing preload and the influence of mechanical preload, introduces the new controllable preload test
bench used in the third section, analyses and predicts the experimental data, and uses deep learning
to fit the data to ensure the accuracy of the investigation. Finally, the paper is summarised, and future
research is discussed.

2 Experimental Principle
2.1 Rolling Bearing Load Analysis

Various factors generate a dynamic load between the rolling elements and bearing raceways. The
dynamic loads are relatively small at medium and low speeds compared with the external forces acting
on the balls or rollers. However, at high speeds, dynamic loads such as centrifugal forces and gyroscopic
moments significantly influence the load distribution and create dynamic loading conditions [22–
24]. The centrifugal force Fc is produced when the balls or rollers rotate around the bearing axis.
When rolling bearings operate at high speeds, the centrifugal force exerted by balls or rollers becomes
substantial. In particular, it can be expressed as:

Fc = π 3ρ

10800 g
D3n2

mdm (1)

Assuming that the preload force on the ball is Qia, and the centrifugal force Fc is applied, the force
applied by the ball is as shown in Fig. 1.

When external forces cause rolling ball bearings to rotate around shafts misaligned with the inner
or outer ring, the presence of balls inside the bearing induces a gyroscopic effect. This effect gives
rise to a gyroscopic moment, denoted as Mg, which acts in a direction opposite to the rotation of
the bearing. Consequently, increased friction and wear are observed. The magnitude of gyroscopic
moment Mg can be described as follows:

Mg = 1
60

βπωRωmD5 sin β (2)

In high-speed operation, the ball load caused by the combination of centrifugal force and
gyroscopic moment when the preload of the ball is Qia is shown in Fig. 2. As the ball rolls on the
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bearing, it is subjected to a balanced force. These include the load, inertia, friction, and elastic
deformation forces. At equilibrium, these forces cancel each other out, that is, the sum is zero. The
ball force balance equation for rolling bearings is as follows:

Qia sin αij = Mgj

Dw

(
λij cos αij − λoj cos αoj

) + Qoa sin αoj (3)

Qoa cos αoj = Mgj

Dw

(
λij sin αij − λoj sin αoj

) + Qia cos αij (4)

Figure 1: Ball under thrust load and centrifugal force

Figure 2: Ball load under thrust

When the centrifugal force acts on the ball, the line of action between the center of curvature of
the inner and outer channels becomes a broken line because the contact angles between the ball and
the inner and outer channels are different, such as Fig. 3. At any azimuth j, the distance between the
fixed center of curvature of the outer channel and the final position of the center of the sphere is:

Δoj = ro − D
2

+ δoj (5)
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Because:

ro = foD (6)

So:

Δoj = (fo − 0.5) D + δoj (7)

Δij = (fi − 0.5) D + δij (8)

where δoj and δij are the normal contact deformations of the inner and outer raceways, respectively.
According to the relative axial displacement δa and the relative angular displacement θ of the inner
and outer rings, the axial distance and radial distance between the center trajectories of curvature of
the inner and outer channels at the free kick position are as follows:

Aij = BD sin α + δx + δyRi sin ψj + θzRi cos ψj (9)

δz sin ψj + δy cos ψj (10)

when a rolling bearing works under a combined load of the axial force Fx, two radial forces Fy and
Fz, and two moments Mx and Mz, a relative displacement occurs between the outer and inner rings,
which can be expressed as axial displacement δx and radial displacement δy. Assuming that the rolling
bearing is not affected by factors such as centrifugal force and gyroscopic moment when the roller is
subjected to the maximum load, the total elastic deformation of its inner and outer rings and rollers
is δψ , and the formula is as follows. The center angle of the roller is ψ and α, as shown in Fig. 3.

δψ = δy sin α + δx cos α cos ψ (11)

Figure 3: Displacement caused by axial preload and radial load

As shown in Eq. (11), the elastomeric variable reaches its maximum when the centre angle of the
roller is 0°, and the formula is as follows:

δψ max = δy sin α + δx cos α (12)
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Combining and simplifying Eqs. (11) and (12) yields Eqs. (13) and (14).

δψ = δmax

[
1 − 1

2ε
(1 − cos ψ)

] 2
3

(13)

ε = 1
2

(
1 + δy tan α

δx

)
(14)

Maximum ball loads can be obtained as:

Qmax = Fy

ZJy (ε) sin α
= Fx

ZJx (ε) cos α max

(15)

Fx tan α

Fy

= Jx (ε)

Jy (ε)
. (16)

2.2 Optimal Preload Analysis Based on Bearing Performance
During operation, rolling bearings experience friction and deformation, generating heat. If the

heat generated from these sources exceeds the heat dissipation capacity of the bearing, the bearing
temperature increases [25–27]. Rolling bearings typically have an internal clearance, and applying an
axial preload allows for adjusting this internal clearance, thereby enhancing bearing performance. The
temperature of the bearing exhibits an approximately linear relationship with both speed and applied
axial preload. However, the rate of temperature change decreases to a certain extent, as shown in Fig. 4.

Figure 4: Temperature rise under different rotating speed and preload

Typically, the maximum allowable service temperature for the surface of a rolling bearing does not
exceed 80°C. In addition, the temperature rise should not exceed 40°C above the ambient temperature.
By continuously monitoring the maximum surface temperature and temperature rise of the bearing
in real-time, we can assess the optimal axial bearing preload using vibration and noise analyses at
various speeds. Subsequently, a variable-axial-preload device was used to adjust the preload to its
optimal value. This approach enables the efficient control and adjustment of the bearing preload,
thereby ensuring optimal performance.
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Bearing vibration refers to the deviation of bearing elements from their ideal positions. If a
sufficient preload level is not achieved, the balls may undergo intermittent slipping and rolling, leading
to instability. In such cases, the vibration level can be significantly higher (by one or two orders of
magnitude) than typical bearing vibrations. In addition, the axial preload influences the damping
characteristics of the spindle assembly, further affecting its performance.

The vibration characteristics of rolling bearings vary at different speeds and are not directly
correlated with the temperature increase. Bearing vibrations originate from the inherent factors within
the bearing. It does not exhibit a linear increase with speed; instead, it reaches its peak vibration level
at a specific critical speed [28–30]. However, the vibrations induced by the axial preload were less
pronounced within certain speed ranges, as shown in Fig. 5. Therefore, reducing the axial preload
is necessary when the bearing speed approaches the critical speed to minimise bearing and system
vibrations.

Figure 5: Vibration level under different rotating speeds and preload

Conversely, when the influence of the axial preload is insignificant, increasing the preload is
essential to ensure the stiffness of the bearing and the overall system. Bearing noise is generated by
mechanical waves that cause air vibrations due to the vibration of the bearings. Even if individual
bearing components are perfectly machined, the relative movements between the inner and outer rings,
cages, and balls cannot be eliminated entirely during operation.

In general, the axial preload induced a slight change in the bearing noise, as listed in Table 2.
Applying an axial preload to the bearing increases its stiffness, thereby significantly influencing the
bearing and entire system [31]. Optimal axial preload applications can effectively mitigate issues such
as acoustic noise.

The key advantage of multisensor fusion technology is its ability to enhance the accuracy and
perception capabilities of sensing systems. By combining the observation information acquired from
multiple sensors at different levels and perspectives, we can extract more valuable insights. This, in turn,
improves the decision-making reliability, confidence, and environmental adaptability of the system.
Through applying multisensor fusion, we gained a deeper understanding of how the bearing preload
is influenced by multiple factors, allowing us to determine the optimal preload value comprehensively.
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Table 2: Noise level at different speeds (dB)

Rotate speed (r/min) Without preload With preload

1000 60.0 60.2
2000 65.4 65.7
3000 71.6 71.8
4000 75.3 75.4
5000 73.8 75.2

3 Controlled Preload Test Bench Design

Preload is the most important part of an experiment, and the accuracy of the data must be
guaranteed. This test bench was designed as a closed test bench that can be adjusted by a servomotor,
and the test used a multisensor fusion method to measure the controllable preload. In the experiment,
the sensor and FPGA data interacted with each other so that the test could obtain higher precision,
and the data could also be fed back to the host computer in real time.

3.1 Test Bench Design
An appropriate preload is important for system operation and bearing life, among other factors.

Determining the optimal preload force involves considering various factors such as noise, vibration,
and temperature. This study developed a comprehensive test bench to measure and analyse all the
relevant factors and provide real-time feedback. Herein, the test bench consisted of several key
components, including a host computer, motor control system, torque loading unit, preload control
unit, and data acquisition module (Fig. 6). AC motors, servomotors, and stepper motors were used in
this setup.

Figure 6: Test bench for optimum preload of controllable bearing

In particular, AC motors provided the drive to the system, servomotors were used to control the
preload force, and stepper motors generated torque by acting on the shaft. The FPGA served as the
core controller for the entire system. It facilitated the synchronisation of the eight-channel analogue-
to-digital (AD) conversion, enabling the conversion of changing analogue voltages from specified IO
ports into numerical values. This process was an integral part of the signal sampling procedure. Using
this systematic configuration and employing advanced technologies, the experiment ensured accurate
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measurement, analysis, and control of the preload, thereby enhancing our understanding of its impact
on the system performance, bearing life, and other relevant aspects.

3.2 Closed System Design
A closed test bench, also known as a power flow closed test bench is primarily used to evaluate the

performance of mechanical transmission components and their systems in an enclosed environment.
Its purpose is to determine the service life of each component, assess the work efficiency, and identify
the impact of factors such as materials and loads. A closed test bench offers several advantages,
including a simple structure and low cost, low energy consumption, strong economic applicability,
and a wide range of applications. Closed test benches can be classified based on the closed methods
employed, with the main types being electrically closed, hydraulically closed, and mechanically closed.
A mechanically closed method was adopted for the test bench.

The test bench shown in Fig. 7 consists of two pairs of gears. These gears were meshed together
with z1, z4, z2, and z3, which were connected by shafts. The loading device was positioned on the right
side of gear z4, and the torque was transmitted through gap matching between the gears, shafts, and
system. Shafts 1 and 2 in the entire system, spanning from z3 to z4, received the torque retained within
the system. This torque represents the load added to the system, known as the closed torque. Different
closed powers were obtained by adjusting the torque and rotational speed.

Figure 7: Closed system structure

The loading device in this test bench primarily consisted of a loading gear and a motor. The
gear and shaft were clearance-matched, facilitating the convenient adjustment of the applied load
on the shaft. Although the system is closed, when functioning, it will cause unequal energy loss due
to friction and other factors. These losses will be compensated by the drive device; therefore, the
power output by the drive device is only used to make the system run, which can also compensate
for the power lost by friction in the system. This part of the power is generally small; hence, the energy
output required by the drive device is not significant.

3.3 Dynamic Torque Loading Design
The dynamic torque transducer employed in this test bench enabled torque measurement in both

the positive and negative directions through noncontact power supply and signal output methods.
The test bench incorporated a designed dynamic torque loading system, where the torque served
as a control variable owing to its influence on the optimal preload. Before the commencement of
the test bench system operation, the loading system applied torque to the entire system. Through
closed transmission within the entire system, the power-flow direction was determined by the rotation
direction of the loading and driving devices. A significant portion of the power of the active gear was
transmitted to the driven gear drive system, which generated a force that sequentially propagated from
the active gear to the driven gear. Eventually, z3 and z4 produced torques of the same magnitude but
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in opposite directions owing to their opposing rotation directions. Consequently, the system rotated
under the influence of this torque. This validates the operation of the entire system, including the
presence of torque, impact of preload, and other factors.

Various closed powers were achieved on the test bench by manipulating the torque and rotational
speed. The loading device primarily consisted of a loading gear and motor. The gear and shaft were
designed with appropriate clearance, facilitating the convenient adjustment of the applied load on the
shaft.

A stepper motor was employed to control the system and apply torque to facilitate the experi-
mentation. This allows for the real-time adjustment of the torque within the system. Furthermore, the
motor was equipped with a self-locking mechanism that ensured the torque remained locked and did
not change during operation. This feature enhanced the stability and consistency of the system during
testing.

3.4 Controlled Preload Design
On this test bench, the application of a preload was achieved indirectly by rotating a threaded nut

driven by a bevel gearbox. The motor drove the bevel gearbox to rotate at a specific angle via coupling.
Within the bevel gearbox, the bevel gears meshed with each other, causing the output shaft to rotate.
The front side of the output shaft was threaded and equipped with a suitably sized nut. This nut was
secured on both sides by ferrules, preventing it from rotating circumferentially (Fig. 8).

Figure 8: Three-dimensional diagram of the test bench and explosion diagram of preload

When the test shaft was rotated, the threaded portion at the front of the shaft caused the fixed nut
to move horizontally along the threaded shaft. This horizontal movement of the nut occurred in the
direction of the measured bearing. Consequently, the nut transmitted a force to the bearing through
the top sleeve and pressure sensor. The current preload was accurately determined by collecting the
force received by the pressure sensor.

This method of obtaining preload offered both stability and controllability. The threaded shaft
remained fixed owing to motor fixation and did not rotate during the measurement process. After the
nut moved forward, it remained fixed by a ferrule. Consequently, both the circumference of the nut
and threaded shaft remain fixed, ensuring that the position of the nut and magnitude of the preload
remain constant.
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3.5 Test Bench Measurement and Control System Design
The measurement and control systems of the controllable bearing optimal preload test bench

were divided into hardware and software designs. The hardware design primarily included the core
controller FPGA, various sensors, and a host computer. This part primarily realised a controllable
preload and data acquisition and transmission of each sensor. The software design displayed the
measured value and optimal preload of each sensor online.

The hardware design of the measurement and control system primarily comprised a core controller
field-programmable gate array (FPGA), pressure sensor, temperature rise sensor, noise sensor, vibra-
tion acceleration sensor, torque speed sensor, host computer, motor, and controller. A multisensor
fusion architecture with two inputs and three outputs was constructed to determine the optimal
preload for the best bearing performance (Fig. 9).

Figure 9: Hardware architecture of measurement and control system

The hardware of the measurement and control system can be divided into two modules: the
multisensor fusion module and optimal preload analysis and control module. The multisensor fusion
module was primarily based on the AN706 eight-channel synchronous AD acquisition module. This
module enabled the simultaneous collection of measurements from five different sensors.

The sampling frequency of the system can reach 200 MHz with parallel control of a high-
precision, low-timing FPGA. This allowed for high-speed and low-error voltage acquisition, ensuring
synchronisation of the data from all five sensors. The architecture of the multisensor fusion module
incorporated the pressure and torque speed sensors as two inputs, whereas the temperature rise, noise,
and vibration acceleration sensors served as three outputs.

All five sensors, either through their own voltage output or conversion by the corresponding
transmitter, produced a voltage signal within the 0–5 V range. Therefore, multichannel AD acquisition
was highly suitable for this setup. Among these sensors, the pressure, temperature rise, noise, and
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torque speed sensors all provided a voltage output within the 0–5 V range according to their respective
measurement ranges. The voltage output of the vibration accelerometer increased with the vibration
intensity but did not exceed 5 V. The data collected from the five sensors and FPGA interacted using
an SPI bus, ensuring synchronisation and efficient data transfer.

In the optimal preload analysis and control module, the field-programmable gate array (FPGA)
served as the core controller responsible for data collection and real-time monitoring of preload
values using pressure sensors. This allowed the determination of the current preload force through
multisensor fusion. If the current preload force was not optimal, an iterative process was initiated to
update the preload force gradually.

The preload force was controlled by the angle of rotation of the servomotor. A larger angle
corresponded to a greater preload force. The required angle of the servomotor was determined by the
number of pulses generated by the servo controller. By writing a Verilog program in advance, the FPGA
incrementally increased the pulse output of the corresponding pin to control the iterative update of
the preload force. By continuously adjusting the pulse output, the FPGA enabled the servomotor to
rotate incrementally, thereby increasing the preload force in small increments. This process facilitated
the collection of new data and the subsequent evaluation of the optimal preload force. An iterative
update of the preload value ensured that the system could dynamically adjust and maintain optimal
preload conditions.

4 Experimental Setup and Result Analysis
4.1 Feature Extraction

Feature extraction was performed after data preprocessing, which is the process of converting
the original signal into a meaningful feature vector. This process eliminated unnecessary noise and
interference as well as performed data normalisation and standardisation, enabling more effective
learning and classification by neural networks.

The vibration signal was captured using a vibration acceleration sensor that encompassed time,
frequency, and time-frequency domain characteristics. The time-domain feature is a fundamental
characteristic that provides insight into the overall trend and distribution of the signal. The frequency-
domain characteristics reveal the frequency and energy distributions of the signal. Time-frequency
domain characteristics depict both the time and frequency domain features of the signal. In this study,
the time-frequency domain analysis method was employed to extract features such as the frequency
range, amplitude, and time range, as depicted in Fig. 10. It is evident that the application of preload
results in a significant increase in vibration levels.

The noise signal was captured using a noise sensor microphone, encompassing various char-
acteristics, such as the sound pressure level, frequency characteristics, spectral analysis, and time-
domain characteristics. The sound pressure level serves as a fundamental feature that reflects noise
intensity. The frequency characteristics depict the energy distributions of the different frequency
components within the noise signal. Spectral analysis enables the acquisition of power spectral density
and frequency distribution of noisy signals. The time-domain characteristics reveal the waveform and
statistical features of the noisy signal.

Herein, a combination of frequency- and time-domain analyses was employed for the feature
extraction of noise signals. Particularly, the time-domain characteristics of the noise signal were
obtained through a time-domain analysis. Subsequently, a spectral analysis was conducted to obtain
the frequency-domain characteristics of the noise signal. Fig. 11 illustrates the noise signal and its
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frequency-domain representation under no preload force and with a preload force of 100 N. The appli-
cation of a 100 N preload force significantly reduced the noise level. Unlike vibration and noise signals,
temperature rise signals primarily reflect the operational and thermal equilibrium states of rolling
bearings. The characteristics of the temperature rise signals include the steady-state temperature,
temperature change rate, and temperature gradient. The feature extraction of temperature rise signals
typically involves a combination of traditional statistical methods and machine learning techniques.

Figure 10: Vibration signals and frequency domain signals under no preload and 100 N preload

This study employed statistical functions for feature extraction of the temperature rise signals. The
statistical features of the temperature increase signal were extracted, and Fig. 12 shows the temperature
increase signal under no preload force and with a preload force of 100 N. When no preload force was
present, the change rate, mean, maximum, and minimum values were 0.005, 21.935, 21.301, and 21.612,
respectively. Conversely, when a preload force of 100 N was applied, the change rate, mean, maximum
value, and minimum value were 0.003, 22.683, 22.296, and 22.462, respectively. Therefore, applying
the preload force significantly inhibited the rate of change in the temperature increase.

4.2 D–S Evidence Theory
All evidence does not have the same confidence level in the fusion of information and decision-

making processes. Therefore, weighted evidence can be obtained by introducing the credibility of
evidence, weighted by the credibility of evidence, weighted by each evidence frame, and a weighted sum
to obtain the weighted evidence, thereby solving this problem. The calculation formula is as follows:

m (A) = w1m (a1) + w2m (a2) + . . . + wnm (an) (17)
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where m (A) is the weighted evidence obtained, wi is the feasibility of each piece of sensor evidence,
m (ai) is the original evidence, and n is the number of sensors used. If m (A) > 0, A is the focal element
of the evidence, and the set of all focal elements is called the nucleus.

Figure 11: Noise signal and frequency domain signal under no preload and 100 N preload

Figure 12: Temperature rise signal under no preload and 100 N preload

The comprehensive rule of the D–S evidence theory is used to integrate the three sets of weighted
evidence, and the formula is:
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M (A) = (m1 ⊕ m2 ⊕ m3) = 1
1 − K

ΣA1∩A2∩A3=Am1 (A1) m2 (A2) m3 (A3) (18)

K = ΣA1∩A2∩A3=0m1 (A1) m2 (A2) m3 (A3) (19)

when dealing with conflicting information in evidence synthesis using synthetic rules, the Dempster–
Shafer (D–S) evidence theory can introduce paradoxes and result in fusion failure. To address
the challenge of conflicting evidence, evidence fusion often involves assigning different weights to
individual sensors. However, determining the appropriate weights for each sensor can be a complex
task, requiring substantial prior knowledge or experience.

Therefore, this study proposes an enhanced multisensor fusion weighting algorithm to signifi-
cantly enhance the accuracy of fault diagnosis. Using this algorithm, the fusion process can effectively
handle evidence conflicts and improve the reliability of diagnostic outcomes.

4.3 Improved Multisensor Fusion Weighting Algorithm
In practical scenarios, different sensors exhibit varying levels of reliability, thereby influencing

confidence in evidence synthesis. For an information fusion system comprising n sensors, the weight
assigned to each sensor can be determined through reliability testing and simulation analyses. These
weights are denoted as wpri

1 , wpri
2 , . . . , wpri

n , where the superscript “pri” indicates the prior weight.

The prior weight represents the relative reliability of each sensor based on the aforementioned
analyses. However, the actual working environment introduces uncertainties, necessitating the calcu-
lation of evidence similarity to obtain real-time sensor reliability, referred to as the posterior weight.
A novel method for evidence synthesis can be derived by considering both prior and posterior weights
[32].

By incorporating prior weights that reflect the initial reliability assessment and posterior weights
obtained through evidence similarity calculations, this new methodology facilitates more accurate and
adaptive evidence synthesis in dynamic environments.

Let there be n incompatible pieces of evidence, where the basic trust distribution functions of any
two pieces of evidence Ei and Ej are mi and mj, and the focal elements are Ai and Aj, respectively. The
distance between evidence mi and mj is expressed as:

d
(
mi, mj

) =
√

1
2

(
Mi − Mj

)
D

(
Mi − Mj

)
(20)

where Mi = [mi (A1) , mi (A2) , . . . , mi (A2N )], D is a matrix of 2n × 2n, and the elements in the matrix
are as follows:

B (Ai, Ai) =
∣∣Ai ∩ Aj

∣∣∣∣Ai ∪ Aj

∣∣(i, j = 1, 2, . . . , 2n) (21)

In the above formula,
∣∣Ai ∪ Aj

∣∣ is used to measure conflicts and similarities between focal elements.
When

∣∣Ai ∩ Aj

∣∣ = 0, the conflict between Ai and Aj is 0, and the conflict is the greatest; therefore,
Eq. (21) can be used to measure the degree of conflict between focal elements.

Combining Eqs. (20) and (21) yields mi̇, and the distance between mJ can be expressed as:

d
(
mi, mj

) =
√

1
2

(
< Mi, Mi > + < Mj, Mj > −2 < Mi, Mj >

)
(22)
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< Mi, Mj >=
2n∑
i=1

Σ2n

j=1mi (Ai) mj

(
Aj

) ∣∣Ai ∪ Aj

∣∣∣∣Ai ∩ Aj

∣∣ (23)

Define the body of evidence mi, the similarity coefficient between mj is:

sij = 1 − dij (24)

Each evidence available supports the Ei as:

Sup (mi) =
n∑

j=1

dij (i, j = 1, 2, . . . , n) (25)

Normalization is available as:

wpst
i = Sup (mi)

Σn
i=1Sup (mi)

(i, j = 1, 2, . . . , n) (26)

Eq. (26) reflects the confidence of evidence Ei and satisfies
∑n

j=1 wpst
i = 1, therefore, it can be a

posterior weight. If the evidence is similar, they are highly supportive of each other; therefore, the
greater the confidence, the greater the posterior weight. Considering both the a priori and posterior
weights, the composite weights of the computational evidence Ei are:

αi =
√

wpri
i · wpst

i (27)

βi = αi∑n

i=1 αi

(28)

Then,
∑n

i=1 βi = 1, βi is the normalised composite weight of the evidence mi, which represents the
confidence of the evidence mi.

Corresponding signal processing methods were employed to extract the features from these sen-
sors. To minimise the errors, the characteristic signals from each sensor were averaged. Subsequently, a
multisensor-weighted fusion approach was employed using the aforementioned algorithm. This fusion
technique measured the mean, variance, and standard deviation of the weighted signal to determine the
optimal preload force required to achieve the maximum bearing performance (Fig. 13). The smaller
the parameters obtained after weighted fusion, the closer it is proved to be to the optimal preload
of the bearing. We can get a more correct bearing preload through experiments. Compared with the
traditional method of bearing preload determination, the method used in this paper uses multiple
sensors and signals, and the results obtained are more stable and reliable, and the robustness is stronger,
and will not have a serious impact on the whole system due to problems caused by a certain set of
data. At the same time, sensors have different response capabilities to target information, and may
give incomplete or indeterminate information. In order to improve the reliability and credibility of
the information fusion results of multi-sensor systems, this paper obtains the posteriori weights of the
evidence by calculating the similarity matrix between the evidences, and combines the prior weights
pre-assigned according to the inherent reliability of the sensors to obtain the composite weights of
the evidence body, and then weights the weighted average of the evidence, and finally uses the D-S
synthesis formula to fuse the evidence.
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Figure 13: Sensor weighted fusion

In the controllable preload test bench developed in this study, the temperature increase was
monitored within a range of 25°C through orthogonal experiments involving various speeds and
torques. Three sets of signals, namely, noise, vibration, and temperature rise, were collected from
multiple sensors. These three sets of signals will reflect the changes of parameters such as preload
torque when the system is working, and these three sets of data will be analyzed, and the signals
before and after the initial conditions of the system are changed, and they will be fused. From the
results shown in Fig. 14, it can be observed that, under low-speed operating conditions for rolling
bearings, applying a large torque is favourable for enhancing the bearing stiffness. Conversely, when
operating at high speeds, a smaller torque is more suitable for reducing the performance degradation
caused by a temperature increase. By applying a certain torque, the preload force was reduced to a
certain extent.

Compared with the latest articles in the field of data fusion [33,34], Pan uses an improved
stochastic weighting algorithm to effectively deal with rolling bearing fault diagnosis, but its use
has certain limitations, due to the large difference in vibration frequency between different bearing
faults, its effectiveness will be limited when dealing with mixed faults or other faults with small
frequency differences. Moreover, the stochastic weighting algorithm itself still has problems such as
high requirements for samples and parameters, easy to be disturbed by abnormal data, and unable to
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deal with non-stationary environments, which causes difficulties in application. The method used in
this paper is more flexible, adaptable and robust, which can better deal with uncertainty and conflicting
information, and provide more accurate and reliable fusion results. It also better handles high-conflict
evidence and converges faster. The results obtained in this paper are shown in Fig. 14 and have been
verified to be more than 99% accurate. In summary, the multi-sensor fusion method proposed in this
paper has certain advantages over the traditional method, and can obtain more stable and accurate
results.

Figure 14: Optimum preload at different speeds and torques

4.4 Neural Network Fitting
Fitting a neural network is the process of adjusting the parameters of a neural network model

so that it can learn from the input data and approximate the desired output [35]. Neural networks
are composed of multiple levels of nonlinear units that are capable of learning and expressing complex
nonlinear patterns, so they can fit a variety of complex data patterns well. The fitting ability of a neural
network allows it to be used to predict data, classify and identify. The accuracy of the results obtained
in this paper is determined by fitting the best preload obtained in this paper.

The neural network fitting process involves the iterative optimisation of the activation function
coefficients for each neuron, creating a progressive improvement in performance. In this study,
a Simple Neural Network (SNN) model was used because it offers optimal performance with a
straightforward structure. The SNN model comprised a hidden layer containing multiple neurones
and an output layer consisting of a single neuron. The topology of the complete SNN model is shown
in Fig. 15.

For each neuron in the hidden layer of the SNN model, the output can be expressed as:

yi = ΣN
i=1wixi + bi(i = 1, 2, . . . , i ≤ N) (29)

In the SNN model, the weights and biases of each neuron are denoted as ωi and bi, respectively.
The input data xi comprise of x1, x2, ..., and xn, whereas yi represents the output neuron of the i-th
neuron, and N denotes the total number of neurones in the hidden layer. The input signal xi undergoes
nonlinear transformation through the neurones in the hidden layer to generate the output signal yi.
This transformation is achieved using the activation function σ (x), which is carefully chosen to ensure
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stable signal propagation and ease of differentiation. This can be mathematically expressed as follows:

σ(x) = 1
1 + e−x

(30)

According to the topology of the SNN model, we can obtain the output of the SNN model as:

Y = W
N∑

i=i

σ
(
ΣN

i=1wixi + bi

) + B = W
N∑

i=i

yi + B (31)

Figure 15: Neural network topology

The weights and biases of the output layer are denoted W and B, respectively. The output signal yi

from each neuron in the hidden layer is passed to the output layer. Through a linear transformation,
the SNN model produced an output value of Y. The activation function of the output layer was
linear. During training, mean squared error (MSE) determined the convergence of the function. The
minimum MSE corresponded to the optimal curve fit of the dataset. To achieve this, the weights and
biases of the neurones in the hidden and output layers were adjusted. The mean squared error (MSE)
between the output value Y of the SNN model and test data was compared, and iterative training using
the error descent method was performed along the gradient direction. The procedure was designed to
determine the model parameters that resulted in minimal MSE.

The optimal preload data obtained from the measurements were selected for fitting using deep-
learning techniques. The fitting results are shown in Fig. 16, which illustrates the regression between
the measured and output data of the SNN model. An approximately linear relationship exists between
the measured and output data, with an R-squared value of 0.99. This high R-squared value indicates
an excellent fit and substantiates the effectiveness of the SNN model.

Figure 16: Fit regression
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5 Conclusion

This study proposes a novel model for controlling the preload force in bearings. This includes
developing a controllable bearing preload experimental platform, measurement and control system
based on an FPGA, mechanical power closed-loop design, and dynamic torque loading design. More-
over, a weighted fusion analysis method for determining the optimal preload force was introduced,
which applied the D–S evidence theory in a multisensor setting. The optimal preload under different
conditions obtained by algorithm fusion is shown in Fig. 14. The accuracy of the experimental results
was validated by fitting the results to neural networks. The method used in this paper is widely used
and has no obvious shortcomings. It can better handle high-conflict evidence, converge faster, and has
distinct advantages over traditional methods, resulting in more stable and accurate results.
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