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ABSTRACT

The peridynamics (PD), as a promising nonlocal continuum mechanics theory, shines in solving discontinuous
problems. Up to now, various numerical methods, such as the peridynamic mesh-free particle method (PD-MPM),
peridynamic finite element method (PD-FEM), and peridynamic boundary element method (PD-BEM), have
been proposed. PD-BEM, in particular, outperforms other methods by eliminating spurious boundary softening,
efficiently handling infinite problems, and ensuring high computational accuracy. However, the existing PD-BEM
is constructed exclusively for bond-based peridynamics (BBPD) with fixed Poisson’s ratio, limiting its applicability
to crack propagation problems and scenarios involving infinite or semi-infinite problems. In this paper, we address
these limitations by introducing the boundary element method (BEM) for ordinary state-based peridynamics
(OSPD-BEM). Additionally, we present a crack propagation model embedded within the framework of OSPD-BEM
to simulate crack propagations. To validate the effectiveness of OSPD-BEM, we conduct four numerical examples:
deformation under uniaxial loading, crack initiation in a double-notched specimen, wedge-splitting test, and three-
point bending test. The results demonstrate the accuracy and efficiency of OSPD-BEM, highlighting its capability to
successfully eliminate spurious boundary softening phenomena under varying Poisson’s ratios. Moreover, OSPD-
BEM significantly reduces computational time and exhibits greater consistency with experimental results compared
to PD-MPM.
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1 Introduction

Peridynamics, as a nonlocal continuum mechanics theory, has garnered increasing attention
owing to its notable advantage in addressing discontinuous problems [1,2]. This advantage arises
from its unique approach of replacing spatial differential operators with integral operators in the
equilibrium equation. Over time, peridynamic theory has seen continuous development and improve-
ment, leading to the introduction of various theoretical models, e.g., the dual horizon peridynamics

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.046770
https://www.techscience.com/doi/10.32604/cmes.2024.046770
mailto:wanglj@buaa.edu.cn


2808 CMES, 2024, vol.139, no.3

[3,4], nonlocal operator methods [5], element-based peridynamic models [6,7], viscoelastic models [8],
and elastoplastic theories [9]. At the same time, a series of numerical approaches have emerged to
leverage the advantages of Peridynamics (PD) in addressing various issues, including discontinuous
problems [10,11], microscale problems [12,13] and multiscale problems [14–16]. The one gaining the
most attention is the Peridynamic Mesh-free Particle Method (PD-MPM), where the peridynamic
equilibrium equation is discretized directly in terms of timing and spacing [17]. Kilic et al. [18]
explored a collocation point method drawing support from the Gaussian integral formula to optimize
the nonlocal numerical integrals in the PD-MPM. Chen et al. [19] proposed the peridynamic finite
element method (PD-FEM), drawing support from the energy principle. Tian et al. [20] adopted a
central difference scheme for handling the PD equation. Liang et al. [21] put forward the bond-based
peridynamics (BBPD) boundary element method (BBPD-BEM).

Several coupled numerical methods have been proposed based on the fundamental numerical
approaches mentioned above. For example, to enhance computational efficiency, PD-MPM is coupled
with numerical methods of classical continuum mechanics [22–26]. These coupled methods essentially
integrate two types of continuum mechanical media: the PD medium and the classical continuum
medium. However, utilizing these coupled methods for investigating the responses of a single-phase
material may result in a mismatch between numerical models and the actual research project. To
address this issue, it is more advisable to couple different peridynamic numerical methods, such
as PD-MPM with PD-FEM or PD-BEM. Therefore, the advancement of fundamental methods,
including PD-MPM, PD-FEM, and PD-BEM, holds crucial importance for the practical applications
of peridynamics. It is worth clarifying the term “PD-BEM” to avoid misunderstandings. PD-BEM is
a numerical method constructed based on peridynamic theory, differing from numerical methods that
combine the classical local continuum theory’s Boundary Element Method (BEM) with the mesh-free
particle method based on peridynamic theory [25–28].

Our research is dedicated to PD-BEM, a focal point that offers distinct advantages. In comparison
to alternative numerical methods, BEM stands out for its efficiency enhancement achieved through
dimension reduction [21]. Specifically, BBPD-BEM exhibits computational speeds two orders of
magnitude faster than PD-MPM in computational domains without destruction. Furthermore,
BBPD-BEM effectively circumvents spurious boundary-softening phenomena, facilitating PD cal-
culations in infinite domains. However, it is essential to acknowledge that BBPD-BEM is built upon
BBPD, which features only one independent material parameter for isotropic peridynamic materials.
Additionally, the absence of a crack propagation model in BBPD-BEM restricts its ability to address
crack propagation problems. To overcome these limitations, our paper aims to introduce BEM for
ordinary state-based peridynamics (OSPD), one of the two typologies of state-based PD [2]. Within
the numerical framework of OSPD-BEM, we propose the crack propagation model inspired by the
cohesive crack model [29–31] and the PD bilinear model [32,33]. This approach addresses the identified
shortcomings in BBPD-BEM, enhancing its versatility and applicability.

The process of outlining the BEM for OSPD, referred to as OSPD-BEM, unfolds through the
following steps. Firstly, a boundary integral equation (BIE) for OSPD is derived, drawing support
from Green’s function [34,35] and the nonlocal operator theory [36,37] in Section 2. Following this, a
crack propagation model for the OSPD-BEM is proposed in Section 3. In Section 4, the accuracy and
efficiency of OSPD-BEM are then demonstrated through the presentation of four numerical examples.
The conclusions are given in Section 5. For ease of reading, the symbols in the paper are listed in
Table 1 before the text begins.
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Table 1: Nomenclature

Mark Explanation Mark Explanation

�τd
Displacement volume-constrained
boundary

�τ Volume-constrained
boundary

∂�d Local displacement boundary ν Theoretical Poisson’s ratio
�τn Force volume-constrained boundary ν̃ Numerical Poisson’s ratio
B∗

�
Adjoint operator of weighted nonlocal
divergence

� Solution domain

ũg Green’s function in Laplace domain ρ Mass density
G Peridynamic Navier equilibrium

operator
n Unit normal vector

B Nonlocal divergence operator ∂�n Local force boundary
T Peridynamic force flux vector operator M Nonlocal interaction operator
B∗ Adjoint operator of nonlocal

divergence
hr Horizon

M Peridynamic Navier flux operator �(x) Dirac function
uG Infinite domain Green’s function ∂� Local boundary

2 The Boundary Integral Equation

Firstly, we briefly introduce the linear elastic OSPD [38,39] with the volume-constrained boundary
[40,41]. The equilibrium equation for the linear elastic OSPD is as follows [37]:⎧⎨
⎩

B
(
ϕ� (B∗ (u))

T + �χTr

(
B∗

�
(u)

)
I
)
(x) + Fb (x) = 0 for x ∈ �

u (x) = hu (x) for x ∈ �τd

M
(
ϕ� (B∗ (u))

T + �χTr

(
B∗

�
(u)

)
I
)
(x) = gσ (x) for x ∈ �τn

(1)

where ϕ and χ are the material parameters; � and � are the nonlocal weighting functions [42]; u (x)

is displacement vector; the superscript T is transposed symbol; Tr denotes trace operator; I is metric
tensor; x is location vector corresponding to single material point; Fb (x) denotes body force density;
hu (x) denotes a given displacement constraint on displacement boundary �τd

; gσ (x) denotes a given
force boundary condition on force boundary �τn . �τd

and �τn are a portion of volume-constrained
boundary �τ that is a banded area surrounding the classical local boundary ∂�. They satisfy �τ =
�τn ∪ �τd

. An explicit explanation can be acquired in the literature [21,36]. �, �τ , �τd
, �τn and ∂� are

schematically explained in Fig. 1. Incidentally, ∂�d is the classical local displacement boundary; ∂�n

is the classical local force boundary. The nonlocal operators B, B∗, B∗
�

and M in Eq. (1) are defined
as [36]

B (Q) (x) ≡
∫

�∪�τ

[Q (x, y) + Q (y, x)] · β (x, y) dVy for x ∈ � (2)

B∗ (P) (x, y) ≡ − [P (y) − P (x)] ⊗ β (x, y) for x, y ∈ � ∪ �τ (3)

B∗
�
(x) ≡

∫
�∪�τ

B∗ (Q) (x, y) � (x, y) dVy for x ∈ � ∪ �τ (4)
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M (Q) (x) ≡ −
∫

�∪�τ

[Q (x, y) + Q (y, x)] · β (x, y) dVy for x ∈ �τ (5)

in which Q (x, y) is a tensor function between point x and point y; P (y) is a vector function of point
y. β (x, y) is given as follows:

β (x, y) = x − y
|y − x| (6)

� (x, y) in Eqs. (1) and (4) is related to the nonlocal weighting function � (x, y) in Eq. (1):

� (x, y) = |y − x|� (x, y)

ψ (x)
(7)

in which ψ (x) is dependent on the material parameters ϕ (x) and χ (x). In the three dimensional
problem, material parameters ϕ (x) and χ (x) in Eq. (1) are expressed as

χ (x) = κ − ϕ (x) ψ (x)

3
ψ (x) = 1

3
m (x) ϕ (x) = 15μ

m (x)
(8)

where μ denotes shear modulus; κ denotes bulk modulus; and m is

m (x) =
∫

�∪�τ

|y − x| 2� (x, y) dVy (9)

Figure 1: The diagram for volume-constrained boundary (color online)

For the two-dimensional problem, material parameters ϕ (x) and χ (x) in Eq. (1) are expressed as

χ (x) = κ − ϕ (x) ψ (x)

2
ψ (x) = 1

2
m (x) ϕ (x) = 8μ

m (x)
(10)

It is noteworthy that the literature [5,43] also give the similar nonlocal operators. The connection
of both nonlocal operators is in Appendix A.

Stemming from simplifying form, we introduce the following notations:

G (u) (x) = B
(
ϕ� (B∗ (u))

T + �χTr

(
B∗

�
(u)

)
I
)
(x) (11)
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M (u) (x) = M
(
ϕ� (B∗ (u))

T + �χTr

(
B∗

�
(u)

)
I
)
(x) (12)

For two instances with different body forces and boundary constraints, Eq. (1) can be rewritten
as

Instance1 :

⎧⎨
⎩

G (v1) (x) + Fb1 (x) = 0 for x ∈ �

v1 (x) = hu1 (x) for x ∈ �τd

M (v1) (x) = gσ1 (x) for x ∈ �τn

(13)

Instance2 :

⎧⎨
⎩

G (v2) (x) + Fb2 (x) = 0 for x ∈ �

v2 (x) = hu2 (x) for x ∈ �τd

M (v2) (x) = gσ2 (x) for x ∈ �τn

(14)

Following the derivations of the reciprocal theorem of the BBPD in [21], we can obtain the
reciprocal theorem for OSPD∫

�

v2 (x) · G (v1) (x) dVx −
∫

�

v1 (x) · G (v2) (x) dVx

=
∫

�τ

v2 (x) · M (v1) (x) dVx −
∫

�τ

v1 (x) · M (v2) (x) dVx (15)

whose form is consistent with that of bond-based PD except for the operators defined in Eqs. (13) and
(14). The integrals on the left side and right one respectively denote internal integrals and volume-
constrained boundary integrals. One can find that the boundary integrals are also volume integrals,
which deprives the advantage of the dimensionality reduction for the BEM. Thus we introduce an
extra condition to the volume-constrained boundary, which converts the integral on the right side of
Eq. (15) from the one in the volume-constrained boundary to the one on the local boundary. The
equivalency relationship to transform the integral in volume-constrained boundary �τ into the one
on local boundary ∂� is∫

�τ

us (x) · M (u) (x) dVx =
∫

∂�

us (x) · T (u) (x, n) dVx (16)

where u is authentic displacement state, it meets Eq. (1). us is a possible displacement state, it satisfies
displacement constraint in Eq. (1):

us (x) = hu (x) for x ∈ �τd
(17)

T is the PD force flux vector operator [44,45], and n denotes the outward-directed unit normal
vector for the point x that is located on the classical local boundary ∂�. T (v) (x, n) represents the PD
force flux vector of the deformed state v for the point x in direction n, which is defined as follows [44]:

T (v) (x, n) = 1
2

∫
O

∫ +∞

0

∫ +∞

0

(y + z)2 f (x + yk, v (x + yk) , x − zk, v (x − zk)) ⊗ k · ndzdyd�m (18)

where O denotes unit spherical surface; k denotes unit normal vector of the unit spherical surface O;
d�m is differential solid angle on the surface O in direction k. f (x + yk, v (x + yk) , x − zk, v (x − zk))

denotes response function between point x + yk and point x − zk [34], which is given as follows:

f (x + yk, v (x + yk) , x − zk, v (x − zk)) = Kc (x + yk, x − zk) · (v (x − zk) − v (x + yk)) (19)

where Kc (x + yk, x − zk) is the micromodulus tensor for the linear elastic OSPD [34]. We know that
M (v) (x) on left side of Eq. (16) is analogous to body force density in �τ , and T (v) (x, n) on right side
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of Eq. (16) is analogous to surface traction on ∂�. As a result, the equivalency relationship in Eq. (16)
is perceived as a virtual work principle that is connected with possible deformed state us. Applying
us = v1, u = v2 and us = v2, u = v1 to Eq. (16) respectively, one can obtain the following two equations:∫

�τ

v1 (x) · M (v2) (x) dVx =
∫

∂�

v1 (x) · T (v2) (x, n) dVx (20)∫
�τ

v2 (x) · M (v1) (x) dVx =
∫

∂�

v2 (x) · T (v1) (x, n) dVx (21)

Substituting Eqs. (20) and (21) into Eq. (15), the reciprocal theorem is rewritten as∫
�

v2 (x) · G (v1) (x) dVx −
∫

�

v1 (x) · G (v2) (x) dVx

=
∫

∂�

v2 (x) · T (v1) (x, n) − v1 (x) · T (v2) (x, n) dVx (22)

which builds up a connection between internal integrals and classical boundary integrals, and is a
precondition of BIE that will be derived as follows.

Imitating opinion in traditional BEM [46]. We take into account Problem 1 corresponding to the
actual problem in the reciprocal theorem, and Problem 2 denotes infinite domain Green’s function uG

[35], Then, based on the Eq. (1), equilibrium equations corresponding to Problem 1 and Problem 2
are respectively described as

Problem 1 :

⎧⎨
⎩

G (u) (x) + Fb (x) = 0 for x ∈ �

u (x) = hu (x) for x ∈ �τd

M (u) (x) = gσ (x) for x ∈ �τn

(23)

Problem 2 :

⎧⎨
⎩

G (uG) (x − xm) + � (x − xm) Ei = 0 for x ∈ �

uG (x − xm) = uG (x − xm) for x ∈ �τd

M (uG) (x − xm) = M (uG) (x − xm) for x ∈ �τn

(24)

where Ei denotes a coordinate axis vector. uG meets

G (uG) (x − xm) + � (x − xm) Ei = 0 for xm ∈ �, x ∈ R
n (25)

where �(x − xm) is Dirac function; Rn dentes the n-dimensional infinite Euclidean space. Substituting
v1 = uG and v2 = u into Eq. (22), we obtain∫

�

u (x) · G (uG) (x − xm) dVx −
∫

�

uG (x − xm) · G (u) (x) dVx

=
∫

∂�

u (x) · T (uG) (x − xm, n) − uG (x − xm) · T (u) (x, n) dVx (26)

Applying first equations for Eqs. (23) and (24) to (26), we obtain∫
�

u (x) · (−� (x − xm) Ei) dVx +
∫

�

uG (x − xm) · Fb (x) dVx

=
∫

∂�

u (x) · T (uG) (x − xm, n) − uG (x − xm) · T (u) (x, n) dVx (27)
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Executing limit analysis xm → ∂� concerning Eq. (27) for acquiring BIE for the OSPD. This
process is shown graphically in Fig. 2 in a two-dimensional problem, while the three-dimensional
problem is similar. A detailed explanation is in the literature [21]. The result is displayed as follows:

lim
ε→0

(∫
�+�s

u (x) · (−� (x − xm) Ei) dVx

)
+

∫
�+�s

uG (x − xm) · Fb (x) dVx

= lim
ε→0

(∫
∂�−S

u (x) · T (uG) (x − xm, n) − uG (x − xm) · T (u) (x, n) dVx

)

+ lim
ε→0

(∫
S+

u (x) · T (uG) (x − xm, n) − uG (x − xm) · T (u) (x, n) dVx

)
(28)

Figure 2: The diagram for the boundary limit process [21] (color online)

The result for the integral on left side of Eq. (28) is −uk (xm) due to property of Dirac function. The
result for the first item on the right side of Eq. (28) equals to Cauchy principal value (CPV) of integral
on ∂�. The result for the second item on the right side of Eq. (28) involves analyzing singularity for
integrand. The singularity for integrand exists in Green’s function uG. According to the literature [35],
the logarithmic and Dirac singularity are involved. The integrable property of logarithmic singularity
and the convolution property of the Dirac function cause the result for the second item on the right
side of Eq. (28) to vanish. Then, Eq. (28) is given as below:

−uk (xm)+
∫

�

uG (x − xm) ·Fb (x) dVx =
∫

∂�

u (x) ·T (uG) (x − xm, n)−uG (x − xm) ·T (u) (x, n) dVx (29)

where
∫

is CPV for integral. Dividing ∂� into ∂�n and ∂�d, Eq. (29) can be rewritten as

uk (xm) = −
∫

∂�d

u (x) · T (uG) (x − xm, n) − uG (x − xm) · T (u) (x, n) dVx +
∫

�

uG (x − xm) · Fb (x) dVx

−
∫

∂�n

u (x) · T (uG) (x − xm, n) − uG (x − xm) · T (u) (x, n) dVx (30)
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Adopting an approach in the literature [47,48] to build up a relation between PD boundary
constraints and local boundary constraints, we obtain the following relationship:

u (x) = v̂ (x) x ∈ ∂�d (31)

T (u) (x, n) = τf (x) x ∈ ∂�n (32)

where v̂ (x) and τf (x) are the local boundary condition. Putting Eqs. (31) and (32) into Eq. (30)
generates

uk (xm) = −
∫

∂�d

v̂ (x) · T (uG) (x − xm, n) − uG (x − xm) · T (u) (x, n) dVx +
∫

�

uG (x − xm) · Fb (x) dVx

−
∫

∂�n

u (x) · T (uG) (x − xm, n) − uG (x − xm) · τf (x) dVx (33)

which is the BIE of OSPD for the static case. For the dynamic case, we give BIE corresponding to
the Laplace domain in Appendix B. Once a displacement and force flux on the local boundary ∂�

are obtained, one can calculate the displacement of any material point within the domain � through
the BIE Eqs. (33) and (B.13). Therefore, we just need to calculate the displacement and force on the
local boundary through the discretization method in [21]. The details will be repeated. So far, one can
use the OSPD-BEM to simulate static and dynamic problems without fracture. For fracture problems,
it is essential to research the crack propagation model for any BEM. Therefore, we propose a crack
propagation model that is suitable for the present numerical method.

3 Crack Propagation Model

The crack propagation model for the OSPD-BEM proposed in this paper is inspired by the
cohesive crack model [29–31] and the PD bilinear model [32,33]. We take a continuum medium in
Fig. 3 as an example, and the construction of the model is given as follows.

Figure 3: The diagram of the crack propagation model (color online)

In Fig. 3, S is the preset crack propagation path in �. � is divided into two subdivisions �1 and
�2 with a path S. e1 and S1 compose the boundary of �1, while e2 and S2 compose the boundary of �2.
We can convert the process of solving � to the process of solving �1 and �2. Therefore, the BIE of the
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OSPD Eq. (33) is applied to the boundary e1 + S1 and the boundary e2 + S2, respectively. If there is no
crack, S1 and S2 are the same surface, so the continuity condition should be satisfied on S1 and S2. As
shown in Fig. 4, for any pair of associated points P1 and P2 on S1 and S2, the continuity condition is
expressed as

T1 (u1)
(
xP1

, nS1

) = −T2 (u2)
(
xP2

, nS2

)
(34)

u1

(
xP1

) = u2

(
xP2

)
(35)

where T1 (u1)
(
xP1

, nS1

)
is the PD force flux vector at the point P1 on the surface S1, while T2 (u2)

(
xP2

, nS2

)
is the PD force flux vector at the point P2 on the surface S2; u1

(
xP1

)
is the displacement at the point

P1; u2

(
xP2

)
is the displacement at the point P2. We can obtain the PD force flux vector T1, T2 and

the displacement u1, u2 on the preset crack propagation path S by solving the BIE respectively for the
boundary e1 + S1 and the boundary e2 + S2. Next, we substitute the results of T1, T2, u1 and u2 into our
crack propagation model to determine whether this material point P is divided into P1 and P2.

Figure 4: The diagram for the crack propagation model in the elastic stage (color online)

For the crack propagation model, we consider that the fracture at any material point P at the
preset crack propagation path is divided into three stages: the elastic stage, the adhesive stage and
the defunct stage. The elastic stage is given in Fig. 4, and the calculation can be completed with the
continuity condition Eqs. (34) and (35). The defunct stage is given in Fig. 5, and the crack occurs at this
time. At the defunct stage, the material point P is divided into P1 and P2, and the force flux vectors T1

and T2 vanish. The calculation is also easily completed at this stage. Next, we discuss the complicated
adhesive stage in Fig. 6. The adhesive stage needs to answer two problems. One is about the end of
the elastic stage and the start of the defunct stage, and the other is about the constitutive relationship
between the PD force flux vectors, i.e., T1 and T2, and the displacement vectors, i.e., u1 and u2. We start
with the problem two. In Fig. 6, the PD force flux vectors T1 and T2 satisfy the equilibrium relationship

T1 (u1)
(
xP1

, nS1

) = −T2 (u2)
(
xP2

, nS2

) = T
(
xP1

− xP2

)
(36)

The force flux vector T
(
xP1

− xP2

)
is related to the relative displacement between the material

point P1 and P2 which is denoted as

u
(
xP1

− xP2

) = u1

(
xP1

) − u2

(
xP2

)
(37)
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Figure 5: The diagram for the fracture calculation model in the defunct stage (color online)

Figure 6: The diagram of the crack propagation model in the adhesive stage (color online)

We assume that the force flux vector T
(
xP1

− xP2

)
and the relative displacement u

(
xP1

− xP2

)
satisfy the linear relationship shown in Fig. 7. A more complex constitutive relationship, e.g., those
in [49,50], can be considered in the future. Next, let’s answer the problem one. In Fig. 7, the force flux
vector TM is referred to as the elastic limit flux, and corresponds to the linear elastic stretch limit [32].
According to the article [32,48,51], TM is expressed as

Figure 7: The diagram for the constitutive relationship in the adhesive stage (color online)
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TM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6πκ

hr

√
G0hr

54πμ + 16 (κ − 2μ)
for 2D

48κ

hr

√
G0hr

768μ + 27 (3κ − 5μ)
for 3D

(38)

where μ denotes shear modulus; κ denotes bulk modulus; hr is horizon; G0 is the elastic limit energy
density [32]. When T1 (u1)

(
xP1

, nS1

)
in Eq. (34) achieves TM, the elastic stage is ended. uM in Fig. 7 is

referred to as the adhesive limit displacement, and it is determined by a Law of energy conservation
for a process of the new crack growing [52].

GIC = G0 + 1
2

TMuM (39)

where GIC is the critical energy release rate [51]. When u
(
xP1

− xP2

)
in Eq. (37) achieves uM, the defunct

stage is started. The solving procedure of our crack propagation model can be summarized as Fig. 8.

Figure 8: The flow chart for the solving process of the crack propagation model

4 Numerical Examples

We will take four numerical examples to confirm the accuracy and efficiency of OSPD-BEM in
this section. Firstly, a two-dimensional square plate under uniaxial loading is investigated to estimate
the numerical Poisson’s ratio as those in the literature [53,54]. It displays that our numerical method
can be more accurate than the PD-MPM. Secondly, we discuss the crack initiation in a double-notched
specimen as the literature [21], which reveals the accuracy and efficiency of the OSPD-BEM compared
with the PD-MPM. Thirdly, the wedge-splitting test is simulated to research a fracture toughness for
the concrete specimen [55,56], and its result is compared to experimental results, which displays again
the the accuracy and efficiency of OSPD-BEM. Finally, a three-point bending experiment is executed.
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4.1 Two-Dimensional Square Plate under Uniaxial Loading
We consider a two-dimensional square plate withstanding the uniaxial tensile loading in the

direction x, as displayed in Fig. 9. The calculation parameters can be obtained in Table 2. a denotes
length of the sides; h denotes thickness; E denotes elastic modulus; p denotes tensile loading; hr denotes
horizon; � is the grid spacing. For a given Poisson’s ratio ν, we can obtain the deformation of the plate,
and then calculate the numerical Poisson’s ratios ν̃ which should be consistent with the given Poisson’s
ratios. However, due to an error in the numerical method, the numerical Poisson’s ratio is probably
different from the given Poisson’s ratio. The error between the two can be used to test the accuracy of
one numerical method. Therefore, in this numerical example, we investigate the deformation state of
the plate with different Poisson’s ratios, i.e., ν = 0.1, 0.2, 0.3. Then the numerical Poisson’s ratios ν̃ is
calculated as

ν̃ = �yd

�xd

(40)

where �yd is the average absolute value of the displacement in the direction y for all discrete material
points. �xd is the average absolute value of the displacement in the direction x for all discrete material
points. The numerical Poisson’s ratios ν̃ obtained by OSPD-BEM and PD-MPM are listed in Table 3.
The errors between the numerical Poisson’s ratios and the given ones are also given in Table 3.

Figure 9: The diagram for stretching square plate

Table 2: Calculation parameters for the stretching square plate

a (m) h (m) E (GPa) p (MPa) hr (m) � (m)

1.0 0.01 200.0 200.0 0.04 0.01

From Table 3, one can find that the errors of the OSPD-BEM are much smaller than those of
PD-MPM. Besides, the numerical Poisson’s ratios predicted by the PD-MPM are always lower than
the given Poisson’s ratio, which can be due to a spurious boundary softening phenomena [57]. This
phenomenon is observed from the results of PD-MPM in Fig. 10. We find that Poisson’s ratio is
variable for the OSPD in Table 3, while it is the fixed value for the BBPD. The BBPD-BEM is one
order of magnitude more precise than the PD-MPM, while the magnitude is two orders for the OSPD-
BEM. The reason is that the spurious boundary softening phenomena [57] is more serious for the
OSPD compared with the BBPD.
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Table 3: Calculation results for the numerical Poisson’s ratios ν̃

Theory ν Boundary element method Error (%) PD-MPM Error (%)

BBPD 1/3 0.333416 0.0248 0.332878 0.1366
OSPD 0.1 0.100087 0.087 0.099146 0.854

0.2 0.200076 0.038 0.197598 1.201
0.3 0.300059 0.0196 0.296853 1.049

Figure 10: Displacement predicted by the PD-MPM and the OSPD-BEM for ν = 0.3 (color online)

4.2 Two-Dimensional Crack Initiation in a Double-Notched Specimen
In this example, we consider a crack initiation problem in the square plate with a double-notched

edge crack exerted uniaxial tensile loading displayed in Fig. 11. The calculation parameters are
exhibited in Table 4. E denotes elastic modulus; Cr denotes initial length of the crack; Gc denotes
critical energy release rate. According to a definition of critical energy release rate in PD [17], the load
corresponding to the crack propagating � length is defined as the utmost load Fm. � is the grid spacing
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[17]. For different Poisson ratios, the results predicted by the OSPD-BEM are compared with those of
the PD-MPM.

Figure 11: The diagram for a double-notched specimen (color online)

Table 4: Calculation parameters for the double-notched specimen

E (Pa) Cr (m) Gc (Pa · m) L (m) B (m) H (m)

1.0 0.1 1.47 ×10−4 1.0 0.5 1.0

For Poisson’s ratio ν = 0.3 and horizon hr = 0.0125 m, the displacements predicted by the
OSPD-BEM are compared with those predicted by the PD-MPM in Figs. 12. One can find that both
displacements in the direction x and y are consistent with those predicted by the PD-MPM. But utmost
load Fm and calculation time t of both methods are different. For different horizons hr, the utmost
load Fm and the calculation time t predicted by OSPD-BEM and PD-MPM are displayed in Figs. 13
and 14.

Figure 12: (Continued)
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Figure 12: Displacement predicted by the OSPD-BEM and PD-MPM for ν = 0.3 (color online)

Figure 13: The load Fm vs. the reciprocal of the horizon 1/hr (color online)

Figure 14: The calculation time t vs. the reciprocal of the horizon 1/hr, ν = 0.3 (color online)
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In Fig. 13, we find the utmost load Fm acquired through OSPD-BEM can be higher than the
one predicted through PD-MPM, and their results are consistent with each other when horizon hr

approaches zero. This phenomenon is consistent with the results in BBPD [21]. The utmost load Fm

decreases with an increment of Poisson’s ratio, which agrees well with results in this literature [54].
The efficiency is demonstrated in Fig. 14. The calculation time for PD-MPM sharply improves as
a reduction of horizon hr, while the one for OSPD-BEM does not change much. Meanwhile, the
asymptotic compatibility [58] has also been demonstrated for the OSPD-BEM.

4.3 Wedge-Splitting Test
The wedge-splitting test is a significant experiment to investigate the fracture toughness of the

concrete specimen [55,56]. Many numerical methods based on classical continuum mechanics [59,60]
and PD theory [32,61] have been applied to simulate this experiment. In this section, the OSPD-BEM
is used to simulate this experiment process, and our result will be compared with those of the ordinary
state-based peridynamic mesh-free particle method (OSPD-MPM) predicted by Bie et al. [61]. The
schematics of the wedge-splitting test specimen is displayed in Fig. 15. The relative displacement u that
is perpendicular to a crack is applied on the pre-cracked edge of a square plate, and hinge supports
are applied to the symmetric points on the edge opposite the crack. The geometry and materials
parameters are shown in Table 5. E denotes elastic modulus; ν denotes Poisson’s ratio; hr denotes
horizon; G0 denotes elastic limit energy density [32]; GIC denotes critical energy release rate [51]; Cr

denotes initial length of a crack.

Figure 15: The schematics for the wedge-splitting test specimen (color online)

Table 5: Calculation parameters for the wedge-splitting test

E (GPa) ν hr (m) G0 (Pa · m) GIC (Pa · m) Cr (m) L (m) B (m) H (m) s (m)

28.3 0.2 0.128 24.5 490 1.6 3.2 1.6 3.2 1.6

To describe the propagation process of a crack, the curve of the crack length vs. the crack mouth
opening displacement (CMOD) is given in Fig. 16. Some specific crack propagation diagrams are
shown in Fig. 17. The main purpose of the wedge-splitting test is to obtain the curve about the external
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load vs. CMOD. This curve is related to the fracture toughness of a concrete specimen [55]. Drawing
upon the crack propagation model of the OSPD-BEM in Section 3, the curve of the load vs. the CMOD
is given in Fig. 18. In Fig. 18, we find the result of the OSPD-BEM is closer to the experimental result
[56] than the one of PD-MPM in [61]. The reasons originate from two aspects. First, the OSPD-BEM
is more accurate as a semi-analytical calculation method. Second, the softening process observed in
the test [60,62] is introduced into the crack propagation model.

Figure 16: The crack length vs. the CMOD (color online)

Figure 17: The crack propagation diagram (color online)

The crack initiation load Fm (i.e., the peak value in Fig. 18) and its corresponding CMOD Um are
significant parameters for the fracture toughness of the concrete specimen. We further compare the
fracture toughness predicted by our OSPD-BEM and Bie et al. [61] with the experimental results in
Table 6. The error is calculated based on the experimental result [56]. In Table 6, the accuracies of Fm

and Um are respectively improved by one time and seven times when we compare the OSPD-BEM and
Bie et al. [61] with the experimental result [56].
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Figure 18: The load vs. the CMOD (color online)

Table 6: Fracture toughness comparison

Experimental
result [56]

Bie et al. [61] Error (%) OSPD-BEM Error (%)

Fm (kN) 164.0 171.0 4.27 167.5 2.134
Um (mm) 0.92 0.7 23.9 0.95 3.26

Considering the calculation efficiency, we find that it takes 44000 s to simulate the wedge-splitting
test in Fig. 15 with the OSPD-MPM [61], while the time consumption has been reduced to 21000 s
with the coupling method [61] between the OSPD-MPM and the node-based smoothed finite element
method (NS-FEM). Nevertheless, the OSPD-BEM only takes 11000 s to deal with the same problem
in Fig. 15. The calculation efficiency is respectively improved by three times and one time compared
with the OSPD-MPM [61] and the coupling method [61]. By the way, 200 boundary elements are used
in the OSPD-BEM for the simulation result in Fig. 15. The computer equipment is displayed as (1)
CPU: 12th Gen Intel(R) Core(TM) i5-1240P 1.70 GHz; (2) RAM: 16.0 GB; (3) OS: Windows 11 Home
22H2 64 bit.

4.4 Three Point Bending Test
The three-point bending experiment is the main experimental approach to measure the mechanical

properties of materials [63,64]. The beam with a central crack is executed by the three-point bending
experimental to investigate fracture toughness in Fig. 19. As displayed in Fig. 19, u represents
displacement loading, while the hinge support and the fixed support are applied to both ends of
the beam.

The geometry and materials parameters are shown in Table 7. In Table 7, E denotes elastic
modulus; ν denotes Poisson’s ratio; hr denotes horizon; G0 denotes elastic limit energy density [32];
GIC denotes critical energy release rate [51]; Cr denotes initial length of crack. The three-point bending
experiment in Fig. 19 is simulated with a crack propagation model of OSPD-BEM in Section 3. To
describe the propagation process of the crack, the curve of the crack length vs. the CMOD is given in
Fig. 20. Some specific crack propagation diagrams are shown in Fig. 21.
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Figure 19: The schematics for the three-point bending test specimen (color online)

Table 7: Calculation parameters for the three-point bending test

E (GPa) ν hr (m) G0 (Pa · m) GIC (Pa · m) Cr (m) L (m) B (m) s (m)

35.77 0.1 0.015 1.145 9.8 0.045 0.6 0.15 0.3

Figure 20: The crack length vs. the CMOD (color online)

Figure 21: The crack propagation diagram (color online)
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Figure 22: The load vs. the CMOD (color online)

The curved line of external load vs. CMOD is given in Fig. 22, and we compare OSPD-
BEM results with FEM results predicted by Carpinteri et al. [62] and the bond-based peridynamic
mesh-free particle method (BBPD-MPM) results predicted by Zaccariotto et al. [32,33] in Fig. 22.
We find the result of the OSPD-BEM is closer to those of Carpinteri et al. [62] than those of
Zaccariotto et al. [32,33]. The reason stems from the effect of Poisson’s ratio. The OSPD-BEM and
Carpinteri et al. [62] can adopt a real Poisson’s ratio, while Zaccariotto et al. [32,33] is trapped in
a fixed Poisson’s ratio. As displayed in [65], the effect of Poisson’s ratio becomes obvious, when a
crack approaches boundary. The crack initiation load Fm (i.e., the peak value in Fig. 22) and its
corresponding CMOD Um in Fig. 22 corresponding to Carpinteri et al. [62], Zaccariotto et al. [32,33]
and the OSPD-BEM are shown in Table 8. The prediction of the fracture toughness parameters is
close for these three numerical approaches.

Table 8: Fracture toughness comparison

Carpinteri et al. [62] Zaccariotto et al. [32,33] OSPD-BEM

Fm (kN) 4.73 4.66 4.75
Um (μm) 33.15 33.15 33.15

5 Conclusions

In our research, we propose OSPD-BEM as an enhancement over prior efforts [21]. This
method inherits the advantages of the BBPD-BEM [21]. Firstly, it eliminates the boundary softening
phenomenon [57] resulting from boundary discretization. Secondly, it facilitates problem-solving
in infinite domains. Thirdly, it exhibits advantages in terms of accuracy and efficiency compared
to numerical methods that discretize the entire domain. In addition, this method is based on the
OSPD, overcoming theoretical limitations present in previous works [21], such as fixed Poisson’s ratio.
Furthermore, we introduce a fracture calculation model tailored for OSPD-BEM to investigate basic
crack propagation problems. In future research, a viable approach to tackling complex crack growth
problems, such as multiple cracks and crack branching, might involve the utilization of a coupling



CMES, 2024, vol.139, no.3 2827

method [66,67]. This method would integrate PD-MPM and OSPD-BEM in a complementary manner,
with PD-MPM applied in cracked regions and OSPD-BEM in uncracked regions.
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Appendix A. The Comparison of Different Nonlocal Operators

The literature [36] and the literature [5,43] provide two different nonlocal operators, and both can
effectively represent the PD equilibrium equation and boundary condition. The nonlocal gradient,
nonlocal curl and nonlocal divergence in both literature is a dual relationship. The nonlocal operators
[5,43] is the weighted adjoint operator of the ones [36], if the following conditions are satisfied:

β (x, y) � (x, y) = −r · K−1
x w (r) (A.1)

where the symbol on the left side of Eq. (A.1) appears in Eqs. (6) and (7), and the symbol on the right
side of Eq. (A.1) appears in Eq. (6) of the literature [43].

In other words, there are{
B∗

�
(vx) = ∇̃ ⊗ vx

Tr

(
B∗

�
(vx)

) = ∇̃ · vx

(A.2)

where B∗
�

is in Eq. (4), and Tr denotes the trace operator. The remaining symbols are seen in Eqs. (8)
and (14) of the literature [43]. The proof is obvious by the definition. Furthermore, if the adjoint
operator of weighted nonlocal curl is defined as follows:

C ∗
�
(x) ≡

∫
�∪�τ

C ∗ (P) (x, y) � (x, y) dVy for x ∈ � ∪ �τ (A.3)

where P is a vector, C ∗ is defined as follows:

C ∗ (P) (x, y) ≡ β (x, y) × [P (y) − P (x)] for x, y ∈ � ∪ �τ (A.4)

The following conditions are satisfied:

β (x, y) � (x, y) = r · K−1
x w (r) (A.5)

Then

C ∗
�
(vx) = ∇̃ × vx (A.6)

where the symbols are seen in Eq. (13) of the literature [43].
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Appendix B. The Boundary Integral Equation in the Laplace Domain

It is convenient to deal with the dynamic problem in the Laplace domain for the BEM. It has two
prominent advantages, compared with time domain. The first is eliminating time accumulation error;
the second is that we can easily implement parallel computation. Thus, we derive the BIE of the OSPD
for dynamic problems in Laplace domain as follows. First of all, we give the dynamic equation for the
linear elastic OSPD in the Laplace domain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G
(
ũ
)
(x, s) + F̃ (x, s) = ρs2ũ (x, s) for x ∈ �

ũ (x, s) = g̃d (x, s) for x ∈ �τd

M
(
ũ
)
(x, s) = g̃n (x, s) for x ∈ �τn

F̃ (x, s) = F̃b (x, s) + ρsu (x, t0) + ρu̇ (x, t0)

u (x, t0) = u0 (x) u̇ (x, t0) = u̇0 (x)

(B.1)

where the operators G and M are mentioned in Eq. (11); s is a variable corresponding to the Laplace
transformation; ρ is the mass density; ũ is the Laplace transformation of the displacement u in the
time domain; g̃d and g̃n are the Laplace transformation of the boundary condition; F̃b is the Laplace
transformation of the body force density Fb in the time domain; t0 is the initial time; u0 and u̇0 are the
initial conditions in the time domain.

The weighted residual method is adopted to derive the BIE in Laplace domain instead of the
reciprocal theorem, following the derivation in the classical theory. We rewrite Eq. (B.1) in the form
of weighted residual as follows:∫

�τn

(
g̃n (x, s) − M

(
ũ
)
(x, s)

) · ũg (x − xm, s) dVx −
∫

�τd

(
g̃d (x, s) − ũ (x, s)

) · M
(
ũg

)
(x − xm, s) dVx

=
∫

�

(
−ρs2ũ (x, s) + G

(
ũ
)
(x, s) + F̃ (x, s)

)
· ũg (x − xm, s) dVx (B.2)

where ũg (x − xm, s) is the Green’s function in the Laplace domain for the infinite body; it meets the
following the equilibrium equation

−G
(
ũg

)
(x − xm, s) + ρs2ũg (x − xm, s) = � (x − xm) Ei (B.3)

where Ei is the coordinate base vector; �(x − xm) is the Dirac function.

We find that if s is the fixed value, the actual displacement ũ (x, s) and the Green’s function
ũg (x − xm, s) can be regarded as the solutions of a certain static problem. In order to further derive the
BIE, we construct two spurious static problems corresponding to ũ (x, s) and ũg (x − xm, s), and the
static problems must satisfy Eq. (1). Two spurious static states are given as follows:⎧⎨
⎩

G
(
ũ
)
(x, s) + Fb

(
ũ
)
(x, s) = 0 for x ∈ �

ũ (x, s) = ũ (x, s) for x ∈ �τd

M
(
ũ
)
(x, s) = φ

(
ũ
)
(x, s) for x ∈ �τn

(B.4)

⎧⎨
⎩

G
(
ũg

)
(x − xm, s) + Fb

(
ũg

)
(x − xm, s) = 0 for x ∈ �

ũg (x − xm, s) = ũg (x − xm, s) for x ∈ �τd

M
(
ũg

)
(x − xm, s) = φ

(
ũg

)
(x − xm, s) for x ∈ �τn

(B.5)

where Fb

(
ũ
)

and Fb

(
ũg

)
are the body force densities corresponding to ũ and ũg, respectively. φ

(
ũ
)

and
φ

(
ũg

)
are the boundary constraints corresponding to ũ and ũg, respectively. These two states satisfy
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the reciprocal theorem Eq. (15).∫
�

G
(
ũg

)
(x − xm, s) · ũ (x, s) − G

(
ũ
)
(x, s) · ũg (x − xm, s) dVx

=
∫

�τ

M
(
ũg

)
(x − xm, s) · ũ (x, s) − M

(
ũ
)
(x, s) · ũg (x − xm, s) dVx (B.6)

Substituting Eq. (B.6) into Eq. (B.2), we obtain∫
�

(
G

(
ũg

)
(x − xm, s) − ρs2ũg (x − xm, s)

) · ũ (x, s) dVx +
∫

�

F̃ (x, s) · ũg (x − xm, s) dVx

=
∫

�τn

(
g̃n (x, s) − M

(
ũ
)
(x, s)

) · ũg (x − xm, s) dVx −
∫

�τd

(
g̃d (x, s) − ũ (x, s)

) · M
(
ũg

)
(x − xm, s) dVx

+
∫

�τ

M
(
ũg

)
(x − xm, s) · ũ (x, s) − M

(
ũ
)
(x, s) · ũg (x − xm, s) dVx (B.7)

Substituting Eqs. (B.1) and (B.3) into Eq. (B.7) and dividing the integral domain �τ in the third
integral on the right hand side of Eq. (B.7) into two parts �τd

and �τn , we get∫
�

� (x − xm) Ei · ũ (x, s) dVx −
∫

�

F̃ (x, s) · ũg (x − xm, s) dVx

=
∫

�τd

M
(
ũ
)
(x, s) · ũg (x − xm, s) − M

(
ũg

)
(x − xm, s) · ũ (x, s) dVx

+
∫

�τn

M
(
ũ
)
(x, s) · ũg (x − xm, s) − M

(
ũg

)
(x − xm, s) · ũ (x, s) dVx (B.8)

Considering the extra condition Eq. (16), which converts the integral in the volume constrained
boundary to the one on the classical boundary, we simplify Eq. (B.8) as follows:∫

�

� (x − xm) Ei · ũ (x, s) dVx −
∫

�

F̃ (x, s) · ũg (x − xm, s) dVx

=
∫

∂�d

T
(
ũ
)
(x, n, s) · ũg (x − xm, s) − T

(
ũg

)
(x − xm, n, s) · ũ (x, s) dVx

+
∫

∂�n

T
(
ũ
)
(x, n, s) · ũg (x − xm, s) − T

(
ũg

)
(x − xm, n, s) · ũ (x, s) dVx (B.9)

where T is the PD force flux vector operator in Eq. (18) [44,45]. Taking the limit process xm → ∂�d ∪
∂�n for Eq. (B.9), which is similar to Eq. (28), and executing the variable substitution x → y, xm → x,
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we get as follows:

ũk (x, s) −
∫

�

F̃ (y, s) · ũg (y − x, s) dVy

=
∫

∂�d

T
(
ũ
)
(y, n, s) · ũg (y − x, s) − T

(
ũg

)
(y − x, n, s) · ũ (y, s) dVy

+
∫

∂�n

T
(
ũ
)
(y, n, s) · ũg (y − x, s) − T

(
ũg

)
(y − x, n, s) · ũ (y, s) dVy (B.10)

where
∫

denotes the CPV of the integral. Adopting the approach in the literature [47,48] to establish
a connection between the PD boundary conditions and the local boundary conditions, we obtain the
following relationship.

ũ (x, s) = D (x, s) for x ∈ ∂�d (B.11)

T
(
ũ
)
(x, n, s) = P (x, s) for x ∈ ∂�n (B.12)

where D (x, s) and P (x, s) are the local boundary condition in the Laplace domain. Substituting
Eqs. (B.11) and (B.12) into Eq. (B.10) yields

ũk (x, s) −
∫

�

F̃ (y, s) · ũg (y − x, s) dVy

=
∫

∂�d

T
(
ũ
)
(y, n, s) · ũg (y − x, s) − T

(
ũg

)
(y − x, n, s) · D (y, s) dVy

+
∫

∂�n

P (y, s) · ũg (y − x, s) − T
(
ũg

)
(y − x, n, s) · ũ (y, s) dVy (B.13)

Eq. (B.13) is the BIE of the OSPD in the Laplace domain.
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