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ABSTRACT

According to the design specifications, the construction of extended piles involves traversing the tunnel’s upper
region and extending to the underlying rock layer. To address this challenge, a subterranean transfer structure
spanning multiple subway tunnels was proposed. Deliberating on the function of piles in the transfer structure as
springs with axial and bending stiffness, and taking into account the force balance and deformation coordination
conditions of beams and plates within the transfer structure, we established a simplified mechanical model that
incorporates soil stratification by combining it with the Winkler elastic foundation beam model. The resolved
established simplified mechanical model employed finite difference technology and the Newton-Simpson method,
elucidating the mechanical mechanism of the transfer structure. The research findings suggest that the load
carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the
transfer structure, subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.
The established simplified analysis method can be used for stress analysis of the transfer structure, concurrently
considering soil stratification, pile foundation behavior, and plate action. The pile length, pile section size, and
beam section size within the transfer structure should account for the characteristics of the upper load, ensuring
an even distribution of the beam bending moment.
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1 Introduction

Given the ongoing evolution of urban construction, the practice of conducting tunnel construc-
tion in proximity to existing pile foundations and pile foundation construction near operational
tunnels has become commonplace. Scholars worldwide have extensively investigated the reciprocal
influence between tunnels and pile foundations [1–3]. The examination of tunnel excavation effects on
nearby existing pile foundations primarily employs methods such as theoretical analysis, analysis of
on-site monitoring data [4], finite element method (FEM) calculations, and physical model testing
[5–9]. The theoretical analysis method predominantly employs a two-stage analysis approach. In
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the initial stage, column hole expansion theory, ball hole expansion theory [6], and plane hole
contraction theory [9,10] were employed to deduce the displacement field of the surrounding soil
resulting from tunnel excavation. In the subsequent stage, the pile foundation was treated as Winkler
elastic foundation beam [11], Pasternak elastic foundation beam [12], and Kerr elastic foundation
beam [9], applying the displacement field obtained in the first stage to the elastic foundation beam
enables the determination of the impact of tunnel excavation on nearby existing pile foundations.
In the case of U-shaped tunnels, the conformal mapping method can project them onto the unit
circle, and then an analytical solution for the impact of U-shaped tunnel excavation on adjacent pile
foundations can be derived by integrating the complex function method and load transfer method [13].
The analytical equation for the failure surface of the upper pile foundation’s end-bearing layer resulting
from tunnel excavation can be derived using the variational principle [14]. Given the convenience and
cost-effectiveness of the finite element method, numerous studies on the impacts of tunnel excavation
on nearby existing pile foundations were conducted through this method [15,16]. This encompassed an
exploration of various aspects, mainly including the influence of diverse geometric parameters [17],
the impact of different construction parameters [18,19], the distinct effects of tunnel excavation on
individual pile and group piles [20,21], and the varied effects of the construction sequence of double-
track tunnels on pile foundations [22,23].

Extensive research has been conducted on the influence of tunnel excavation on nearby existing
pile foundations, yet there is a paucity of studies addressing the impact of pile foundation construction
on adjacent existing tunnels. Wang et al. [24] introduced an analytical solution for the longitudinal
settlement of tunnels resulting from the axial loading of single pile or pile groups. This was based
on the extended shear displacement method and the dual parameter elastic foundation beam model,
subsequently validated through finite element numerical calculations. Lueprasert et al. [25] explored
the impact of axial loading on nearby existing tunnels through finite element numerical calculation
methods. Liu et al. [26] employed the tunnel project of Wuxi Metro Line 2 in China as the background.
They utilized finite element numerical calculation methods and integrated on-site measured data
to elucidate the impact mechanism of static pile pressing on the existing subway tunnel structure.
Gao et al. [27] analyzed the impact of a pile foundation construction method combining Benoto bored
pile and conventional circulating mud construction technology on adjacent tunnels. They employed
on-site monitoring methods, with the Nanjing subway tunnel serving as the study background.

The use of a one-column-one pile foundation finds diverse applications in engineering. However,
in certain cases, the design specifications may necessitate the installation of long pile foundations
directly above shallow-buried tunnels. During practical construction, it becomes necessary for the pile
foundation to traverse the tunnel’s upper portion and reach the rock layer beneath, a practice that is
evidently impractical. Addressing the challenge of transferring comparable column loads to deep soil
without causing a substantial impact on nearby tunnels is a pressing concern in engineering. Grounded
in the first phase project of the Hangzhou Convention and Exhibition Center, this paper introduces
an underground transfer structure spanning multiple subway tunnels. Employing theoretical analysis
methods, we established a simplified mechanical model for the transfer structure that can concurrently
account for soil stratification, pile foundation behavior, and plate action. The finite difference method
and Newton-Simpson method were employed to solve the established mechanical model, elucidating
the mechanical mechanism of the transfer structure. The key innovations are as follows: 1© Proposal of
an underground transfer structure spanning multiple subway tunnels, facilitating the transfer of loads
from upper structural columns to the pile foundation beneath the beams through the transfer structure,
thus transmitting to the deep soil and ensuring minimal impact on adjacent tunnels. 2© Provision of a
simplified analysis method for the force mechanism of the transfer structure by integrating theoretical
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analysis methods. The established simplified analysis method in this paper is applicable for stress
analysis of transfer structures, considering soil stratification, pile foundation behavior, and plate action
simultaneously. 3© The practical application of transfer structures and the corresponding simplified
analysis methods in engineering has substantiated the effectiveness of these simplified structures and
analysis approaches.

2 Proposal of Transfer Structure
2.1 Project Introduction and Difficulties

The upper main structure of the first phase project of the Hangzhou Convention and Exhibition
Center comprises a steel structure, wherein the central corridor aligns closely with the longitudinal
direction of the tunnel. The central corridor directly overlies the tunnel, with the parallel sections
spanning nearly 600 m. As illustrated in Fig. 1, the steel structure column of the central corridor
descends directly above the tunnel structure. Considering the shallow buried depth of the tunnel at
14.4 m, employing a one-column-one pile foundation in a pile length of 75 m. Consequently, it is
unfeasible to conduct pile foundation construction directly beneath the column, impeding the direct
transmission of the upper load carried by the column into the foundation.

Figure 1: The relative position relationship between steel structure columns and tunnels

2.2 Proposal of Transfer Structure
To seamlessly transfer the load of the steel structure column within the central corridor to the

foundation, mitigating any substantial impact on adjacent tunnels, an underground transfer structure
spanning multiple subway tunnels was suggested, as depicted in Fig. 2. This approach ensures that the
load carried by the upper structural columns is effectively transferred to the pile foundation beneath
the beams through the transfer structure, subsequently reaching to the deep soil and minimizing any
adverse effects on nearby tunnels.



2896 CMES, 2024, vol.139, no.3

Figure 2: Transfer structure 3D diagram

3 Simplified Mechanical Model of Transfer Structure
3.1 Clarification of the Transmission System

As illustrated in Fig. 3, the transfer sequence of the transfer structure for the distributed load and
self-weight of the bearing plate unfolds as follows: a portion of the load is conveyed to the longitudinal
and transverse beams through the bearing plate, while another portion is transferred to the soil beneath
the plate. Both the longitudinal and transverse beams bear not only the load transmitted by the bearing
plate but also the vertical load transmitted from the upper structural column. Consequently, the load
carried by these beams is distributed, with a segment transmitted to the soil under the beam and
another segment directed to the pile foundation.

3.2 Establishment of Mechanical Model
Given that both the distributed load carried by the bearing plate and the vertical load transmitted

by the upper structural column primarily pass through the pile foundation via longitudinal and
transverse beams, these beams were selected as the focal analysis components. This led to a simplified
mechanical model for the transverse beams, depicted in Fig. 4a, and a simplified mechanical model
for the longitudinal beams, illustrated in Fig. 4b.

As illustrated in Fig. 4a, the upper load supported by the transverse beams encompasses three
components: 1© The vertical load transmitted by the upper structural column, denoted as Fn; 2©
the summation of the self-weight and the distributed load on the plate, minus the residual load
borne by the soil beneath the plate—commonly simplified for practical engineering calculations as
a triangular distributed load with a maximum value of qp; 3© the self-weight distribution load of the
transverse beams, represented as qd. The upper load supported by the transverse beam is divided, with
a portion transmitted to the soil beneath the beam and the remainder directed to the pile foundation.
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To streamline the analysis, accounting for the intricate interaction between the beam, soil, and the
pile-soil system directly would result in an excessively complex solution model. Therefore, a simplified
approach is proposed, wherein the pile foundation is replaced by springs featuring bending stiffness
Km and axial stiffness Kn. Similarly, the soil beneath the beam is approximated by a distributed spring
with axial stiffness ks.

Figure 3: Transfer structure 3D diagram transfer structure plan diagram

(a) (b)

Figure 4: Simplified mechanical model: (a) Transverse beams; (b) Longitudinal beams

As depicted in Fig. 4b, the upper load supported by the longitudinal beams comprises two
components: 1© the summation of the plate’s self-weight and the distributed load on the plate, minus
the residual load borne by the soil beneath the plate—typically simplified for practical engineering
calculations as a trapezoidal distributed load with a maximum value of qp; 2© the self-weight
distribution load of the longitudinal beam. Analogous to the transverse beams, longitudinal beams
transmit a portion of the upper load they bear to the soil beneath the beam and the remaining portion
to the pile foundation. To streamline the analysis, it is proposed to substitute the pile foundation
with springs featuring bending stiffness Km and axial stiffness Kn, while the soil under the beam is
approximated by distributed springs with axial stiffness ks.
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3.3 Stress Analysis of Bearing Plate
Assuming that the load on the upper section of the bearing plate is uniformly distributed, and

likewise, the self-weight is uniformly distributed, the bottom reaction force provided by the soil is also
uniformly distributed. The uniformly distributed surface load, denoted as pptl, is carried by the bearing
plate.

pptl = ppe + ppg − pps (1)

where ppe represents the surface load carried by the plate; ppg denotes the self-weight surface load of
the plate.

ppg = ρpgtp (2)

where ρp and tp stand for the density and thickness of the plate, respectively, g representing the
acceleration due to gravity. pps denotes the uniformly distributed surface load corresponding to the
reaction force supplied by the soil at the bottom of the plate.

Pps = ks

abs
(
wpd − wpc

) + (
wpd − wpc

)
2

(3)

where wpc and wpd represent the void and the average deflection at the bottom of the plate. As shown in
Eq. (3), it is apparent that when the void amount wpc at the plate’s bottom exceeds the average deflection
wpd, the corresponding uniformly distributed surface load pps of the soil at the plate’s bottom is zero—a
scenario consistent with practical expectations.

Upon determining the uniformly distributed surface load, pptl, borne by the bearing plate as
per Eq. (1), the load is then transferred to the longitudinal and transverse beams following the
bidirectional plate configuration depicted in Fig. 5. By intersecting the four corners of the grid plate
diagonally at a 45° with the centerline parallel to the longitudinal beams, each grid plate is divided
into two trapezoidal plates and two triangular plates. The load on each small plate is conveyed
to its supporting beam. Beyond the to the weight of the beam and other directly borne loads, the
supporting longitudinal beam in the long direction carries the trapezoidal load, while the supporting
transverse beam in the short direction bears the triangular load. The maximum values corresponding
to trapezoidal and triangular loads are determined.

qp = pptl

lp0

2
(4)

In Fig. 4, lp0 and lt0 represent the calculated spans for short and long spans, respectively.

3.4 Calculation of Axial Stiffness ks of Soil Spring Considering Soil Stratification
The pivotal step in determining soil reaction force at the plate’s bottom involves the calculation of

the axial stiffness, ks, of the soil spring. The physical interpretation of the axial stiffness, ks, for a soil
spring is the pressure corresponding to the vertical deflection per unit area. In practical engineering,
where the soil is layered, the finite compression layer model [28] proves valuable as it accounts for soil
stratification. This model enables the characterization of the relationship between surface settlement
and surface pressure, thereby allowing the derivation of the axial stiffness, ks, for the soil spring.
Consequently, an effort was made to derive an expression for the axial stiffness, ks, of the soil spring,
considering soil stratification through the finite compression layer model.
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Figure 5: Load bearing plate stress model

According to the finite compression layer model, the calculation formula for the settlement s of
the finite compression layer foundation is [28]

s =
m∑

j=1

σ zjhj

Esj

(5)

where the parameters Esj, hj and σ zj represent the compressive modulus, thickness, and average
additional stress of the jth soil layer, respectively. In the case of layered foundations, the additional
stress, σ zj, can be determined through the transfer matrix method [29,30]. However, due to the method’s
complexity, and to enhance its practical applicability in engineering, the Boussinesq solution for the
elastic half-space problem was adopted. Specifically, if a pressure, p, acts on a square unit area of
the soil at the plate’s bottom, the resulting additional stress at the center of the jth soil layer directly
beneath the square is given by [29,30]

σ zjc = 2p
π

[
arctan

m′

n
√

1 + m′2 + n2
+ m′ · n√

1 + m′2 + n2

(
1

m′2 + n2
+ 1

1 + n2

)]
(6a)

Eq. (6a) is equivalent to

σ zjc = ζ
(
zj

)
p (6b)

In Eq. (6a), m′ = l
b

, n = 2zj

b
, l and b are the length and width of the square, both valued 1.0 m,

zj is the vertical distance between the pressure p action position and the middle position of the jth soil
layer, which can be expressed as

zj =
(

j∑
k=1

hk

)
− hj

2
(7)
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Let,

ζ
(
zj

) = 2
π

[
arctan

m′

n
√

1 + m′2 + n2
+ m′ · n√

1 + m′2 + n2

(
1

m′2 + n2
+ 1

1 + n2

)]
(8)

Similarly, the additional stress caused by the pressure p in the middle of the jth soil layer directly
below the square corner is [29,30]

σ zjp = ζ ′ (zj

)
p (9)

where

ζ ′ (zj

) = 1
2π

[
arctan

m′

n′
√

1 + m′2 + n′2
+ m′ · n′

√
1 + m′2 + n′2

(
1

m′2 + n′2 + 1
1 + n′2

)]
(10)

n′ = zj

b
(11)

Substituting Eq. (6b) into Eq. (5) to obtain the settlement of the foundation directly below the
center of the square:

sc = p
m∑

j=1

ζ
(
zj

)
hj

Esj

(12)

Substituting Eq. (9) into Eq. (5) to obtain the settlement of the foundation directly below the
square corner point as

sp = p
m∑

j=1

ζ ′ (zj

)
hj

Esj

(13)

After obtaining the settlement of the foundation directly below the center and corner of the
square, the overall settlement of the foundation is approximately calculated according to the following
equation:

s = 4sp + sc

5
= p

m∑
j=1

(
4ζ ′ (zj

) + ζ
(
zj

)
5

hj

Esj

)
(14)

The axial stiffness ks of soil spring can be seen as the ratio of pressure p to settlement s, hence

ks = p
s

= 1
m∑

j=1

(
4ζ ′(zj)+ζ(zj)

5

hj

Esj

) (15)

3.5 Calculation of Axial Stiffness Kn of Pile Foundation Considering Soil Stratification
The axial stiffness, Kn, of a pile foundation is defined as the ratio of the axial force at the pile

top to the settlement at the pile top. Currently, common methods for calculating single pile settlement
mainly include load transfer method [30], shear displacement method [31], elastic theory method [32],
boundary element method [33], finite element method, etc. [34]. The load transfer method is widely
employed in engineering due to its ability to account for soil stratification, requiring fewer parameters
for solving, and eliminating the need for extensive numerical calculations. To maintain simplicity in
calculations, the pile-soil interaction model depicted in Fig. 6 simulates the interaction using a series
of springs, where k′

si and hi represent the soil spring stiffness and soil layer thickness for the ith soil
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layer, and Kb is the pile end spring stiffness. If the pile’s circumference is Cp, the modulus is Ep, and
the cross-sectional area is Ap, then the differential equation governing the pile body is

EPAP

d2u (z)

d2z
= k′

sCPu (z) (16)

where the symbol u (z) represents the variation in pile displacement with depth z, while k′
s denotes the

vertical stiffness of soil spring, typically varying across different soil layers. By performing segmented
integration on Eq. (16) based on soil stratification and considering the boundary conditions at the pile
bottom, along with the deformation coordination conditions at the soil stratification position of the
pile body, the axial stiffness of the pile top can be readily obtained [35]

Kn = EPAPλ1 tanh (λ1h1 + α1) (17)

where

λi =
√

k′
si · CP

EPAP

, i = 1, 2, 3, · · · , n

αn = artanh
Kb

EPAPλn

αj = artanh
(

λj+1

λj

tanh
(
λj+1hj+1 + αj+1

))
j = n − 1, n − 2, n − 3, · · · , 1

Figure 6: Pile soil vertical interaction model

3.6 Calculation of Bending Stiffness Km of Pile Foundation Considering Soil Stratification
The stress analysis methods for horizontally loaded piles can be broadly categorized into four

groups: elastic analysis method [36], foundation reaction method [37], p-y curve method [38], and
numerical analysis method [39]. In the engineering field, the m method in the foundation reaction
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method [40] is frequently employed. To maintain tractability, the m method is utilized for determining
the bending stiffness, Km, of pile foundations. As illustrated in Fig. 7, the horizontally loaded
foundation pile, subjected to a bending moment M0 at its top, undergoes bending deformation with
depth y (z) under external forces. Treating the pile foundation as a beam, and the horizontal interaction
between the pile and soil is simulated through horizontal springs. In elastic foundation, the beam
differential equation corresponding to the pile is

EPIP

d4y (z)
dz4

+ BPmzy (z) = 0 (18)

where EPIP is the bending stiffness of the pile; y (z) means the variation of horizontal displacement
of the pile body with depth z; BP denotes the width of the pile, for circular piles, when the diameter
D < 1 m, BP = 0.9 (1.5D + 0.5), when D > 1 m, BP = 0.9 (1.0D + 1.0), for square piles, when the
pile width b ≤ 1 m, BP = 1.5b + 0.5, when the pile width b > 1 m, BP = 1.0b + 1.0; m represents
the coefficient that characterize the variation of the horizontal resistance coefficient of the foundation
with depth, which is generally different for different soil layers.

Figure 7: Pile soil lateral interaction model

After solving Eq. (18) based on boundary conditions, the rotation angle of the pile at the pile top
position can be obtained

ϕ0 = ϕ (z)|z=0 = dy (z)
dz

∣∣∣∣
z=0

(19)

The boundary conditions primarily encompass those at the bottom and top of the pile, along
with the coordination conditions at the soil stratification location. Assuming the bottom of the pile as
a fixed end, the deflection deformation y and rotation angle ϕ ′ are both zero, satisfying the conditions

y (z)|z=l′p = 0 (20a)

ϕ ′ (z)|z=l′p = dy (z)
dz

∣∣∣∣
z=l′p

= 0 (20b)
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where l′
p is the pile length. The boundary conditions at the top of the pile are mainly force boundaries

M (z)|z=0 = −EPIP

d2y (z)
dz2

∣∣∣∣∣
z=0

= M0 (21a)

FV (z)|z=0 = −EPIP

d3y (z)
dz3

∣∣∣∣∣
z=0

= 0 (21b)

At the interface between the i-th and i+1-th soil layers, the conditions of identical bending
deformation, rotation angle, bending moment, and shear force are satisfied. Once the rotation angle
ϕ0 at the pile’s top is determined, the bending stiffness, Km, of the pile foundation can be calculated
using the following formula:

Km = M0

ϕ0

(22)

4 Solution of Simplified Mechanical Model for Transfer Structures

Upon elucidating the interaction among piles, plates, and soil, the next step involves resolving
the transverse and longitudinal multi-span beam systems depicted in Fig. 3. Presently, complex beam
systems are typically addressed using methods such as finite element method [41] and finite difference
method [42] are mainly used to solve. Opting for the finite difference method due to its programming
convenience, this method is employed to solve the beam system illustrated in Fig. 3.

4.1 Center Difference Method
The fundamental concept of the finite difference method involves substituting differential equa-

tions and boundary conditions with difference equations. This transformation turns the solution of
differential equations into the solution of linear equations, significantly mitigating the complexity of
the problem-solving process. In the case of the equationy = f (x), the central difference’s core equation
is(

dy
dx

)∣∣∣∣
x= xi+xi+1

2

= f (xi+1) − f (xi)

xi+1 − xi

(23)

4.2 Finite Difference Basic Equation
The differential equation governing deflection in the Winkler elastic foundation beam model [11]

is

EbIb

d4w (x)

dx4
= q (x) − bbksw (x) (24)

where the bending stiffness of the beam is denoted as EbIb; w (x) represents the deflection of the beam,
with positive values indicating downwards deflection; ks is the vertical soil foundation coefficient; bb

signifies the width of the beam cross-section; q (x) is the top line load acting downward. The associated
parameters, including the rotation angle (positive for clockwise rotation), bending moment (positive
for tension on the lower side), and shear force (positive for the moment generated on adjacent sections
in a clockwise direction) of the beam, are given, respectively.

ϕ (x) = dw (x)

dx
(25)
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M (x) = −EbIb

d2w (x)

dx2
= −EbIb

dϕ (x)

dx
(26)

Fv (x) = −EbIb

d3w (x)

dx3
= dM (x)

dx
(27)

Write Eqs. (24)–(27) as matrix expressions⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dw (x)

dx
dϕ (x)

dx
dM (x)

dx
dFv (x)

dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0 1 0 0

0 0 − 1
EbIb

0

0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

w (x)

ϕ (x)

M (x)

Fv (x)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0
0
bbksw (x) − q (x)

⎞
⎟⎟⎠ (28)

Partition the foundation beam into n segments, not necessarily equal in length, with node numbers
1,2,3... and n+1. The two ends of the i-th beam segment are designated as i and i+1. In practical
segmentation, nodes are established at points of abrupt changes in local load, such as the three key
points of triangular load and the four key points of trapezoidal load, as well as the concentrated load
and various support types. Denoting the length of the i-th beam segment as Li, the segment must
satisfy the differential equation presented in Eq. (28) at its center. Considering the central difference
equation, the i-th beam segment adheres to the following linear equation system:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
Li

−1
2

0 0

0 − 1
Li

1
2EIi/2

0

0 0 − 1
Li

−1
2

−bbi/2ks

2
0 0 − 1

Li

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

wi

ϕi

Mi

Fvi

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Li

−1
2

0 0

0
1
Li

1
2EIi/2

0

0 0
1
Li

−1
2

−bbi/2ks

2
0 0

1
Li

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

wi+1

ϕi+1

Mi+1

Fvi+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
−qi/2

⎞
⎟⎟⎠ (29)

where EIi/2 is the bending stiffness at the midpoint of the i-th beam segment; qi/2 is the distributed
load value at the midpoint of the i-th beam segment; bbi/2 is the width at the midpoint of the i-th beam
segment.

4.3 Compatibility Condition
To address the beam system with multiple transverse and longitudinal spans depicted in Fig. 3, it

is essential not only to adhere to the fundamental linear equation system Eq. (29) but also to meet the
compatibility conditions at the points of concentrated force application and at the intersection nodes
of longitudinal and transverse beams.

For nodes subjected to concentrated forces, it is possible to establish one node on each side of the
given node. The left beam segment of the node can be computed as the left node, and the right beam
segment as the right node. However, the left and right nodes must adhere to compatibility conditions,
ensuring uniform deflection s, identical rotation angle, consistent bending moment, and equilibrium
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between shear force and concentrated force on both sides. In other words, both sides must satisfy⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

wl

ϕ l

M l

Fv
l

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

wr

ϕr

M r

Fv
r

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
Fn

⎞
⎟⎟⎠ (30)

where Fn represents the concentrated force, with a positive orientation vertically downwards. The
physical quantity with the superscript l denotes the physical quantity corresponding to the left node,
while the physical quantity with the superscript r indicates the physical quantity corresponding to the
right node.

At the intersection nodes of the longitudinal and transverse beams, illustrated in Fig. 8, three
primary types of nodes exist: L-shaped nodes (01, 01), T-shaped nodes (01, 02), and cross-shaped
nodes (02, 02). Each node type corresponds to distinct compatibility conditions.

Figure 8: Intersection nodes of longitudinal and transverse beams

The L-shaped node represented by nodes (01, 01) can be deconstructed into an upper node and a
right node, both exhibiting the identical deflection. The reaction force of the rotating spring support
at the right node is equilibrated with the bending moment of the right node. Similarly, the reaction
force of the rotating spring support at the upper node is counterbalanced by the bending moment of
the upper node. Additionally, the reaction force of the vertical spring support is harmonized with the
shear force and vertical concentrated force of the upper right two nodes. This configuration ensures⎛
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where the physical quantity denoted by a superscript t corresponds to the upper node. Similarly, the
L-shaped nodes depicted in nodes (01, 05) adhere to⎛
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Node (04, 01) satisfies⎛
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where the physical quantity represented by a superscript b corresponds to the lower node. Node (04,
05) adheres to⎛
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For the T-shaped nodes represented in nodes (01, 02), they can be deconstructed into right, upper,
and left nodes. The deflection among these three nodes is identical. The rotation angles of the right
and left nodes are equal, and the bending moment of the spring support at the right and left nodes
is counterbalanced by the bending moment at these respective nodes. Moreover, the reaction force of
the rotating spring support at the upper nodes is equilibrated with the bending moment at the upper
nodes. The reaction force of the vertical spring support is also harmonized with the shear force and
the vertical concentrated force Fn at the three nodes. This configuration ensures⎛
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Similarly, the T-shaped nodes shown in nodes (02, 01) satisfy⎛
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the T-shaped nodes shown in nodes (02, 05) satisfy⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 Km 1 0
0 0 0 0
Kn 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

wt

ϕt

M t

Fv
t

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 Km −1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

wl

ϕ l

M l

Fv
l

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

wb

ϕb

Mb

Fv
b

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
Fn

⎞
⎟⎟⎟⎟⎟⎟⎠

(32c)

the T-shaped nodes shown in nodes (04, 02) satisfy⎛
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The cross shaped nodes illustrated in nodes (02, 02) can be deconstructed into upper, left, lower,
and right nodes, adhering to the requirements of four nodes with identical deflection, upper and
lower nodes sharing the same rotation angle, and the left and right nodes also possessing identical
rotation angles. The reaction force of the rotating spring support at the upper and lower nodes is
counterbalanced by the bending moment of the upper and lower nodes, while the reaction force of the
rotating spring support at the left and right nodes is harmonized with the bending moment of the left
and right nodes. The reaction force of the vertical spring support is equilibrated with the shear force
at all four nodes and the vertical concentrated force Fn, thus satisfying⎛
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4.4 Calculation and Processing of Distributed Load on Beams
In principle, upon the completion of the beam system discretization, a comprehensive linear

equation system is formulated by amalgamating Eq. (29) with compatibility conditions Eqs. (30)–(33).
The resolution of this linear equation system yields the deflection, rotation angle, bending moment,
and shear force at each node, facilitating the determination of internal forces and deformations in the
foundation beam corresponding to the transfer structure. However, before undertaking the solution
process, it is imperative to ascertain the distributed load on the beam, encompassing the beams’ self-
weight and the line load transmitted from the bearing plate to the longitudinal and transverse beams.
Calculating the self-weight of the beam is straightforward, with the primary focus directed toward
elucidating the line load transmitted by the bearing plate to the longitudinal and transverse beams.

Substitute Eqs. (2) and (3) into Eq. (1) to derive the line load transmitted from the bearing plate
to the longitudinal and transverse beams.

qp =
(

ppe + ρpgtp − ks

abs
(
wpd − wpc

) + (
wpd − wpc

)
2

)
lp0

2
(34)

Considering the specific transfer structure within a particular stratum, known quantities include
the surface load ppe, plate density ρp, gravity acceleration g, plate thickness tp, axial stiffness of soil
spring ks, plate bottom clearance wpc, and calculated span lp0 of beam short span that the plate surface
bears are all known quantities. The average deflection wpd at the bottom of the plate is associated with
the deflection of the adjacent beams. To simplify calculations, it is assumed that the average deflection
wpd at the bottom of the plate equals the average value of the center deflection of the adjacent four
beams wbm1 wbm2 wbm3 wbm4, satisfying

wpd = 1
4

(wbm1 + wbm2 + wbm3 + wbm4) (35)

By substituting Eq. (35) into Eq. (34), we can establish the relationship between the line load
transmitted by the bearing plate to the longitudinal and transverse beams and the deflection at the
center of the beam

qp = (
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4
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) + (
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4
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2
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2

(36)

By synthesizing Eqs. (29)–(33), and (36), a nonlinear equation system is derived for the deflection,
rotation angle, bending moment, shear force, and line load transmitted from the bearing plate to the
longitudinal and transverse beams. The Newton Simpson iteration method [41] can be applied to solve
this equation, facilitating the solution for the internal forces and deformations of the foundation beams
corresponding to the transfer structure.

4.5 Solving Process
In summary, the process for establishing and solving solution the transformational structural

mechanics model is depicted in Fig. 9. Initially, the geometric and physical-mechanical parameters
of the piles, longitudinal beams, transverse beams, and plates are determined for both the original and
transfer structure. The formation parameters encompass the thickness of soil layers, the compression
modulus for each layer of soil, the coefficient of horizontal resistance varying with depth, the vertical
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stiffness for each soil layer, and the spring stiffness of the pile end soil. The pile parameters mainly
include diameter, length, elastic modulus, and pile end soil stiffness. The parameters of longitudinal
and transverse beams comprise length, width, height, density, elastic modulus, and the concentrated
force transmitted by the structural column to the beam. The plate parameters include uniformly
distributed external load on the plate surface, density, thickness, and the void at the bottom of the
plate. Subsequently, based on the geological parameters, Eq. (15) is employed to determine the axial
stiffness ks of the soil spring, accounting for soil stratification. Utilizing the geological and pile
foundation parameters, Eqs. (17) and (22) are applied to obtain the axial stiffness Kn and flexural
stiffness Km of the pile foundation, considering soil stratification. The longitudinal and transverse
beam system is discretized, and Eq. (29) is established for each beam segment element. Compatibility
Eqs. (30) to (33) is formulated based on the compatibility conditions at points of concentrated force
action and the intersection nodes of longitudinal and transverse beams. Eq. (36) is derived from
the coordination equation. Finally, the difference equation, compatibility equation, and beam-plate
coordination equation are combined to form a nonlinear equation system. This system incorporates
unknown variables such as deflection, rotation angle, bending moment, shear force, and line load
transmitted from the bearing plate to the longitudinal and transverse beams. The Newton-Simpson
iteration method is then applied to solve the nonlinear equation system, enabling the determination
of the internal force and deformation of the foundation beam and achieving the solution for the
transformational structural mechanics model.

Formation 
parameters

Eq.(15)

Pile foundation 
parameters

Longitudinal 
and transverse 

beam 
parameters

Plate 
parameters

Axial stiffness of 
soil spring

Eq.(17) Axial stiffness of 
pile foundation

Eq.(22) Bending stiffness 
of pile foundation

Difference equation 
Eq.(29)

Compatible 
equations

Eq.(30)~Eq.(33)

Beam plate 
coordination 

equation Eq.(36)

Nonlinear 
equations

Newton Simpson 
for solving

Figure 9: Mechanical model establishment and solution process

5 Application of Simplified Mechanical Model for Transfer Structure
5.1 Model Parameters

To facilitate the seamless transfer of the load from the central corridor steel structure column
to the foundation while minimizing impact on the adjacent tunnel, a transfer structure, illustrated in
Fig. 2, was implemented during the initial phase of the Hangzhou Convention and Exhibition Center
project. Table 1 presents the pertinent parameters of the strata within which the transfer structure is
situated.

The transfer structure is horizontally segmented into 2 spans along the tunnel and vertically into
5 spans for analysis. The transverse beams boast a 16 m span and a cross-sectional profile of 1800 mm
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× 2000 mm, while the longitudinal beams feature a 9 m span and a cross-sectional specification of
600 mm × 1200 mm, accompanied by a plate thickness of 250 mm. Pile foundations are strategically
positioned at the intersection points of longitudinal and transverse beams, each with a 0.9 m diameter.
The piles on the sides extend to a length of 75 m, while those in the middle row are 78 m long. The
concrete used for beams and plates is of C40 grade with elastic modulus of 3.25 × 104 MPa, and for
piles, C45 grade concrete is employed, also with elastic modulus of 3.25 × 104 MPa. The soil stiffness
at the pile end is considered as 210.00 MN/m, and the concrete density is set at 2500 kg/m3. The plate’s
bottom clearance is assumed to be 0.00 mm, and a uniformly distributed external load of 2.50 kPa
is applied to the board surface. The location and magnitude of concentrated loads on the beams are
outlined in Table 2.

Table 1: Soil layer related mechanical parameters

Soil layer name Thickness hj (m) Compression
modulus Esj (MPa)

Vertical stiffness of
soil spring k′

si

(MN/m3)

m value
(MN/m4)

Plain fill 0.50 8.79 15.00 24.51
Sandy silt 32.70 8.34 25.21 42.31
Silty clay 27.73 11.62 46.38 62.32
Calcareous
siltstone

56.00 64.96 226.34 273.14

Table 2: Location and magnitude of external loads

Distance from the leftmost node (m) Concentration force (kN)

11 3848
16 2827
27 5027

5.2 Transfer Structure Stress
Combining the model parameters and the solution process illustrated in Fig. 9 facilitates the

derivation of the internal force diagrams and deformation diagrams for the transfer structure, as
depicted in Fig. 10. To validate the proposed simplified analysis method, we present corresponding
results obtained through finite element analysis in Fig. 10. A clear comparison between the two
methods reveals that the simplified calculation approach in this paper exhibits high accuracy and is
practical for engineering calculations. The figure illustrates a maximum deflection of approximately
2.5 mm and a maximum bending moment of 7800 kN/min the middle span of the transverse beam.
These extremities align closely with the positions of concentrated loads application. To optimize
material strength and ensure even distribution of the bending moment along the beam length, it is
advisable to consider a moderate increase in pile length at the mid-span beam position. Meanwhile,
the longitudinal beam in the middle span exhibits a maximum deflection of about 2.75 mm and
a maximum bending moment of 1300 kN/min. The distribution of bending moments along the
beam length is notably more uniform than in the transverse beams. When designing the transfer
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structure, factors such as pile length, pile section size, and beam section size should be carefully
considered to achieve an even distribution of bending moments. Prioritizing adjustments to the pile
length is recommended for achieving uniform bending moment distribution, taking into account the
practicalities of the construction process.

Figure 10: Transfer structure calculation results: (a) Mid span-transverse beam; (b) Mid span longitu-
dinal beam

5.3 Discussion
Section 3.2 of this paper establishes a simplified analysis method for the transfer structure, treating

the beam system of longitudinal and transverse beams as a Winkler elastic foundation beam. In
Figs. 4a and 4b, the pivotal aspects of Winkler elastic foundation beams involve determining the axial
stiffness (ks) of the soil spring, the axial stiffness Kn of the pile foundation, and the bending stiffness Km

of the pile foundation. Eq. (15) highlights the influence of soil layering and the compressive modulus
of each layer on the axial stiffness of the soil spring, significantly impacting the elastic foundation
beam’s solution results. Similarly, Eqs. (17) and (18) demonstrate that soil layering, mechanical
properties of each soil layer, and pile foundation characteristics affect the axial and bending stiffness
of pile foundations, consequently influencing the solution results of elastic foundation beams. In
summary, soil stratification affects Winkler elastic foundation beams through the collective impact
of soil spring axial stiffness, pile foundation axial stiffness, and pile foundation bending stiffness.
Simultaneously, pile foundation characteristics affect Winkler elastic foundation beams through the
combined influence of pile foundation axial stiffness and bending stiffness. Considering that the
simplified analysis method in this paper is grounded in the Winkler elastic foundation beam model, its
applicability should align with the scope of this model. Thus, it is primarily suited for relatively weak
soil layers and not suitable for rock foundations.

The derivation process of the simplified analysis method for the transfer structure reveals that
this paper approximates pile-soil interaction, beam-soil interaction, and plate-soil interaction in a
linear fashion. It is evident that the derived simplified analysis method is not suitable for scenarios
involving substantial deformations, such as considerable relative displacement at the pile-soil interface
or extensive bending deformation of the beam. Additionally, in practical engineering applications,
issues like pile foundation failure or uneven settlement may arise. To address pile foundation failure,
one can simply assign zero values to the corresponding axial stiffness and bending stiffness of the pile
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foundation. As for uneven settlement problems of pile foundations, the simplified analysis method
presented in this paper remains applicable as long as there is no significant deformation.

The transmission of load from the upper structure is channeled through columns to the longitudi-
nal and transverse beams. Interactions occur between the longitudinal and transverse beams and the
underlying soil, as well as between these beams and pile foundations. This sequential process effectively
conveys the upper load to the soil and piles beneath the beams. As the soil beneath the beams bears
the load, stress is disseminated to the deeper layers. Similarly, when the pile foundation assumes the
load, it distributes it to the surrounding soil and the deeper layers through both the pile side and
pile end. Clearly, this load transfer process imposes stringent demands on the connection nodes of
longitudinal and transverse beams, as well as on the construction quality of piles. Any failure in nodes
or pile foundations can alter the course of load transfer. Therefore, during the actual construction, it
is imperative to rigorously ensure the quality of both node and pile foundation construction.

Given the intricate nature of soil behavior, the variability in soil properties, and the ultimate
transfer of upper loads to the soil by the transfer structure, the param defining the interaction between
soil and the conversion structure become pivotal in stress analysis. For enhanced safety in actual
engineering design, it is advisable to prudently diminish the values of param such as Esj, k′

si, and m
during design analysis, for instance, by employing a reduction factor of 0.9.

6 Conclusion

To address the engineering challenge of accommodating pile foundations traversing through
tunnels, a subterranean transfer structure spanning multiple subway tunnels is proposed. This study
offers a streamlined analysis approach to elucidate the force mechanism within the transfer structure
by amalgamating various theoretical analysis methods. The primary conclusions are as follows:

(1) The vertical load imposed on the upper structural columns is transmitted through the transfer
structure to the pile foundation beneath the beams, subsequently transferring to the deep soil. This
process ensures minimal impact on adjacent tunnels.

(2) The simplified analysis method established in this study facilitates stress analysis of transfer
structures, concurrently considering soil stratification, pile foundation behavior, and plate action.

(3) When designing the transfer structure, careful consideration of pile length, pile section size,
and beam section size is essential to accommodate the characteristics of the upper load, ensuring an
even distribution of the beam bending moment.

The paper introduces an innovative underground transfer structure spanning multiple subway
tunnels and employs theoretical analysis methods to elucidate its stress mechanism However, practical
engineering often seeks to minimize engineering costs while maintaining safety. The optimization of
the design for underground transfer structures with numerous variables to reduce engineering costs
represents a valuable avenue for future research. Intelligent optimization methods are recommended
for achieving optimal designs in the future transfer structure projects.
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