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ABSTRACT

Indoor positioning is a key technology in today’s intelligent environments, and it plays a crucial role in many
application areas. This paper proposed an unscented Kalman filter (UKF) based on the maximum correntropy
criterion (MCC) instead of the minimum mean square error criterion (MMSE). This innovative approach is applied
to the loose coupling of the Inertial Navigation System (INS) and Ultra-Wideband (UWB). By introducing the
maximum correntropy criterion, the MCCUKF algorithm dynamically adjusts the covariance matrices of the
system noise and the measurement noise, thus enhancing its adaptability to diverse environmental localization
requirements. Particularly in the presence of non-Gaussian noise, especially heavy-tailed noise, the MCCUKF
exhibits superior accuracy and robustness compared to the traditional UKF. The method initially generates an esti-
mate of the predicted state and covariance matrix through the unscented transform (UT) and then recharacterizes
the measurement information using a nonlinear regression method at the cost of the MCC. Subsequently, the state
and covariance matrices of the filter are updated by employing the unscented transformation on the measurement
equations. Moreover, to mitigate the influence of non-line-of-sight (NLOS) errors positioning accuracy, this paper
proposes a k-medoid clustering algorithm based on bisection k-means (Bikmeans). This algorithm preprocesses
the UWB distance measurements to yield a more precise position estimation. Simulation results demonstrate that
MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems.

KEYWORDS
Maximum correntropy criterion; unscented Kalman filter; inertial navigation system; ultra-wideband; bisecting
kmeans; clustering algorithm

1 Introduction

Indoor localization technology has important applications in modern society. As the need for
indoor positioning accuracy and reliability increases dramatically, researchers are committed to
developing more efficient and accurate indoor positioning methods. The Inertial Navigation System
(INS) and Ultra-Wideband (UWB) techniques are two common methods for indoor localization, each
with its own set of advantages and limitations.

The Inertial Navigation System (INS) is a self-sufficient navigation technology that operates
independently without reliance on external information or the emission of external energy. This
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autonomy endows it with unique advantages, such as being inconspicuous and immune to external
electromagnetic interference. Inertial Navigation utilizes an inertial measurement unit (IMU), a
technology that estimates position, velocity, and attitude by fusing acceleration and angular veloc-
ity. The Inertial Navigation System (INS) relies on sensors like accelerometers and gyroscopes to
gauge an object’s acceleration and angular velocity. This data allows for the continuous and real-
time tracking of position and attitude. Nonetheless, as time progresses, cumulative errors begin to
accumulate, becoming increasingly significant with extended durations. Ultra-Wideband technology
can realize centimeter-level high-precision distance measurement. However, in indoor environments,
the path of signal propagation is non-line-of-sight stemming from various obstacles such as furniture,
decorations, pillars, doors, and partitions. At this point, UWB is unable to achieve accurate distance
measurement and position estimation. The fusion localization scheme based on UWB/INS, on the
one hand, compensates for the loss of accuracy of UWB localization in the non-line-of-sight (NLOS)
environment and smoothes the localization trajectory of UWB; on the other hand, it also eliminates the
aggregated error of INS and augments the localization precision of INS. The integrated system can also
output multi-dimensional data such as position, velocity and attitude, which enriches the positioning
information. In this research paper, the application of the Kalman filter is explored. Nonetheless,
these filters, which are developed using the minimum mean square error (MMSE) approach, may
not adequately accommodate the unpredictable noise encountered in UWB scenarios, leading to
potentially significant errors. To triumph over this dilemma, this paper presents a novel approach
utilizing the unscented Kalman filter (UKF) algorithm incorporating the maximum correntropy
criterion (MCC).

Linear dynamic systems usually use the Kalman filter (KF), but when dealing with nonlin-
ear problems, the extended Kalman filter (EKF) [1] and the unscented Kalman filter (UKF) [2]
are commonly used. EKF algorithm linearizes nonlinear functions using Taylor series expansion,
replacing the state transfer matrix with the Jacobi matrix in Kalman filtering equations. Then,
it calculates state estimation and variance within the Kalman filtering framework. However, this
approximation may not be sufficiently accurate, especially when the function shows a high degree of
nonlinearity, which can potentially lead to filter divergence. In addition, the derivation of the Jacobi
matrix is very cumbersome and can be difficult to implement. The Unscented Kalman filter (UKF)
algorithm uses the Unscented Transform to derive a set of sigma points. It then converts the task
of linearizing the nonlinear function into approximating the probability density distribution of the
system’s state variables through nonlinear function transfer. Finally, it addresses the filtering issue
within the framework of the Kalman filter algorithm. The UKF method offers a derivative-free,
higher-order approximation that can achieve more precise results without requiring the computation
of the complex Jacobi matrix unlike EKF. However, both EKF and UKF may not be effective in
scenarios where the measurement is affected by heavy-tailed non-Gaussian noise. To address this
issue, robust methods like Huber’s generalized great likelihood method have been proposed in [3,4],
which combines both l1/l2 paradigms to construct the cost function and can minimize the maximum
asymptotic estimation variance for the case of disturbed Gaussian distributions, and its robustness is
better than that of the estimation based on the l2 paradigm while trying to keep the l2 paradigm for a
pure Gaussian distribution as much as possible estimation efficiency when pure Gaussian distribution
is maintained as much as possible. In contrast, the maximum correntropy-based nonlinear unscented
Kalman filter (MCCUKF) derived in this paper utilizes UT to obtain the prediction state estimates,
and the measurement information is reformulated using the nonlinear regression model under MCC,
considering the covariance matrix. Subsequently, the filter states and covariance matrix are obtained
through UT applied to the measurement equations. The paper presents an advanced fusion localization
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method for INS and UWB, combining EKF and MCCUKF for enhanced robustness in complex
environments, unlike previous studies using single or linear filters. A new clustering algorithm is also
introduced to reduce UWB’s non-line-of-sight ranging errors.

The paper presents the following contributions:

1) We proposed a new clustering algorithm: k-medoid clustering based on bisection k means
to preprocess UWB data and remove outliers caused by ranging errors or noise interference,
making the positioning results more accurate.

2) Applying the unscented Kalman filter based on the maximum correntropy criterion to indoor
positioning to complete the fusion of ultra-wideband and inertial Navigation.

3) A dual filtering algorithm based on maximum correntropy unscented Kalman filter and
extended Kalman filter is proposed to loosely couple the localization results of INS and UWB
while achieving more accurate and stable indoor localization.

The subsequent sections of the paper are structured as follows. In the next section, we present
the work on the localization algorithm. Section 3 describes the proposed localization and clustering
algorithms and derives the numerical expressions for the MCCUKF localization algorithm. Section 4
compares and analyzes the simulation results of various algorithms and the experiment result. Finally,
Section 5 gives conclusions and an outlook for future research.

2 Related Work

Table 1 summarizes related works with different fusion types of indoor localization.

Table 1: Summary of related works based on indoor localization

Source Objective Advantages

Cho et al. [5] Uses the maximum correntropy
criterion (MCC) to improve the
performance of UKF in the
presence of non-Gaussian,
heavy-tailed impulsive noises.

Excelling in performance and
robustness in non-Gaussian,
non-zero mean noise scenarios.

Bu et al. [6] Proposed an INS/UWB integration
using robust unbiased finite impulse
response (UFIR) filters for
reconciling INS and UWB
positional measurements.

Offers enhanced accuracy,
robustness against measurement
errors, real-time positional updates
and improved navigation in complex
areas.

Zeng et al. [7] Apply EKF to integrate IMU and
UWB and the channel impulses
(CIRS) of UWB are utilized for
NLOS detection in practical field
tests.

EKF allows for real-time data
fusion and processing, critical for
dynamic applications like navigation
and tracking.

(Continued)
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Table 1 (continued)

Source Objective Advantages

Zhao et al. [8] A robust stabilized iterative
maximum correntropy unscented
Kalman filter is brought up by
directly utilizing nonlinear
measurement functions and
numerical stability methods.

When the noise is non-Gaussian, the
algorithm demonstrates better
localization accuracy and
robustness.

Hafez et al. [9] Proposed an adaptive variational
bayesian maximum correntropy
kalman filter (VBMCCKF)
algorithm to achieve highly accurate
SOC estimation.

Proposes a method for estimating
battery state-of-charge that
compensates for noisy data and
parameter uncertainties to enhance
accuracy.

Liu et al. [10] Introduced the variable center
maximum correntropy criterion
(MCC-VC) into the kernel space
and developed the kernel recursive
variable center maximum
correntropy (KRMCVC) algorithm.

The KRMCVC merges MCC-VC
and KRMC features, excelling in
performance and robustness in
non-Gaussian, non-zero mean noise
scenarios.

Wang et al. [11] Proposed a novel indoor fingerprint
recognition system utilizing channel
state information (CSI), employing
deep learning techniques, as feature
values for localization.

Leverages CSI data and deep
learning for robust, accurate indoor
localization through advanced
feature extraction and pattern
recognition.

Target tracking and localization are necessary in the fields of satellite network orbiting and
autonomous Navigation, network communication, mobile position estimation, and wireless sensor
network motion target tracking [12]. The loose coupling method is relatively straightforward and
uncomplicated. On the contrary, although tight coupling has higher positioning accuracy, it requires
more algorithms and computational resources, and the time synchronization requirement between
INS and UWB is relatively high, which needs to ensure that the data acquisition and processing time
of both are consistent. Tight coupling has higher positioning accuracy compared to loose coupling,
but there are still difficulties in practical realization. In [13], the authors proposed a Fixed Lag
Extended Finite Impulse Response Smoothing (FEFIRS) algorithm to integrate the INS and UWB
data tightly. Most classical filtering theories, such as least squares filtering, assume that Gaussianity is
its underlying distribution [3]. The authors of [14] first proposed a multi-hypothesis starting location
discrimination method based on observability analysis, which assists in attaining precise starting
points. By suppressing the severe linearization loss in conventional EKFs, antics-EKF helps to improve
ballistic tracking accuracy. LS-SVM-assisted UFIR filters were proposed in [15]. The authors in
[16] transformed the RWSL problem into a nonconvex optimization problem without the need for
statistical NLOS errors and path states. A hybrid skeleton-based wireless localization and placement
technology of reference nodes, known as integrated wireless location, was put forward by [17].
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Compared with RSSI, channel status information (CSI) can effectively avoid the adverse effect
of the multipath effect on the localization results. Therefore, the value of CSI is used as the feature
value of localization, the location fingerprint database of Radio Map is established, and the weighted
proximity algorithm matches the recent fingerprint database data of KNN to estimate the location of
the localization point. Reference [18] proposed a Gramer-Rao lower bound (CRLB) approach based
on CSI localization. Reference [19] identified the fundamental differences in the physical layer between
Bluetooth Low Energy (BLE) BLE and Wi-FI, and proposes the Bloc system, which combines novel,
BLE-compatible algorithms to customer service the challenges of extending CSI localization to BLE.
In [20], the authors put forward a new deep learning-based approach for indoor vehicle localization
(Deep VIP) using the smartphone’s built-in sensors for indoor vehicle localization. The authors in
[21] introduced a novel method for indoor localization by integrating dictionary learning techniques.
This framework was further enhanced with a Hidden Markov-based tracking algorithm, elevating the
precision of the solution.

In recent research, numerous scholars have incorporated the concept of correntropy into the
field of indoor localization. The maximum correntropy principle argues that in the absence of a
priori knowledge, we should choose the probability distribution with maximum uncertainty. In indoor
localization, the maximum correntropy criterion can be employed to estimate the uncertainty of
the location and incorporate it into the design of the filter. Reference [22] introduced a method
for automatically selecting regularization parameters in the maximum correntropy criterion (MCC)
by incorporating a general convex regularization penalty term in the situation where pre-existing
knowledge, such as state constraints, is available. In [23], the authors proposed a novel approach
by combining the maximum correntropy criterion Kalman filter (MCC-KF) with the estimation
projection method. In [24], an extended kernel recursive maximum correntropy adaptive filtering
algorithm was put forward to strengthen resistance to interference of the system to non-Gaussian
noise. The authors in [25] proposed an improved K-medoids clustering algorithm which preserves the
computational efficiency and simplicity of the simple and fast K-medoids algorithm while improving
its clustering performance. In [26], the authors proposed a loosely coupled fusion of INS and UWB
based on generalized probabilistic data association (GPDA) with a modified verification gate (MVG)
based on conventional GPDA.

3 Proposed Algorithm

The intention of this paper is to accommodate a loosely coupled integrated high-accuracy
localization system for INS and UWB in the indoor environment. Generally, the inertial navigation
system mounts the inertial element on the mobile node (MN). As the node moves, its angular
velocity changes constantly. The inertial element’s gyroscope is capable of measuring the MN’s angular
momentum. By applying knowledge of dynamics, this data can be used to determine the heading
angle and attitude of the MN during movement. Additionally, the accelerometer can measure the
acceleration of MN through primary and secondary integration over time. One can obtain the velocity
and position information of the MN during its motion. For each UWB subsystem, the distance
connecting MN and BS is measured using the time-of-arrival (TOA) technique. This distance data is
then preprocessed using the k-medoid clustering method based on bisection k, which means discarding
the outliers with large errors and attenuating the ramification of NLOS on the positioning validity.
Afterward, the UWB position estimation is obtained by utilizing the trilateral measurement method.
Finally, the dual filtering algorithms, namely the extended Kalman filter (EKF) and the maximum
correntropy-based unscented Kalman filter (MCCUKF), are employed to fuse INS and UWB data.
The overall framework is portrayed in Fig. 1.
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Figure 1: The flowchart of recommended algorithm

3.1 INS Navigation
INS is an environmentally independent navigation technique. In INS, the coordinate system for

attitude detection is commonly used as a carrier coordinate system and navigation coordinate system.
In the theory of rigid body fixed point rotation, the attitude modes describing the kinematic coordinate
system are Euler angles, quaternions, and directional cosines. The inertial measurement unit (IMU)
collects acceleration and angular velocity data in three axes through the accelerometer and gyroscope
built into the INS, respectively. It should be emphasized that the acceleration data is the information
in connection with the carrier’s coordinate system. Therefore, to accurately determine the position and
velocity of the Mobile Node (MN), it is essential to transform the acceleration data into information
applicable to the navigational coordinate system. Angular velocity information is typically used to
update the attitude of the Mobile Node (MN) and thus does not require conversion between coordinate
systems. Euler angles are used to provide information about the MN’s orientation. ε = [

ϕ θ φ
]T

,

ϕ is roll, θ is pitch, and φ is yaw. ν = [
νn νe νd

]T
is the velocity vector and the position vector is

P = [pn pe pd

]T
. n, e, d denote the east, north, and down directions, respectively. From the knowledge

of the dynamics of the robotic arm, the state transfer equation of the robotic arm was obtained, and
from the accelerometer and gyroscope measurements, the attitude, velocity and position information
of the robotic arm was estimated, the state vectors are as stated below:

xτ = [εT vT pT bT
w bT

a

]T
(1)
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where, bT
w signifies the gyroscope bias and bT

a signifies the accelerometer bias. The motion model of
INS is presented below:

xτ = [εT vT pT bT
ω

bT
A

]T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

qT ⊗ (ωT − bT
ω

)
Cn

b

(
AT − bT

A

)+ gT

vT

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

where, q is the quaternion form of the attitude information of the mobile node, ⊗ is the quaternion
product, Cn

b is the directional cosine matrix, ω and A are the gyroscope and accelerometer measure-
ments, respectively, and g is the gravitational acceleration, the error state model of the MN is

	xτ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

	εT

	vT

	pT

	bT
ω

	bT
A

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡⎢⎢⎢⎢⎢⎢⎣

− [ωT − bT
ω

]
× 	εT − ωω

−Cn
b

[
AT − bT

A

]
× 	εT − Cn

b	bT
ω

	vT

ωω

aω

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

where, 	xτ is the error state vector, 	ε represents the error in attitude, 	v represents the error in
velocity, 	p represents the error in position, respectively. 	bω, 	bA are the errors of the gyroscope
and accelerometer, [·]× is the skew symmetry operator, ωω represents the stochastic disturbance of
the gyroscope , Aω represents the stochastic disturbance of the accelerometer. The error state vector
corrects the state vector through feedback, as shown in the flowchart in Fig. 1.

3.2 UWB Navigation
3.2.1 Signal Model

The available UWB ranging models are Received Signal Strength (RSS), Time of Arrival/Time
Difference of Arrival/Round Trip Time of Flight (TOA/TDOA/RTOF), and Phase Difference of
Arrival (PDOA). In this paper, the Time of Arrival (TOA) is used for UWB distance measurement.
Assuming that the number of base stations involved in localization is M and the coordinates are j = 1,
2, . . . , M, the base station receives signals from the mobile node, the TOA is modeled as follows:

dj (τ ) =
{

dtrue
j (τ ) + Nτ los condition

dtrue
j (τ ) + dnlos + Nτ nlos condition (4)

dtrue
j (τ ) = ∣∣∣∣PBS

j − PMN
τ

∣∣∣∣ (5)

where, dj (τ ) is the geographical separation between the j-th base station and the mobile node at the τ

instance. dtrue
j (τ ) is the precise distance between j-th base station and the mobile node at τ instance. Nτ

represents the LOS measurement error which modeled as the Gaussian white noise whose mean value
is zero and the standard deviation is σ 2

g , dnlos represents the error caused by NLOS transmission which
modeled as a gamma distribution, as shown in (6).

f (dNLOS) = α2 exp (−α2dNLOS)
(α2dNLOS)

α1−1

� (α1)
(6)
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where α1 is the shape parameter, α2 is the scale parameter, PMN
τ

= [x̂MN
τ

ŷMN
τ

ẑMN
τ

]
is the mobile node’s

coordinate. So, the dNLOS’s means value and dNLOS’s standard deviation is α1/α2
,α1/α2

2
, respectively.

3.2.2 K-Medoid Based on Bisection K-Means

The distance measurements of UWB contain NLOS errors and measurement errors, which can
cause serious errors in the localization results if this result is directly used for subsequent localization.
It is imperative to mitigate the impact of NLOS on the localization results following the distance
measurement. This paper introduces a novel algorithm for NLOS suppression to preprocess the
obtained distance values, replacing some of the measurement values containing NLOS errors with
those not interfered with by NLOS. In the k-means algorithm, we repeatedly select the cluster’s mean
as the new center and continue iterating until the cluster’s objects’ distribution remains unchanged. In
contrast, the k-medoid algorithm selects the points in the sample as the clustering center each time.
This paper’s objective is to enhance the precision and stability of clustering outcomes by presenting
a k-medoid clustering approach that utilizes bisection k-means. The method first performs bisection
k-mean clustering on the ranging values, takes the clustering result of the bisection k-mean as a known
point, then calculates the distance from this known point to each point in the sample, and selects the
sample point closest to the known point as the initial clustering center. By adopting this approach,
we can enhance the accuracy of selecting the initial cluster center and thus improve the quality of the
clustering results.

To implement bisection k-medoid clustering on the data, we set the number of clusters k to 4.
Select the two clusters with the smallest sum of squared errors (SSE) and compute the centers of the
clusters. It is important to note that in k-medoid clustering, the center of mass for each cluster must
be an actual data point, and these initial centers are chosen randomly. However, this random selection
can lead to instability and the problem of local optima in the k-medoid algorithm. To address this, our
paper introduces an algorithm for selecting the k-medoid cluster centers, with the process outlined as
follows:

Step 1: At the τ moment, record the L distance measurement values including both LOS
measurement values and NLOS measurement values between the j-th base station and the mobile
node as

Dj = [dBS_MN
j,1 (τ ) dBS_MN

j,2 (τ ) · · · dBS_MN
j,L (τ )

]
(7)

Step 2: The L measurements are grouped into a single cluster, which is then divided into two sub-
clusters, after which the cluster Vi with the largest sum of squared errors (SSE) is selected, and the
cluster is binary clustering with the underlying k-means. This process of division is continued until the
number of clusters reaches 4. The formula for the sum of squared errors (SSE) is given below:

SSE =
κ∑

i=1

∑
y∈Vi

dist (νi, y)
2 (8)

where, νi is the clustering center of cluster Vi, and y is the sample in the cluster.

Step 3: From the final four clusters, the two clusters V1 and V2 with the smallest SSE are selected,
and the centers μ1 and μ2 of the clusters are computed to obtain the clustering results with bisection
k-means: μ = [μ1 μ2

]
.

Step 4: Calculate the distance from μ = [μ1 μ2

]
to each sample data point and select the closest

sample point to μ as the original cluster centroid of k-medoid for k-medoid clustering. Note that the
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cluster grouping for k-medoid clustering is 2. The L distance values are classified into two categories,
LOS and NLOS. By k-medoid, to obtain the clustering center λ1 for LOS and the clustering center λ2

for NLOS. Measurements greater than λ2 are replaced with λ2, thereby attenuating the effect of NLOS.

The flowchart of our clustering algorithm is portrayed in Fig. 2.

Figure 2: The flowchart of k-medoid based on bisection k-means

3.2.3 UWB Location

Trilateral measurements and least squares are introduced to deduce the coordinates of MN. The
location coordinates of the base station and MN are PBS

j and PMN
τ

, respectively. Note that zBS
j = zτ ,

from Eq. (9), we get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
xBS

1 − x̂MN
τ

)2 + (yBS
1 − ŷMN

τ

)2 = D̂1 (τ )(
xBS

2 − x̂MN
τ

)2 + (yBS
2 − ŷMN

τ

)2 = D̂2 (τ )
...(

xBS
M − x̂MN

τ

)2 + (yBS
M − ŷMN

τ

)2 = D̂M (τ )

(9)

We represent the above equation using a linear matrix

�PMN = � (10)
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where, �, PMN and � are

� = 2

⎡⎢⎢⎢⎣
(xBS

1 − xBS
2 ), (yBS

1 − yBS
2 )

(xBS
1 − xBS

3 ), (yBS
1 − yBS

3 )
...

(xBS
1 − xBS

M ), (yBS
1 − yBS

M )

⎤⎥⎥⎥⎦ (11)

PMN =
[

x̂MN
τ

ŷMN
τ

]
(12)

� =

⎡⎢⎢⎢⎢⎢⎢⎣
D̂2 (τ )

2 − D̂1 (τ )
2 −
(

xBS2

2 + yBS2

2

)
+
(

xBS2

1 + yBS2

1

)
D̂3 (τ )

2 − D̂1 (τ )
2 −
(

xBS2

3 + yBS2

3

)
+
(

xBS2

1 + yBS2

1

)
...

D̂M (τ )
2 − D̂1 (τ )

2 −
(

xBS2

M + yBS2

M

)
+
(

xBS2

1 + yBS2

1

)

⎤⎥⎥⎥⎥⎥⎥⎦ (13)

Finally, the position of MN at moment n is estimated as[
x̂MN

τ
, ŷMN

τ

]T = (�T�
)−1

�T� (14)

3.3 Maximum Correntropy Criterion
3.3.1 Introduction of MCC

Correntropy, a novel concept, is employed to evaluate the overall similarity between two random
variables. Considering two specified random variables ϒ1

var
1 , ϒ var

2 ∈ R, whose joint density function is
Fϒvar

1 ,ϒvar
2

(
yvar

1 , yvar
2

)
, and whose correntropy is defined as

V(ϒ var

1
, ϒ var

1 ) = E[κσ (ϒ
var

1
, ϒ var

2
)] =

∫ ∫
κσ (yvar

1
, yvar

2
)dFϒvar

1 ,ϒvar
2

(yvar

1
, yvar

2
) (15)

where, E [·] is the expectation operator and κ (·) denotes a shift-invariant kernel following the Mercer
condition. The main role of the kernel function is to compute the inner product of two input variables
after dimensional transformation. Therefore, any kernel function can be rewritten as κσ

(
yvar

1 , yvar
2

) =〈
�
(
yvar

1

)
, �
(
yvar

2

)〉
. Here, 〈·〉 denotes the inner product is computed. �(x) is a mapping function used

to map the data to different dimensions. Each kernel function corresponds to a unique mapping
function. In this research paper, we opt for the widely used Gaussian kernel as the kernel function.
The mathematical expression for the Gaussian kernel is as follows:

κσ

(
yvar

1 , yvar

2

)
= Gσ (�) = exp

(
− �2

2σ 2

)
(16)

where, � = yvar
1 − yvar

2 , and σ > 0 is the kernel bandwidth which is a very important design parameter
in MCC.

Correntropy can be gauged by utilizing the sample mean estimator at N specified points.

V̂
(
ϒ var

1
, ϒ var

2

)
= 1

N

N∑
i=1

Gσ (� (i)) (17)
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where, � (i) = yvar
1 (i) − yvar

2 (i), with
{
yvar

1 (i) , yvar
2 (i)

}N

i=1
denotes the sample drawn from the joint

density function Fϒvar
1 ,ϒvar

2

(
yvar

1
, yvar

2

)
. When we perform Taylor series expansion on the Gaussian kernel

function.

V
(
ϒ var

1 , ϒ var
2

) =
∞∑

n=0

(−1)n

2nσ 2nn!
E
[(

ϒ var
1 − ϒ var

2

)2n
]

(18)

The concept of correntropy becomes apparent. Correntropy is defined as the summation of
weighted even-order moments of the error variable. Additionally, the kernel bandwidth plays a
significant role as a parameter that determines the importance of statistical instances of order two and
higher. It is important to note that when the kernel bandwidth greatly surpasses the data’s dynamic
range. Considering a time series of residuals {� (i)}N

i=1, the cost function of the MCC can be portrayed
as mentioned below:

JMCC = 1
N

N∑
i=1

Gσ (� (i)) (19)

3.3.2 Comparison to Minimum Mean Square Error (MSE) Criterion

A comparison of the formulas for the minimum mean square error criterion and the maximum
correntropy criterion is as follows:

MSE
(
ϒ var

1 , ϒ var
2

) = E
[(

ϒ var
1 − ϒ var

2

)2
]

=
∫ ∫ (

yvar
1 − yvar

2

)2
dFϒvar

1 ,ϒvar
2

(
yvar

1 , yvar
2

)
(20)

V(ϒ var
1 , ϒ var

2 ) = E[κσ (ϒ
var
1 , ϒ var

2 )] =
∫ ∫

κσ (yvar
1 , yvar

2 )dFϒvar
1 ,ϒvar

2
(yvar

1 , yvar
2 ) (21)

It is evident that the minimum mean square error criterion is a quadratic function in random
space in the joint probability density along the yvar

1 = yvar
2 perimeter, i.e., the integral of the error.

However, there are certain problems with utilizing a quadratic measure of difference. If some of the
samples between the random variables are farther away from yvar

1 = yvar
2 , then one will amplify this

error in a quadratic fashion, making the effect of these samples far greater than the effect of the other
samples, making the gap between the two samples wider and wider. The Gaussian correntropy limits
the infinite expansion of this error since the Gaussian function has a value range of (0, 1], so the effect
on individual samples is limited to this interval. The kernel function is the form of its limitation. To
a certain extent, the correntropy of the differences in the individual samples will be reflected more
evenly.

3.4 MCCUKF-Based INS/UWB Integration
3.4.1 EKF Prediction

Navigation information from INS and UWB is fused by quadratic filtering based on EKF and
MCCUKF. Specifically, the state transfer equation and observation equation of MCCUKF are first
constructed based on the output of EKF. Then, the nonlinear function is mapped onto a Gaussian
distribution using the traceless transform, and the state estimation and update are performed through
the prediction and update steps. Finally, more accurate position estimation results are obtained by
MCCUKF fusion. The error state prediction and prediction covariance are given below:

	x̂ekf
τ |τ−1 = ψτ |τ−1

(
	x̂ekf

τ |τ−1, uτ−1

)+ ξ , ξ ∼ N
(

0,
�

Q
)

(22)
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Pekf
τ |τ−1 = ψτ |τ−1Pekf

τ−1|τ−1ψ
T
τ |τ−1 + �

Qτ |τ−1 (23)
�

Q = diag
[
N2

g N2
f N2

gδb N2
f δb

]
(24)

where, ψτ |τ−1 = I + Fτ |τ−1δt is the discrete-time state transfer matrix, and uτ−1 =
(
ωT

τ−1
, AT

τ−1

)T

is the

input vector of the system. ξ is the Gaussian white noise of the system with a covariance matrix of
�

Q. Ng and Nf is the random noise in gyroscopes and accelerometers, Ngδb and Nf δb is dynamic bias

in gyroscopes and accelerometers, respectively.
�

Qτ |τ−1 = �

G
�

Qτ−1|τ−1

�

G
T

δt, F is the continuous time state

transfer matrix shown in (25). δt is the sampling interval of IMU and
�

G is control matrix as formulated
in (26).

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cn
bτ |τ−1

[ωT
τ−1 − bT

ω
]× 0 0 Cn

b 0
Cn

bτ |τ−1
[AT

τ−1 − bT
A]× 0 0 0 −Cn

b

0 I3 0 0 0

0 0 0 − 1
�ω

0

0 0 0 0 − 1
�A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

G =

⎡⎢⎢⎢⎢⎣
Cn

bτ |τ−1
0 0 0

0 −Cn
bτ |τ−1

0 0
0 0 0 0
0 0 I3 0
0 0 0 I3

⎤⎥⎥⎥⎥⎦ (26)

where, Cn
bτ |τ−1

is the updated DCM calculated from the latest updated attitude. �ω and �A are
correlation times of the gyroscope and accelerometer. The given observation model is expressed as
follows:

zτ = �

H	x̂ekf
τ |τ−1 + r, r ∼ N

(
0,

�

R
)

(27)

γτ = zτ − �

H	x̂ekf
τ |τ−1 (28)

Sτ = �

H	x̂ekf
τ |τ−1

�

H
T + �

R (29)

where, zτ is the observation vector at the moment τ ,
�

H is the observation matrix given by (30), r is the

observation error with the covariance matrix of
�

R, Sτ is the covariance matrix of innovation.
�

H = [0 0 I3 0 0
]

(30)

3.4.2 EKF Update

The Kalman gain is giving by

Kekf
τ

= Pekf
τ |τ−1

�

H
T

(Sτ )
−1 (31)
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The error state is updated as below:

	x̂ekf
τ |τ = Kekf

τ
γτ

= Kekf
τ

(
zτ − �

H	x̂ekf
τ |τ−1

)
(32)

Covariance update:

Pekf
τ |τ =

(
I − Kekf

τ

�

H
)

Pekf
τ |τ−1 (33)

3.4.3 MCCUKF Prediction

The error equations of state and observation equations for discrete-time nonlinear systems are

	x̂τ = f
(
τ , 	x̂τ−1

)+ ντ−1 (34)

zτ = h (τ , 	xτ ) + mτ (35)

where, 	x̂τ ∈ R
n1 stands for the n1-dimensional system’s error state vector at τ moment. zτ ∈ R

n2 stands
for the measurement vector with n2 dimensions. f (x) and h(x) are system function and measurement
function. Process noise ντ−1 and measurement noise mτ are uncorrelated with each other. Both the
stochastic disturbance and measurement noise have zero mean and are characterized by their respective
covariance matrices.

ντ : E [ντ ] = 0, E [vτ−1vτ−1
T ] = Qτ−1

mτ : E [mτ = 0] , E [mτ mτ
T ] = Rτ

(36)

When performing MCCUKF prediction, the initial state is the output state of the first stage of
INS/UWB fusion using EKF, i.e., 	x̂0|0 = 	x̂ekf

τ |τ , and the starting covariance matrix is P0|0 = Pekf
0|0 ,

2L + 1 sigma points are then obtained by performing an unscented transformation on 	x̂τ−1|τ−1 and
Pτ−1|τ−1, which can be represented by

χ s
τ−1|τ−1 =

⎧⎪⎪⎨⎪⎪⎩
	x̂τ−1|τ−1 s = 0

	x̂τ−1|τ−1 + (√(L + λ) Pτ−1|τ−1

)
s

s = 1, 2, . . . , L

	x̂τ−1|τ−1 − (√(L + λ) Pτ−1|τ−1

)
s

s = L + 1, . . . , 2L

(37)

where, L denotes the dimension of the state vector, λ = α2(L+ϕ)−L is scale correction factor, where,
α determines the degree of diffusion of the sigma point, in general, 0 < α ≤ 1, ϕ is a scaling factor
usually set to 3 − L. The constant λ determines the distribution of sigma points around 	x̂τ−1|τ−1.

Using the 2L+1 sigma above to obtain the priori error state and the priori state covariance matrix,
the following equations are obtained

	x̂τ |τ−1 =
2L∑
s=0

ws
mf
(
τ − 1, χ s

τ−1|τ−1

)
(38)

Pτ |τ−1 =
2L∑
s−0

ws
c

[
f
(
τ − 1, χ s

τ−1|τ−1

)− 	x̂τ |τ−1

]× [f (τ − 1, χ s
τ−1|τ−1

)− 	x̂τ |τ−1

]T + Qτ (39)
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in which the associated scaling factors of the state and covariance matrix are

w0
m = λ

(L + λ)
,

w0
c = λ

(L + λ)
,

ws
m = ws

c = 1
2(L + λ)

, s = 1, . . . , 2L.

(40)

where, β is associated with the prior knowledge of the 	x̂τ distribution (β = 2 is considered to be the
most optimal).

3.4.4 MCCUKF Measurement Update

A collection of sigma points is derived from the priori error state prediction mean 	x̂τ |τ−1 and
covariance matrix Pτ |τ−1

χ s
τ |τ−1 =

⎧⎪⎪⎨⎪⎪⎩
	x̂τ |τ−1 s = 0

	x̂τ |τ−1 + (√(L + λ) Pτ |τ−1

)
s

s = 1, 2, . . . , L

	x̂τ |τ−1 − (√(L + λ) Pτ |τ−1

)
s

s = L + 1, . . . , 2L

(41)

Afterwards, the forecasted measurement mean is determined as shown below:

ẑτ =
2L∑
s=0

ωs
mh
(
τ , χ s

τ |τ−1

)
, s = 0, . . . , 2L (42)

Furthermore, the state measurement cross-covariance matrix is as follows:

Pxz =
2L∑
s=0

ωs
c

[
χ s

τ |τ−1 − 	x̂τ |τ−1

] [
h
(
τ , χ s

τ |τ−1

)− ẑτ

]T
(43)

Subsequently, we utilize MCC to execute the observation update. Initially, we denote the priori
estimation error of the state as

ζ (	xτ ) = 	x̂τ |τ−1 − 	xτ (44)

Combining Eqs. (34), (35) and (44), we obtained the following statistical nonlinear regression
model.[

	x̂τ |τ−1

zτ

]
=
[

	xτ

h(τ , 	xτ )

]
+ ξ̃τ (45)

where, ξ̃τ is

ξ̃τ =
[
ζ (	xτ )

mτ

]
(46)
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with

�τ = E
[̃
ξτ ξ̃

T
τ

]
=
[

Pτ |τ−1 0

0 R(τn)

]

=
[

BP
τ |τ−1(B

P
τ |τ−1)

T 0

0 Br
τ
(Br

τ
)T

]
= Bτ BT

τ

(47)

where, Bτ can be obtained by the Cholesky decomposition of �τ , Left-multiplying B−1
τ

on both sides
of the Eq. (45), we get the transformed statistical regression model.

Dτ = g (τ , 	xτ ) + eτ (48)

where,

Dτ = B−1
τ

[
	x̂τ |τ−1

zτ

]
,

g (τ , 	xτ ) = B−1
τ

[
	xτ

h (τ , 	xτ )

]
,

eτ = B−1
τ

ξ̃τ .

(49)

We proceed by formulating a cost function utilizing MCC.

JM (	xτ ) =
M∑

s=1

Gσ

(
ds

τ
− gs (τ , 	xτ )

)
(50)

where, ds
τ

is the s-th element of Dτ , gs (τ , 	xτ ) is the s-th row of g (τ , 	xτ ), and M = n1 + n2 is the
dimension of Dτ . Based on the nature of the correlation entropy, the optimal approximation of the
state can be obtained when the function JM (·) is taken to be the maximum

	x̂τ = arg max
	xτ

JM (	xτ ) = arg max
	xτ

M∑
s=1

Gσ

(
ee

τ

)
(51)

where, ee
τ

is the s-th element of eτ given as follows:

es
τ
= ds

τ
− gs (τ , 	xτ ) (52)

The optimal solution of 	xτ is obtained by taking the partial derivative of JM (	xτ ) with respect
to 	xτ and making it zero:

∂JM (	xτ )

∂	xτ

= 0 (53)

This can alternatively be stated below:
M∑

s=1

ϕ
(
es

τ

) ∂es
τ

∂	xs
τ

= 0 (54)
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When 	xs
τ

is the i-th element of 	xτ , and ϕ(es
τ
) = Gσ (es

τ
) · es

τ
. Then, we define C (τ , s) = ϕ

(
es

τ

)
/es

τ

and then come up with the following formula:

C (τ , s) = Gσ

(
es

τ

)
(55)

The Eq. (54) can be further written in the form of a matrix as(
∂g(τ , 	xτ )

∂	xτ

)T

Cτ [Dτ − g (τ , 	x(τn)τ )] = 0 (56)

where, Cτ =
[

CP
τ

0
0 Cr

τ

]
, CP

τ(i) and Cr
τ(i) are calculated as shown below:

CP
τ(i) =

⎡⎢⎣G(e1
τ
) · · · 0

...
. . .

...
0 · · · G(en1

τ
)

⎤⎥⎦
Cr

τ(i) =
⎡⎢⎣G(en1+1

τ
) · · · 0

...
. . .

...
0 · · · G(en1+n2

τ
)

⎤⎥⎦
(57)

where, i represents the number of iterations.

Define �̃τ as the revised covariance, which can be depicted as

�̃τ = Bτ C−1
τ

BT
τ

(58)

Next, write �̃τ in two portions so that

�̃τ =
[
�̃P

τ
0

0 �̃r
τ

]
(59)

The actual state 	xτ is not known. we set ζ (	xτ ) = 	xτ − 	x̂τ |τ−1 = 0. In this way, it is easy to
derive

�̃P
τ

= BP
τ |τ−1 ∗ I ∗ (BP

τ |τ−1

)T

= Pτ |τ−1

(60)

The revised measurement covariance is

Rτ = �̃r
τ

(61)

The state equation and measurement equation can be further written as

Status update:

	x̂τ |τ = 	x̂τ |τ−1 + Kτ

(
zτ − ẑτ

)
(62)

Covariance update:

Pτ |τ = Pτ |τ−1 − Kτ PzzKτ

T (63)
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where,{
Kτ = PxzP−1

zz

Pτ |τ−1 = BP
τ |τ−1

(
CP

τ

)−1 (
BP

τ |τ−1

)−1
(64)

The autocorrelation matrix

Pzz =
2L∑
s=0

ws
c

[
h
(
τ , χ s

τ |τ−1

)− ẑτ

] [
h
(
τ , χ s

τ |τ−1

)− ẑτ

]T + Rτ (65)

As a result, the nominal state of the MT is calibrated as follows and the final state estimate is
produced:

x̂τ |τ = x̂τ − 	x̂τ |τ (66)

4 Simulation and Experiment

In this chapter, the effectiveness of the suggested solution is evaluated by simulation results.

4.1 Simulation
In the conducted experiment, five beacon nodes are randomly arranged in the scene, using NaveGo

as a simulation tool. The target node follows a predetermined trajectory in the simulation scene.
The range of the simulation scene is 60 m × 60 m. Since only the localization accuracy of the two-
dimensional plane is considered in the experiments in this paper, the z-coordinate is set as a constant
of 2 m in the simulation. This simulation modeling experiment ignores the positioning error in the
vertical direction and considers only the planar coordinates. The simulation study was conducted
to investigate the non-line-of-sight errors obeying the gamma, Gaussian and uniform distributions,
respectively. EKF [27], Joint-state estimate Particle Filter (JSEPF-EKF) [28], PF [29] and Classical-
UKF [30] are used as comparative algorithms to validate the effectiveness of the suggested solution,
and Cumulative Error Distribution Function (CDF) and Root Mean Square Error (RMSE) are used
as the criteria for evaluating the effectiveness of different algorithms.

RMSE =
√√√√ 1

T · tm

tm∑
i=1

T∑
τ=1

∣∣∣∣xτ (7 : 9) − x̂τ |τ (7 : 9)
∣∣∣∣2 (67)

where, T = 16282 is the total number of samples, tm is the number of Monte Carlo runs. xτ (7 : 9) is the
actual coordinates of the mobile node at the τ -th simulation, x̂τ |τ (7 : 9) is the predicted coordinates
of the mobile node obtained by the proposed algorithm of this paper at the τ -th simulation. The
simulation outcomes were obtained through over 1000 iterations of the Monte Carlo method. The
filter parameter settings and specifications for IMU and UWB is depicted in Table 2.

Table 2: Simulation parameter of INS

Subsystems Parameter values

IMU Gyroscope Random walk (ARW): 0.125◦ deg /
√

h
Bias: 0.1◦/s
Correlation time: 100 s
Frequency: 100 Hz

(Continued)
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Table 2 (continued)

Subsystems Parameter values

Accelerometer Random Walk (ARW): 0.02 m/
(

s · √
h
)

Bias: 6 mg
Correlation time: 100 s
Frequency: 100 Hz

UWB Anchor
nodes

M: 5

Frequency f : 5 Hz

4.1.1 Gamma Distribution

We make the assumption that the measurement noise’s distribution is Gaussian, and when the non-
line-of-sight error obeys a gamma distribution, the components for the simulation are set as presented
in Table 3.

Table 3: Component of Gamma distribution

Component Notation Default values

Probability of NLOS noise PNLOS 0.5
LOS noise N

(
0, (σi)

2
)

N
(
0, (0.1)

2
)

Probability density function of
NLOS noise

� (α1, α2) � (18, 6)

The NLOS mean μ 4
The NLOS standard deviation σ 0.5

The following simulation results are analyzed:

By referring to Fig. 3, it can be seen that when the probability of NLOS error increases from 0.1 to
0.8, the RMSE of EKF, JSEPF-EKF and PR-PF increases expeditiously with the gradual increase of
NLOS probability, and the average accuracy of localization are 1.818, 1.762 and 2.207 m, respectively.
Whereas the proposed solution’s average localization precision is 0.821 m, the average localization
precision of Classical-UKF is 0.8093 m. The average localization precision of the proposed solution
is improved by 54.84%, 53.41% and 62.80% compared to EKF, JSEPF-EKF and PR-PF, respectively.
When the probability of non-line-of-sight error is between 0.3 and 0.7, the localization accuracy of
Classical-UKF is higher than that of MCCUKF.

Fig. 4 shows that the RMSE of EKF, JSEPF-EKF, Classical-UKF and PR-PF increases signif-
icantly when NLOS error’s mean value increases gradually from 1 to 6, while the proposed solution
increases slowly and shows a relatively smooth effectiveness. The mean localization inaccuracies of the
EKF, JSEPF-EKF, Classical-UKF and PR-PF are 1.771, 1.812, 1.157 and 2.1 m, respectively, whereas
that of the proposed solution is 0.5746 m. In comparison to the other three comparative algorithms,
the proposed solution demonstrates noteworthy progress in accuracy, with enhancements of 67.56%,
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68.28%, 50.33% and 72.64% compared to EKF, JSEPF-EKF, Classical-UKF and PR-PF, respectively.
It is evident that the proposed solution manifests superior localization accuracy and robustness when
compared to the other three algorithms.

Figure 3: The value of the corresponding RMSE changes with the variation of NLOS error’s
probability

Figure 4: The value of the corresponding RMSE changes with the variation of NLOS error’s mean
value

As depicted in Fig. 5, with the increasing standard deviation of NLOS, the RMSE of EKF, JSEPF-
EKF, PR-PF and Classical-UKF shows a slow increasing trend, with average inaccuracies of 1.996,
1.929, 2.31 and 0.8157 m, respectively. The RMSE of the proposed solution shows a slow decreasing
trend with little change and the average error is 0.541 m. The positioning performance of MCCUKF
is superior to that of the Classic-UKF.

Fig. 6 shows that the average inaccuracies of all algorithms have several distinct peaks. This is
because the rotation occurs during the movement of the MN when there is an abrupt change in
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the motion state of the MN. The average inaccuracies of EKF, JSEPF-EKF, PR-PF and Classical-
UKF are 1.937, 1.829, 2.311 and 1.206 m, respectively. In contrast, the proposed solution’s average
inaccuracy is 0.593 m, The positioning error is 1.344, 1.236, 1.718 and 0.613 m lower than the four
comparative algorithms, and the precision is improved by 69.39%, 67.58%, 74.34% and 49.60%,
respectively.

Figure 5: The value of the corresponding RMSE changes with the variation of NLOS error’s standard
deviation

Figure 6: The average RMSE over time

Fig. 7 depicts the cumulative probability of the proposed algorithm reaches 1 very quickly, and
the localization inaccuracies are distributed within 0.5 m from the target point.
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Figure 7: The relationship between the CDF and the location error

4.1.2 Gaussian Distribution

When the measurement noise and the NLOS error both follow a Gaussian distribution, the
corresponding parameters are set, as portrayed in Table 4.

Table 4: Component of Gaussian distribution

Component Notation Default values

Probability of NLOS occurrence PNLOS 0.5
LOS noise N

(
0, (σi)

2
)

N
(
0, (0.1)

2
)

The NLOS error N
(
μnlos, σ 2

nlos

)
N
(
5, 62

)
Fig. 8 shows that the larger the NLOS error probability is, the larger the localization inaccuracy

is and the smaller the accuracy is. The mean localization inaccuracies of EKF, JSEPF-EKF, PR-PF
and Classical-UKF are 3.294, 2.957, 3.214 and 1.232 m, respectively. The accuracies of the proposed
solution are improved by 81.41%, 79.29%, 80.94% and 50.28%, respectively, as compared to EKF,
JSEPF-EKF, PR-PF and Classical-UKF.

Fig. 9 shows that the RMSE of the proposed solution stays around 0.5 m, which has smaller and
more stable localization inaccuracy. The EKF, JSEPF-EKF, PR-PF and Classical-UKF algorithms
exhibit average localization errors of 3.678, 3.597, 3.627 and 0.6798 m, respectively. In contrast, the
proposed solution achieves an average localization accuracy with an inaccuracy rate of 0.487 m.
Comparing it with the other four algorithms, the proposed solution showcases accuracy improvements
of 86.76%, 86.43%, 86.57% and 28.36%, respectively.

In Fig. 10, when NLOS error’s the mean value is between 3 and 9, the RMSE of the proposed
solution is around 0.5 m, and the accuracy is improved by 87.12%, 87.10%, 87.37% and 28.11%
compared to EKF, JSEPF-EKF, PRPF and Classical-UKF, respectively. Obviously, the solution
presented in this paper demonstrates superior localization precision and robustness.
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Figure 8: The value of the corresponding RMSE changes with the variation of NLOS error’s
probability

Figure 9: The value of the corresponding RMSE changes with the variation of NLOS error’s standard
deviation



CMES, 2024, vol.139, no.3 2695

Figure 10: The value of the corresponding RMSE changes with the variation of NLOS error’s mean
value

The CDF of the location error was depicted in Fig. 11. The proposed solution achieves a
localization inaccuracy of approximately 0.9 m, surpassing the other four algorithms in terms of its
significantly enhanced localization accuracy.

Figure 11: The relationship between the CDF and the location error

4.1.3 Uniform Distribution

Assuming that the LOS error follows a Gaussian distribution N
(
0, σ 2

G

)
and the NLOS error

follows a uniform distribution U (m, n), the conventional parameter settings are as portrayed in
Table 5.
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Table 5: Component of uniform distribution

Component Notation Default values

Probability of NLOS error Pnlos 5
LOS noise N

(
0, (σi)

2
)

N
(
0, (0.1)

2
)

The NLOS error U (m, n) U(0, 13)

In Fig. 12, the localization accuracy of all algorithms shows a decreasing trend with increasing
NLOS error probability. Compared to EKF, Classical-UKF, JSEPF-EKF and PRPF, the proposed
solution exhibits improvements in accuracy by 79.24%, 20.08%, 79.16% and 81.39%, respectively.
Besides, compared to the Classical-UKF, the MCCUKF has a slightly better positioning performance.

Figure 12: The value of the corresponding RMSE changes with the variation of NLOS error’s
probability

At higher NLOS probability, the localization error is also increasing. However, the solution
suggested can lower the impact of NLOS error on the localization effectiveness, so that the effec-
tiveness remains better under higher NLOS probability, which indicates that the proposed solution
demonstrates greater robustness and adaptability.

In Fig. 13, the RMSE of the EKF,JSEPF-EKF, PR-PF exhibits an increase as the NLOS standard
deviation increases. However, the RMSE of the algorithm presented in this paper remains relatively
stable around 0.5 m, with no notable changes. The proposed solution in this paper demonstrates
improved accuracy compared to EKF, JSEPF-EKF, and PR-PF, with enhancements of 84.89%,
84.59%, and 86.01%, respectively, while it improves 32.09% over the Classical-UKF. From the
simulation results in Fig. 13, it can be seen that the performance of UKF is improved by adding the
maximum correntropy criterion.

In Fig. 14, the CDF plot of the proposed solution shows a steep shape, which indicates that most of
the samples have a small localization error. This implies that the proposed algorithm exhibits enhanced
effectiveness in localization.
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Figure 13: The value of the corresponding RMSE changes with the variation of NLOS error’s standard
deviation

Figure 14: The relationship between the CDF and the localization error

4.2 Experiment
To verify the efficacy of the suggested solution in localization, we established an authentic

experimental setting within the library and the classroom. The distance separating the mobile node
from the base station is measured by the TOA-based ranging technique through UWB wireless
communication technology utilizing narrowband pulse transmission data characteristics. Considering
the requirements of low cost and high effectiveness. The INS sensor comprises a triaxial gyroscope and
a triaxial accelerometer, which can gauge the acceleration and angular velocity of the corresponding
axes. Figs. 15 and 16 show the UWB module and inertial navigation trolley. To handle the time
synchronization issue between the UWB module and the INS, the mobile node is prevented from
traveling on the inertial navigation trolley and synchronized with the trolley. As shown in Figs. 17,
18, 19a and 19b, the experimental scenarios are the library and the classroom. We arranged five base
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stations, and the trolley containing the mobile nodes traveled along a predetermined trajectory, whose
speed is 0.5 m/s at a uniform speed. The trajectory of the cart is represented by the red line and the
arrow is the direction of movement The frequency of UWB in the experiment is 5 Hz, and the number
of samples in the library and classroomis 294 and 322, respectively. The INS has a sampling frequency
of 50 Hz and the number of samples in library and classroom is 2946 and 3220, respectively. The initial
coordinates of the x-axis, y-axis and z-axis are set as 0.6, 0.6, and 0.2 m, correspondingly.

Figure 15: The UWB node

Figure 16: Inertial navigation trolley
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Figure 17: Experimental scenario (library)

Figure 18: Experimental scenario (classroom)

Figure 19: The experiment’s floor plan
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As depicted in Fig. 20, the suggested solution exhibits a significantly lower average localization
error compared to the four algorithms being compared. Specifically, Fig. 20a shows that in the library,
the average errors for EKF, JSEPF-EKF, Classical-UKF and PR-PF are recorded as 2.422, 2.199,
1.358 and 1.632, respectively, the proposed algorithm achieves an average error of 1.158. Fig. 20b
shows that in the classroom, the average errors for EKF, JSEPF-EKF, Classical-UKF and PR-PF
are recorded as 4.275, 4.683, 1.63 and 3.563, respectively, whereas the proposed algorithm achieves
an average error of only 1.006. The CDF in Fig. 21 also clearly depicts that the suggested solution
significantly outperforms the other comparative algorithms in terms of localization accuracy.

(a) (b)

Figure 20: Positioning deviations of different sampling point

Figure 21: The relationship between the CDF and the localization error, (a) is in the library, (b) is in
the classroom

5 Conclusion

In this research, a novel approach for enhancing the precision and reliability of indoor localization
is introduced. The proposed method combines maximum correntropy with unscented Kalman filtering
for inertial Navigation and an integrated ultra-wideband localization system. We first proposed a k-
medoid clustering algorithm based on bisection k-means to preprocess UWB data and remove outliers
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caused by ranging errors or noise interference. Then, the concept of maximum correntropy criterion
is implemented in the unscented Kalman filter, and the solutions of the inertial navigation system and
the ultra-wideband system are fused using a hybrid filter based on EKF and MCCUKF to derive
the ultimate state estimation of the target. The algorithm described in this paper exhibits enhanced
precision and robustness in localization. Although the proposed algorithm has good performance in
single-target localization, in multi-target localization, the performance of the algorithm is degraded
due to the interactions between targets. Future research will concentrate on assessing the algorithm’s
effectiveness in complex environments, such as multi-target tracking.
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