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ABSTRACT

Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within
the time series data. Due to the challenges associated with annotating anomaly events, time series reconstruction
has become a prevalent approach for unsupervised anomaly detection. However, effectively learning represen-
tations and achieving accurate detection results remain challenging due to the intricate temporal patterns and
dependencies in real-world time series. In this paper, we propose a cross-dimension attentive feature fusion
network for time series anomaly detection, referred to as CAFFN. Specifically, a series and feature mixing block is
introduced to learn representations in 1D space. Additionally, a fast Fourier transform is employed to convert the
time series into 2D space, providing the capability for 2D feature extraction. Finally, a cross-dimension attentive
feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly
detection. Experimental results on real-world time series datasets demonstrate that CAFFN performs better than
other competing methods in time series anomaly detection.
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1 Introduction

Anomaly detection aims to find data points that significantly deviate from other samples in the
same data group [1], which has been widely studied in diverse research areas and application domains
[2,3]. Time series data tracks samples over time in temporal order, collected using field-deployed
sensors that monitor the status of systems or services in the manufacturing industry [4]. Detecting
anomalies in time series is a crucial task for monitoring various statuses and assisting the failure
troubleshooting [5], thus preventing system failure and reducing system maintenance costs [6]. In the
unsupervised setting, it is expected to detect anomalous events in time series without annotation. Given
the advances in sensing technology, collecting time series data has become easier and faster in various
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fields [7], thus, there is an urgent need to develop effective methods that can precisely detect anomalies
in time series.

Given the intricate dependencies among elements in time series data, many existing models
struggle to capture complex relationships, leading to suboptimal detection performance. Following
this research direction, many efforts have been made to mitigate this gap. In particular, machine
learning methods [8,9] have been investigated in time series anomaly detection. In [10], a fast Fourier
transform is utilized to extract features, and a Bacterial Foraging Algorithm (BFA)-Gaussian support
vector classifier machine (GSVCM) model is introduced for analyzing electromyography (EMG)
signals. In [11], spectrogram features, including short-time Fourier transform (STFT) and continuous
wavelet transform (CWT), are exploited. Subsequently, a time-frequency approach called modified S-
transform is introduced, which studies the phase coupling between two or more different spatially
recorded entities with non-stationary characteristics. Also, K-Nearest Neighbor (KNN) [12] and
Random Forest (RF) [13] are explored for time series anomaly detection using Dynamic Time Warping
(DTW) or Principal Component Analysis (PCA) pre-processed features. Although these methods have
made considerable progresses in time series anomaly detection, the need for domain knowledge in
feature extraction generally limits their capability to capture dependencies and complex patterns in
time series data, thereby impeding anomaly detection performance.

Deep learning methods have demonstrated significant success in various domains [14,15], includ-
ing computer vision [16], speech recognition [17] and natural language processing [18]. This trend
has garnered considerable attention in the field of time series analysis [19]. In [20], a Convolutional
Neural Network (CNN) combined with a multiclass SVM is adopted for early anomaly diagnosis
problems, showing superior performance compared to conventional SVM, KNN and traditional
CNN. In another study [21], CNN and Recurrent Neural Network (RNN) are integrated to detect
anomalies in Internet of Things (IoT) [22] time series, in which spatial and temporal features are
extracted by CNN and recurrent autoencoder, respectively. In [23], a multi-head CNN-RNN model
is assessed against a real industrial case study, processing each sensor with independent convolutions
and requiring no pre-processing. Additionally, Generative Adversarial Networks (GANs) have been
explored for time series anomaly detection in an unsupervised manner [24], where 1D CNN and Gated
Recurrent Unit (GRU) are adopted as generator and discriminator, respectively. After training, the
reconstruction error can serve as an informative indicator for determining whether a certain sample of
the time series is anomalous. Furthermore, Variational AutoEncoders (VAEs) [25] have been adopted
for learning lower-dimensional latent representations of video object trajectories, and then anomaly
identification is achieved based on reconstruction loss. Given the advantage of automatic feature
learning, deep learning models have made noticeable progresses in time series anomaly detection and
considerably improved the performance. However, because of the locality property of convolution and
sequential computation paradigm of recurrent models [26], capturing long-term dependencies remains
challenging, presenting an obstacle to further improving the performance.

Recently, Transformers utilizing attention mechanism [27] have gained widespread use for mod-
eling sequential data [17,18], achieving impressive results and outperforming RNNs and CNNs in
natural language processing and computer vision tasks [18,28]. The attention mechanism allows the
model to simultaneously focus on essential parts while ignoring the irrelevant segments in the sequence,
independent of the sequence length, thus providing superior performance in modeling long sequences.
In time series analysis, Transformer-based models have also demonstrated their effectiveness in
capturing the long-term temporal dependencies among time points [29–31]. However, as the main
working power of Transformers, the multi-head self-attention mechanism is permutation-invariant to
some extent. Since time series analysis is inherently sensitive to the order of a continuous set of points,
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it inevitably suffers from temporal information loss, resulting in inferior performance [32]. In this
paper, we propose a cross-dimension attentive feature fusion network called CAFFN. This network
automatically extracts features from raw data in multiple dimensions, each possessing different levels
of locality properties. These features are then adaptively fused for time series anomaly detection. This
design enables the learning of local and global temporal representations in 1D and 2D spaces, allowing
for more effective capture of the complex patterns and dependencies in time series. The contributions
of this paper are summarized as follows:

• A cross-dimension attentive feature fusion network model is proposed, which learns and fuses
time series features from multiple dimensions with different levels of locality properties.

• A mixing strategy is introduced to model the dependencies at both series and feature levels,
which can effectively capture the correlations in time series data.

• Evaluation on benchmark datasets shows that the proposed CAFFN achieves superior perfor-
mance compared to other competing time series anomaly detection methods.

2 Related Works
2.1 Anomaly Detection

Anomaly detection refers to the identification of patterns in data that do not conform to the
expected behavior, a challenge that has been actively explored for several decades [33]. Due to its broad
applicability in diverse domains such as financial surveillance, risk management, health and medical
risk, and AI safety, anomaly detection plays an increasingly crucial role in real-world scenarios. Various
detectors have been investigated, which have made considerable progress in anomaly detection tasks.
Supervised models assume the availability of a training dataset with labeled instances for both normal
and anomaly classes [34]. However, obtaining accurate and representative labels can be challenging.
As a trade-off solution, semi-supervised anomaly detection assumes that the training data has labeled
instances only for the normal class, thus obviating the need for labels for the anomaly class [34].
In an extreme case, unsupervised anomaly detection [35,36] does not require any labeled data, with
the assumption that normal instances are far more frequent than anomalies in the test data [37].
Consequently, a variety of machine learning and deep learning methods have been developed for
anomaly detection.

2.2 Machine Learning Methods
Machine learning has been widely investigated for time series analysis. For instance, the autocor-

relation function and spectrum of the stationary process were explored to learn temporal dynamics
[38], and exponential smoothing [39] was used with Fourier functions of time to model seasonality
in time series. Also, exponentially weighted moving averages were adopted for sales data analysis
[40]. Considering the irregular properties of time series, the Kalman filter was introduced to deal
with situations in which the observations were irregularly spaced [41]. In addition, Gaussian processes
and their extension deep Gaussian processes [42] have been employed for time-series prediction [43],
providing a probabilistic means to model the temporal patterns in sequential data. Support vector
regression [44,45] has demonstrated superiority over other nonlinear techniques, such as multi-layer
perceptions, especially when dealing with time series data sampled from nonlinear and non-stationary
system processes. Furthermore, K-Nearest Neighbor (KNN) [12] and Random Forest (RF) [13] have
also been assessed for time series anomaly detection tasks. Although machine learning methods have
achieved considerable success in this field, the performance of machine learning pipelines heavily
relies on domain knowledge and handcrafted feature design, such as short-time Fourier transform and
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continuous wavelet transform [10,11]. This inevitably leads to information loss, hampering detection
performance.

2.3 Deep Learning Methods
By stacking multiple layers and imposing connection restrictions, deep neural networks [46–48]

have shown remarkable potential in learning nonlinear mapping and features from raw time series
data without any prior domain knowledge. In [49], Hierarchical Temporal Memory (HTM) was
employed for anomaly detection in streaming applications, where an online processing paradigm
was presented for handling streaming data from sensors. In [50], the Restricted Boltzmann Machine
(RBM) was utilized to learn system-wide patterns in distributed cyber-physical systems in a data-
driven fashion. It demonstrated its capability to capture multiple nominal modes with one energy-
based probabilistic graphical model. To capture the complex temporal dependence and stochasticity
of multivariate time series, gated recurrent unit and variational autoencoder were introduced, and the
reconstruction probabilities based on the learned representations were used to determine anomalies
in an unsupervised fashion [51]. In [52], a temporal hierarchical one-class network was proposed. It
utilizes a dilated recurrent neural network with multi-resolution recurrent skip connections to extract
multi-scale features; the difference between fused features and hypersphere centers is exploited for end-
to-end training and determining anomaly scores for unseen time series data. However, the sequential
computation paradigm of recurrent models is prone to gradient-vanishing and error accumulation
problems for long sequences, and also suffers from capturing global representations. Then, efforts
have shifted towards developing Transformer-based models for time series anomaly detection [53].
Meanwhile, pure MLP architectures have shown promising performance compared to Transformer
models on vision tasks [54]. Yet, their effectiveness in time series anomaly detection tasks is yet to
be explored. Generative adversarial networks have also been proposed [55] to model the distribution
of time series data. However, training GAN is usually unstable and prone to mode collapse issues.
Recent investigations have also revealed that CNNs are promising for capturing time series features
in 2D space [26], and linear models surprisingly remain competitive in time series analysis tasks [32].
This has inspired us to explore effective network architectures that can learn features across different
dimensions for time series anomaly detection.

3 Proposed Method
3.1 Main Framework

The main framework of the proposed method is shown in Fig. 1. The anomaly score is computed
by differentiating the reconstructed data and the input time series data, as indicated by the direct link
from the input layer to the one after the FC layer. The main assumption is that the trained model can
sufficiently learn the representation of normal time series, which predominates in the dataset, while
information about anomalies is lost during training due to the lack of samples. Since the time series is
naturally in 1D form, its features in 1D space are crucial to discover the specific temporal anomalous
patterns. Although self-attentions have been actively adopted for modeling temporal relations in an
ordered set of continuous points, recent findings indicate that this mechanism can be inferior even
to linear models in time series forecasting tasks [32]. In this study, we propose to use mixing as an
alternative strategy to learn the 1D feature from time series data. This allows communication between
different time steps at the series data level, as well as communication between different channels at
the feature level. In the right part of Fig. 1, different colors in the feature block after the first layer
norm indicate features at different time steps. The color changes when features at different time steps
are fused by the series mixing module or features at different dimensions are fused by the feature
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mixing module. Besides, it is widely recognized that real-world time series typically exhibit inherent
periodicity, such as daily and yearly weather observations and weekly and quarterly records for
electricity consumption. The complex periodicity property makes it challenging to model the temporal
feature in 1D space due to the complicated interaction between multiple periods. Therefore, we further
incorporate features from 2D space to enhance the representation learning capability for the time
series anomaly detection task. To effectively utilize these features for detecting anomalous events in
time series, a cross-dimensional feature fusion strategy is designed, which is elaborated in the following
subsections.
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Figure 1: Main framework of the proposed method (Tr means transpose)

3.2 Series and Feature Mixing
To extract time series features from 1D space, the mixing block is adopted, as indicated in Fig. 1.

The series mixing process involves layer normalization, transpose operation, an autoencoder-like
MLP for communication, skip-connections, and a final transpose operation to maintain consistent
feature sizes. Formally, for a given input time series X ∈ R

T×D, the mixing branch begins with layer
normalization, followed by a transpose operation to exchange the feature and time dimensions. This
operation results in Tr(LayerNorm(X)) ∈ R

D×T . For series mixing, an autoencoder-like multi-layer
perceptron (MLP) is employed to communicate information across different time steps. Since the input
and output sizes of the series mixing module are set to be the same, the first MLP output is of shape
R

D×T . A skip connection is introduced to alleviate the gradient vanishing issue and model training
difficulty. However, directly adding the skip connection poses a challenge due to the mismatch in size
between the mixed feature from the first MLP output and the input X . This paper applies another
transpose operation, converting the feature shape back to R

T×D. This series mixing process can be
described as follows:

S = X + Tr(σ (Tr(LayerNorm(X)) Ws) W ′
s) (1)

where σ is an GELU [56] element-wise nonlinearity, Ws and W ′
s are the MLP connections weights.

Communication between different points in a time series is analogous to the self-attention
information flow mechanism, where each token in the sequence is visible to all other tokens. Therefore,
this model can effectively capture long-term dependencies. Feature mixing is further introduced to
model the correlation between different feature channels. First, layer normalization is applied to the
output obtained from the series mixing step. Subsequently, another autoencoder-like MLP is employed
to facilitate the exchange of information in the intermediate features, specifically focusing on the
dimension of feature channels. The feature mixing process can be described as:
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X1D = S + σ
(
LayerNorm(S) Wf

)
W ′

f (2)

where Wf and W ′
f are the MLP connections weights.

Compared to the self-attention mechanism, one of the advantages of this design lies in its
computational complexity. In self-attention-based Transformer models, the complexity is quadratic
with respect to the number of tokens [18]. Conversely, in the series and feature mixing modules,
the complexity is linear with respect to the input length. Moreover, the series and feature mixing
strategy facilitates the information exchange between different feature channels. This capability can
be beneficial for learning feature representation in multivariate time series, given their intrinsic
correlations.

3.3 Temporal 2D Feature Extraction
Although learning features in 1D dimension is a straightforward option for time series anomaly

detection, anomalous patterns in real-world time series are often too complex to be adequately
captured in their natural form. Given the widespread presence of complex periodicity in time series
data, converting it to 2D space can be beneficial for handling this periodic complexity. Motivated by
this consideration, the Fast Fourier Transform (FFT) is employed to extract the frequency information
of a given time series data. This process helps discover the periodicity, allowing the conversion of the
1D time series into 2D space. The main idea of temporal 2D feature extraction is depicted in Fig. 2.
Formally, given a 1D time series X ∈ R

T×D,

Freqmax = arg max(Amplitude(FFT(X))) (3)

Frequency with 
highest amplitude

…

FFT

P ×

Figure 2: Conversion of time series from 1D to 2D using FFT

Here, FFT(·) denotes the FFT function, and Amplitude(·) represents the calculation of amplitude
values. Freqmax represents the frequency with the largest amplitude. The period of the time series can

be directly obtained as
⌈

1
Freqmax

⌉
. Based on the frequency and the period length, the 1D time series
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can be converted to 2D space by splitting and stacking. Specifically, we split the 1D time series into

shorter segments with a length of
⌈

1
Freqmax

⌉
, and then stack them in a newly created dimension. For

a 1D time series with length N and discovered period P, the converted 2D form has a shape P × P
N

.

This process can be summarized as:

A2D = Split_and_Stack(X , Freqmax) (4)

3.4 Cross-Dimension Attentive Feature Fusion
For the 1D representations, we utilize the series and feature mixing strategy to extract abstract

high-level patterns. For 2D representations, we employ stacked separable convolutions [57] to learn
features. This approach facilitates communication between different periods, making it less vulnerable
to complex periodicity properties. After the convolution, the features are flattened into 1D represen-
tations, formulated as:

X2D = Flatten(Sep_Conv(A2D)) (5)

As features in different dimensions may possess varying levels of representation ability, we
introduce an attentive mechanism for feature fusion, depicted in Fig. 3. Three fully connected layers
and the sigmoid function are employed for each feature to generate the attention score. These scores
are then used to weight the input feature through element-wise multiplication. To break the symmetric
structure, one branch further multiplies by a factor of a negative one and adds a positive one. This
operation still outputs a value in the range from zero to one, making it compatible with the sigmoid
function. This attentive feature fusion process can be formally denoted as:

X (l+1) = σ(F(X l
1D)) ⊗ X l

1D + (
σ(F(X l

2D) ∗ (−1) + 1
) ⊗ X l

2D (6)

where l indicates the block number, F, σ and ⊗ represent fully connected layers, sigmoid function and
element-wise multiplication, respectively.

Figure 3: Feature fusion scheme in the proposed method (FC and σ means fully connected layer and
sigmoid function, respectively)

To provide an intuitive understanding of the Eq. (6), we transform it into the following equivalent
form. In this form, the output of the sigmoid activation can be viewed as a gate that controls the
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information flow of a feature branch.

X (l+1) = σ(F(X l
1D)) ⊗ X l

1D + (
1 − σ(F(X l

2D)
) ⊗ X l

2D (7)

The fused features X (l+1) serve as the input to the next 1D and 2D blocks. The output of the final
feature fusion block is then mapped by a fully connected layer, computed as O∗ = FullyConnected(X L)

and can be regarded as the reconstruction of the input time series X 0. The loss function can then be
constructed as:

L = 1
N

N∑
i=1

(X 0(i) − O∗(i))2 (8)

where N denotes the number of time series segments.

The algorithm table is provided in Algorithm 1, which delineates the detailed algorithm steps
for training the CAFFN model. We initialize the CAFFN model as depicted in Fig. 1, and proceed
with the optimization of parameters achieved through the minimization of the loss function defined
in Eq. (8).

Algorithm 1: CAFFN model training steps
Input: Training and validation time series dataset Dt, Dv

Output: Trained model M
1 Initialize the CAFFN model M and parameters θM according to Fig. 1;
2 Specify the loss function L according to Eq. (8) and optimizer Optim;
3 for each epoch do
4 for each batch X in Dt do
5 output = M(X );
6 loss = L(output, X);
7 θM = Optim(loss, θM);
8 Early stop based on evaluation performance of M on Dv;
9 Save the trained model M;

4 Experiments
4.1 Datasets and Metrics

We assess the performance of CAFFN on three widely used anomaly detection benchmarks
obtained from real-world applications. (1) SMD (Server Machine Dataset) [51] is a 5-week-long dataset
with 38 dimensions collected from an Internet company. (2) MSL (Mars Science Laboratory rover)
[58] is with dimensions of 55, and was collected by NASA. (3) SMAP (Soil Moisture Active Passive
satellite) [58] is a public dataset from NASA with the dimension of 25. Following the setting in
previous studies, the dataset is split into consecutive non-overlapping segments in a pre-processing step.
Abnormalities in a segment are considered detected if a single abnormal time point in that segment
is identified. More details of the dataset can be found in Table 1. As a commonly adopted metric
for unsupervised point-wise representation learning scenarios, the reconstruction error is considered
a natural anomaly criterion in experiments. Additionally, various criteria, including Precision, Recall,
and F1-score metrics, are adopted to evaluate performance comprehensively.
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Table 1: Dataset details

Dataset Dimension Sequence length Abonormal proportion

Train Validation Test

SMD 38 566724 141681 708420 0.042
PSM 25 105984 26497 87841 0.278
MSL 55 44653 11664 73729 0.105

4.2 Implementation Details
To ensure a fair comparison, we adhere to the settings in previous studies [52]. The non-

overlapping windows size is set to 100 for all datasets, and a time point is labeled as an anomaly if the
anomaly score is larger than a threshold determined by the statistics of the training set. We empirically
found the optimal architectural setting based on grid search and GPU memory constraints. The setting
that achieved the best result on the validation set is selected for experimental comparison on the test
set. Specifically, the feature blocks are stacked three times for all datasets (L = 3). The sizes of hidden
layers in series mixing and feature mixing are set to 32 and 64, respectively. Regarding the CAFFN
model, the first FC layers in the attentive fusion module map the input to a feature with half of the
input’s length. The second FC layer does not change the dimensionality, and the third FC layer maps
the feature back to the space whose dimensionality is the same as the module input. Adam, with default
settings, is used for parameter optimization with a batch size of 128, and the training process is stopped
within 10 epochs. All experiments are implemented using Pytorch and run on a computer equipped
with an NVIDIA RTX3090 GPU.

4.3 Quantitative Results
The performance of the proposed CAFFN model on time series anomaly detection datasets is

shown in Table 2. Additionally, we made a comparison to highly related competitive methods. In
particular, MLP-based [32,59], RNN-based [60], CNN-based [26,61], and many other Transformer-
based time series anomaly detection are considered. As seen, the widely used F1-score metric of the
proposedCAFFN model on SMD, MSL, and SMAP are 85.81%, 85.48% and 71.52%, respectively.
This indicates the proposed CAFFN can outperform RNN-based methods like LSTM by a large
margin, primarily attributed to its capability to capture long-term dependencies. Moreover, the
performance of the proposed CAFFN model is superior to many other Transformer based methods,
showcasing its superiority in modeling the complex feature of time series. This aligns with previous
studies that have surprisingly found that even simple linear models can outperform Transformer-based
models [32]. The slightly worse performance achieved by TimeNet [26] indicates that capturing features
in 2D space can provide strong results. The proposed CAFFN model learns features in both 1D and
2D spaces, which could be the main reason for its superior performance. Compared to existing deep
learning-based time series anomaly detection methods, the proposed CAFFN model employs a well-
designed feature extraction block, which can provide the stronger capability to capture the spatial and
temporal features of time series data.
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Table 2: Quantitative results for CAFFN (Proposed) in three real-world datasets. The P, R, and F1
represent the Precision, Recall and F1-score, respectively. For a fair comparison, reconstruction error
is adopted as an anomaly criterion for all the compared methods

Datasets SMD MSL SMAP

Metrics P R F1 P R F1 P R F1

LSTM [60] 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48
Transformer [18] 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70
LogTrans [31] 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97
TCN [62] 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45
Reformer [61] 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40
Informer [30] 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92
Anomaly [5] 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18
Pyraformer [63] 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09
Autoformer [53] 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12
LSSL [64] 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90
Stationary [65] 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09
Dlinear [32] 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26
ETSformer [66] 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50
LightTS [59] 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21
FEDformer [67] 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76
TimesNet [26] 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85
CAFFN 89.72 82.22 85.81 88.74 82.45 85.48 91.60 58.66 71.52

4.4 Qualitative Results
The reconstruction errors on the SMD training set and validation set during model training are

recorded and presented in Fig. 4. It can be observed that the error decreases on both the training and
validation sets, validating the capability of CAFFN in modeling time series data.

Figure 4: Reconstruction errors on SMD dataset
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The detection results for some test segments in MSL are illustrated in Figs. 5 and 6. It is evident
that the anomaly score significantly increases when the segments of the time series contain anomalous
events, indicating that abnormal patterns are reconstructed with a substantial error. Although the time
steps of annotated anomalies and predicted ones are not precisely aligned, common practice usually
allows for the detection of anomalies in a reasonably wide window. Therefore, the detection results
serve as an accurate indicator to localize the time points of anomalies, as shown in the figures for most
of the time.

Figure 5: Anomaly score and ground-truth on MSL test set from time step 45985 to 46125 (values of
ground truth are adaptively scaled for better visualization)

Figure 6: Anomaly score and ground-truth on MSL test set from time step 55550 to 55830 (values of
ground-truth are adaptively scaled for better visualization)

4.5 Ablation Study
In this subsection, we evaluate the effectiveness of each component in the proposed CAFFN

model. Firstly, different settings of the mixing block are investigated by disabling either the series
mixing block or feature mixing block. Specifically, we can remove the feature mixing part from the
mixing 1D block without affecting the output shape. Additionally, by directly feeding the input to the
feature mixing module and removing the series mixing module, we can also obtain a valid mixing 1D
block, as shown in Fig. 1. The results are shown in Table 3.

Additionally, the feature branch in the proposed CAFFN model is investigated similarly. We first
disable the branch that uses a 2D block while keeping the branch that uses a 1D block valid. In
this setting, the proposed model lacks the capability of capturing 2D features, and cross-dimension
attentive feature fusion is not needed. The performance of this configuration is shown in Table 4,
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where a considerable performance degradation can be observed in the first line. Next, we enable
the branch that uses 2D block but disable the branch that uses 1D block. In this case, the model is
incapable of learning 1D features, and the results are shown in the second line in Table 4. It can be
seen that the performance is slightly better than in the previous situation, verifying the advantage of
employing FFT for discovering 2D structures in time series. The performance further improves when
both branches are enabled, as indicated by the final line in Table 4, where features from 1D and 2D
spaces are fused for anomaly detection. Therefore, the two-branch structure is necessary for obtaining
promising performance.

Table 3: Performance comparison using different series mixing and feature mixing settings

Mixing block SMD MSL SMAP

Series Feature P R F1 P R F1 P R F1

� 87.30 82.10 84.62 86.60 81.91 84.19 88.57 58.03 70.12
� 84.27 80.34 82.26 83.26 81.01 83.26 85.10 57.53 68.65

� � 89.72 82.22 85.81 88.74 82.45 85.48 91.60 58.66 71.52

Table 4: Performance comparison using different feature branch settings

Feature branch SMD MSL SMAP

1D 2D P R F1 P R F1 P R F1

� 88.04 81.62 84.71 87.64 82.14 84.80 90.44 57.67 70.43
� 88.50 81.56 84.89 88.48 81.36 84.77 89.57 57.80 70.26

� � 89.72 82.22 85.81 88.74 82.45 85.48 91.60 58.66 71.52

To validate the effectiveness of the attentive feature fusion mechanism in the proposed method, we
compare it to other alternative feature fusion schemes, including multiplication, concatenation, and
addition. The results of different feature fusion strategies are shown in Table 5. It can be observed
that all three settings provide a slightly worse performance than the proposed attentive mechanism,
verifying the merits of the CAFFN model.

Table 5: Performance comparison using different feature fusion strategies (Mul, Cat and Add represent
multiplication, concatenation and addition, respectively)

Fusion SMD MSL SMAP

P R F1 P R F1 P R F1

Mul 89.66 80.96 85.09 86.16 81.87 83.96 89.06 58.16 70.37
Cat 89.38 81.45 85.23 85.47 82.29 83.85 90.21 58.29 70.82
Add 89.41 81.29 85.16 87.78 80.62 84.05 90.14 58.89 71.24
Attentive 89.72 82.22 85.81 88.74 82.45 85.48 91.60 58.66 71.52
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We further investigate the impact of different segment sizes on the performance, and the results
are shown in Table 6. It indicates that the segment size has a slight influence on the performance, and
setting the segment size to 100 can achieve promising results.

Table 6: Performance comparison using different segment sizes

Segment size SMD MSL SMAP

P R F1 P R F1 P R F1

50 89.47 80.50 84.75 88.29 81.69 84.86 91.20 58.00 70.91
100 89.72 82.22 85.81 88.74 82.45 85.48 91.60 58.66 71.52
150 88.60 80.93 84.59 88.49 81.35 84.77 90.35 57.36 70.17
200 88.67 79.84 84.02 87.69 80.27 83.82 89.39 57.55 70.02

We also investigated the parameter sensitivity of the proposed CAFFN model on the SMD
dataset. The results are presented in Table 7. It is evident that the proposed model yields favorable
outcomes when configured with a three-layer structure, along with series and feature mixing blocks
set to dimensionalities of 32 and 64, respectively.

Table 7: Parameter sensitivity study on SMD dataset (#Layer means the number of layers, and S/F
represents dimensionalities of series/feature mixing modules, respectively)

#Layer S32/F32 S32/F64 S64/F32 S64/F64

P R F1 P R F1 P R F1 P R F1

1 87.90 81.24 84.44 87.98 81.97 84.86 88.25 81.35 84.66 88.09 80.29 84.01
3 89.04 81.33 85.01 89.72 82.22 85.81 89.27 81.42 85.16 88.76 81.15 84.78
5 88.10 81.42 84.62 88.56 81.43 84.85 88.14 81.23 84.54 89.13 80.72 84.71

5 Conclusion

This study proposes a cross-dimension attentive feature fusion network for time series anomaly
detection. As a reconstruction-based time series anomaly detection method, we introduced a series
and feature mixing block to learn representation in 1D space. Additionally, we adopted a fast Fourier
transform to convert the time series into 2D space for learning 2D representations. Furthermore, a
cross-dimension attentive feature fusion mechanism was designed to effectively utilize the 1D and 2D
features, adaptively integrating features across different dimensions for anomaly detection. Experi-
ments on real-world time series datasets demonstrated that CAFFN outperforms other competing
baselines. Moreover, the ablation study confirmed the effectiveness of the feature learning module
and the feature fusion mechanism. Future investigation directions include exploring signal processing
techniques and generative models for data and feature augmentation.
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