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ABSTRACT

Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical
gears with a circular arc tooth trace (referred to as CATT gear), a mathematical model for determining the
contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the
contact stress limit state equation for contact stress reliability analysis. In this study, a mathematical relationship
between design parameters and contact stress is formulated using the Kriging Metamodel. To enhance the model’s
accuracy, we propose a new hybrid algorithm that merges the genetic algorithm with the Quantum Particle Swarm
optimization algorithm, leveraging the strengths of each. Additionally, the “parental inheritance + self-learning”
optimization model is used to fine-tune the Kriging Metamodel’s parameters. Following this, a mathematical model
for calculating the contact stress of Variable Hyperbolic Circular-Arc-Tooth-Trace (VH-CATT) gears using the
optimized Kriging model was developed. We then examined how different gear parameters affect the VH-CATT
gears’ contact stress. Our simulation results show: (1) Improvements in R2, RMSE, and RMAE. R2 rose from 0.9852
to 0.9974 (a 1.22% increase), nearing 1, suggesting the optimized Kriging Metamodel’s global error is minimized.
Meanwhile, RMSE dropped from 3.9210 to 1.6492, a decline of 57.94%. The global error of the GA-IQPSO-Kriging
algorithm was also reduced, with RMAE decreasing by 58.69% from 0.1823 to 0.0753, showing the algorithm’s
enhanced precision. In a comparison of ten experimental groups selected randomly, the GA-IQPSO-Kriging and
FEM-based contact analysis methods were used to measure contact stress. Results revealed a maximum error of
12.11667 MPA, which represents 2.85% of the real value. (2) Several factors, including the pressure angle, tooth
width, modulus, and tooth line radius, are inversely related to contact stress. The descending order of their impact
on the contact stress is: tooth line radius > modulus > pressure angle > tooth width. (3) Complex interactions are
noted among various parameters. Specifically, when the tooth line radius interacts with parameters such as pressure
angle, tooth width, and modulus, the resulting stress contour is nonlinear, showcasing a multifaceted contour plane.
However, when tooth width, modulus, and pressure angle interact, the stress contour is nearly linear, and the
contour plane is simpler, indicating a weaker coupling among these factors.
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1 Introduction

Gears are fundamental components in mechanical equipment [1]. Their widespread application
in sectors such as aviation, wind power, automotive, and energy can be attributed to attributes like
high transmission efficiency, robust carrying capacity, consistent transmission ratio, and prolonged
service life [2,3]. The CATT gear, first introduced by Japanese scholars, stands out due to its distinctive
design [4]. The gear’s tooth trace follows a curved arc, allowing its tooth profile to be an involute, arc,
or parabola. Such gears boast multiple advantages: high contact rate, formidable bearing capacity,
absence of axial force, extensive contact, peak transmission efficiency, lasting service life, superior
flatness, and reduced noise. Research on the meshing theory and contact characteristics of CATT
gear has been ongoing since its inception. Tseng et al. developed the mathematical model, root cutting
condition, contact characteristics, and transmission error of CATT gear milling with a straight-edged
rotary cutter [5,6]. Zhao et al. delved into the forming principle of milling circular arc gears using a
rotating tool. They established the tooth flanks equation for CATT gear with a variable hyperbolic
arc tooth profile, which includes the transitional tooth flanks equation. Additionally, they introduced
a calculation method covering the full range of tooth flank parameters [7,8]. Ma et al. explored the
reconstruction method for tooth flanks of CATT gear with a variable hyperbolic arc tooth profile,
demonstrating that the middle section adopts an involute profile while the rest follows a hyperbolic
envelope [9]. Luo et al. formulated equations to compute the principal curvature, induced curvature,
and sliding rate of the tooth surface for CATT gear with the said profile and observed their variable
trends [10]. Wei et al. formulated a new contact stress equation for this gear profile, accounting for
factors like normal force, total bearing length, comprehensive curvature radius, and position angle
[11]. Fuentes Aznar et al. compared stress and transmission errors among spur gear, helical gear,
and circular arc gear using the finite element method [12]. Zhang et al. introduced a mathematical
model for line-contact CATT gear and assessed its contact characteristics [13]. Ma et al. examined
mismatched meshing transmission theory for symmetric curved cylindrical gears and analyzed real-
time tooth contact during the full meshing process [14]. Guo et al. provided an analytical solution for
the contact characteristics of VH-CATT gear, accounting for the elastic deformation of tooth flanks.
They further studied its parameters on the gear’s contact characteristics [15]. Chen et al. presented
a computer-aided design method for curved cylindrical gears, emphasizing the active design of the
meshing line function. They investigated meshing attributes, mechanical properties, and meshing line
function parameters concerning contact mode, maximum stress variation, and transmission error
load function [16]. Zhang et al. evaluated the impact of design parameters, such as tool radius, on
contact and meshing characteristics [17]. They also crafted a contact stress prediction model for
VH-CATT gear using an enhanced metamodel and considered the effects of parameter changes on
contact stress [18]. Another study established the reliability analysis model for cylindrical gear with a
variable hyperbolic circular arc tooth line. This work delved into the reliability sensitivity and robust
optimization of contact strength [19,20].

Metamodel is an effective method to establish contact stress calculation model for CATT gear. The
commonly used metamodels include Kriging, RBF, SVM.GEP, etc. Kriging model is the moswidely
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used, in order to improve the accuracy of Kriging model, scholars use intelligent algorithms to
optimize the parameters of Kriging. Pholdee et al. used genetic algorithm to optimize Kriging’s
correlation function parameters to improve the accuracy of their model [21]. Qin et al. proposed
a new kriging method based on the AK-IS and truncated importance sampling method, whale
optimization algorithm (WOA) was used to optimize the proposed model and improve its fitting
accuracy [22]. Zhang et al. proposed an improved Kriging optimization model based on an improved
QPSO algorithm, in which all performance indexes were improved [18]. Thedy et al. proposed an
adaptive kriging algorithm based on PSO algorithm to improve the working characteristics of the
model [23].

The contact stress limit state equation is the basis of reliability analysis of gear contact stress.
The limit state equation is obtained by subtracting the actual gear contact stress that calculated by
the contact stress prediction model from the allowable contact stress of the material. The calculation
of contact stress in CATT gear relies heavily on a precise mathematical model, which is pivotal for
examining how various parameters impact this stress. In order to solve the problem that there is
currently no unified standard theoretical formula for calculating the contact stress of cylindrical
gears with a circular arc tooth trace, and to build the contact stress limit state equation for reliability
analysis. This paper introduces a mathematical model that links the CATT gear’s design parameters
with its contact stress, utilizing the kriging metamodel. To heighten the accuracy of this model’s fit,
we present a new hybrid algorithm that merges the genetic algorithm with the Quantum Particle
Swarm optimization algorithm. To further optimize the parameters of the kriging metamodel, we have
implemented an optimal model based on “parental inheritance + self-learning.” With the enhanced
Kriging metamodel in place, we have established a refined mathematical model to compute the CATT
gear’s contact stress and subsequently explore how its design parameters influence this stress.

The paper are organized as below: the forming principle and mathematical model of the VH-
CATT gear are introduced in Section 2. The finite element model for contact stress analysis on the
VH-CATT gear are established in the Section 3. Contact stress reliability analysis model for VH-
CATT gear based on an improved metamodel by using a new hybrid algorithm that merges the genetic
algorithm with the Quantum Particle Swarm optimization algorithm are developed in Section 4. The
efficacy of the GA-IQPSO hybrid intelligent algorithm introduced for optimizing Kriging are tested
and a contact stress prediction model for VH-CATT gear using the proposed GA-IQPSO-Kriging
model are established in Section 5. And the Influence of design parameters on contact stress of the
VH-CATT gear are discussed in Section 6. Section 7 provides the conclusion of this study.

2 VH-CATT Forming Principle and Mathematical Model
2.1 VH-CATT Forming Principle

The geometric structure of the VH-CATT gear (hereafter referred to simply as “VH-CATT gear”)
is depicted in Fig. 1. The gear is milling by a rotary cutter with a straight cutter edge, and the gear
tooth line obtained by cutter milling is a space circular arc line. The tooth profile found in the middle
section is an involute line, while the other sections consist of envelope lines from a hypercurve family
with consistent transitions, so it is called VH-CATT [24]. These features make the gear less sensitive to
coaxiality installation errors, resulting in benefits such as reduced noise, a high degree of alignment,
and a simplified structure. Regarding machining, the VH-CATT gear can be crafted using several
methods, as outlined by. These methods are rotary cutter milling, gear hobbing, translation-device
milling, and angle cutter milling. Among these, the rotary cutter milling method stands out because
of its ability to employ either a single or double blade for milling, combined with its straightforward
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machine structure and high processing efficiency. Consequently, this study utilizes a rotary double-
edge milling cutter to mill the VH-CATT gear. The virtual machine prototype for this gear is presented
in Fig. 2. This prototype comprises various components: a bed (1), a cutter (2), a tool (3), a Z-axis
mechanism (4), an X-axis mechanism (5), a tooth blank (6), indexing mechanism (7), and Y-axis
mechanism (8).

End face

End face tooth profile

Middle section tooth profile

Circular arc tooth profile

Figure 1: VH-CATT gear Figure 2: Machine virtual prototype for VH-
CATT gear

The machine tool spindle has a rotating double-edged milling cutter referenced as (2). This cutter,
denoted as (3), is firmly attached to the spindle tool (2) and rotates with it. As the cutter spins,
its blade forms two distinct conical surfaces. The outer edge of the cutter produces a positive cone
suitable for machining concave surfaces. In contrast, the inner edge forms an inverted cone designed
for machining convex surfaces. Throughout the machining process, the gear blank (6) both rotates
around its axis and moves back and forth along the Y-axis, coordinating closely with the motion of
the cutting tool. This enables the cutting tool to shape both the concave and convex flanks of the gear
teeth simultaneously. After finishing one tooth space (or alveoli), the gear blank shifts position using
the indexing mechanism (7) to start machining the next one. This sequence continues until the entire
gear is precisely machined.

2.2 VH-CATT Gear Mathematical Model
2.2.1 Coordinate System

The coordinate system for machining with the VH-CATT double-edged rotary cutter gear is
illustrated in Fig. 3.

The machined gear has a reference radius of Rg, a rotation angle of ψ , a cutter head radius of
Rt, a rotation angle of θ , and a tooth width of B. Ot − xtytzt is the tool’s static or geodetic coordinate
system, Og − xgygzg the static coordinate system of the workpiece, while Od − xdydzd is the dynamic
coordinate system of the workpiece.
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2.2.2 Revolution Surface Equation of Tool and Its Normal Vector

The equation for the revolution surface of the tool in Ot − xtytzt, can be rewritten as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt = −

(
Rt ∓ π

4
m ± u sin α

)
cos θ

yt = −
(

Rt ∓ π

4
m ± u sin α

)
sin θ

zt = u cos α

(1)

where Rt is the cutter head’s nominal radius, ∓ or ± is the inner (or outer) cutting edge,α is the cutter
angle, m is the modulus, and u is the distance between a point on the cutter surface and the pitch point
along the generatrix direction.

Figure 3: Coordinate system of double-edge cutting VH-CATT gear

Its vector equation in Ot − xtytzt is:

rt = −
(

Rt ∓ π

4
m ± u sin α

)
cos θ i + u cos αk −

(
Rt ∓ π

4
m ± u sin α

)
sin θ j (2)

After differentiating, we obtain:⎧⎪⎨⎪⎩
rdu = ∂rt

∂u
= ∓ sinα cos θ i ∓ sinα sin θ j + cos αk

rdθ = ∂rt

∂θ
=
(

Rt ∓ πm
4

± u sin α
)

sin θ i −
(

Rt ∓ πm
4

± u sin α
)

cos θ j
(3)
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The revolution surface equation of the tool and its normal vector can be expressed as:

nt = ∂rt

∂u
× ∂rt

∂θ

=

∣∣∣∣∣∣∣
i j k
∓ sin α cos θ ∓ sin α sin θ cos α(

Rt ∓ πm
4

± u sin α
)

sin θ
(

Rt ∓ πm
4

± u sin α
)

cos θ 0

∣∣∣∣∣∣∣
=
(

Rt ∓ πm
4

± u sin α
)

(cosθ cos αi + sinθ cos αj ± sin αk) (4)

et = cosθ cos αi + sinθ cos αj ± sin αk (5)

2.2.3 Meshing Condition and Equation for the Line of Contact

The velocities of the tooth blank and the tool at the engagement point are denoted as vt and
vg where vtg is the relative speed of the gear and tool at the engagement point. Therefore, the gear
workpiece and the tool must satisfy the specified mesh conditions.

φ = nt · vtg = nt · vt − nt · vg = 0 (6)

Assuming M represents the immediate contact point between the tool and the gear workpiece, the
vectors originating from Ot and Og and leading to M are denoted, respectively.

OtM = rt, OgM = rg, OgOt = ε (7)

rg = ε + rt (8)

ε = (Rgψ + Rt)i − Rgk (9)

rg =
[
−
(

Rt ∓ π

4
m ± u sin α

)
cos θ + Rgψ + Rt

]
i

−
(

Rt ∓ π

4
m ± u sin α

)
sin θ j + (u cos α − Rg

)
k (10)

According to the spiral theory: nt · vt = 0 (11)

vt = ωtkt × rt = ωt(kt × rt) = ωt[kt × (xti + ytj + ztk)]

= ωt (xtj + yti) = ωt

(
Rt ∓ π

4
m ± u sin α

)
(sin θ i − cos θ j) (12)

where ωt is the rotational angular speed of the cutter head

vg = ωgkg × rg − ωgRgi = ωg(kg × rg − Rgi) (13)
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Then,

et · vg = (cosα cos θ i + sinθ cos αj ± sin αk)· (14){
ωg

[
−
(

Rt ∓ π

4
m ± u sin α

)
cos θ + Rgψ + Rt

]
k − ωgu cos αi

}
= −ωgu cos2 α cos θ ± ωg sin α

[
−
(

Rt ∓ π

4
m ± u sin α

)
cos θ + Rgψ + Rt

]
= −ωg

[
u cos θ ± sin α cos θ

(
Rt ∓ π

4
m
)

∓ sin α
(
Rgψ + Rt

)] = 0

Yielding, φ = nt · vg = et · vg = 0 (15)

According to the Eqs. (15) and (16),

u = ∓
sin α cos θ

(
Rt ∓ π

4
m
)

− sin α
(
Rgψ + Rt

)
cos θ

(16)

The equation that describes the contact line between the tool and the gear workpiece is derived
from the path followed by the contact point within a fixed coordinate system based on the meshing
principle:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt = −
(

Rt ∓ π

4
m ± u sin α

)
cos θ

yt = −
(

Rt ∓ π

4
m ± u sin α

)
cos θ

zt = u cos α

u = ∓
sin α cos θ

(
Rt ∓ π

4
m
)

− sin α
(
Rgψ + Rt

)
cos θ

(17)

2.2.4 Tooth Flanks Equation

In the process of gear processing, the motion trajectory of the contact point between the tool and
the gear workpiece in the fixed coordinate system is the contact line between the tool and the gear
workpiece. The tooth flanks equation can be obtained by transforming the line of contact equation
into the Od-xd, yd, zd coordinate system. Therefore, it is necessary to establish the transformation matrix
between coordinates Ot-xt, yt, zt and Od-xd, yd, zd.

The transformation matrix Mgt from the Ot-xt, yt, zt coordinate system to the Og-xg, yg, zg

coordinate system is:

Mgt =

⎡⎢⎢⎣
1 0 0 Rt

0 0 1 −Rg

0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ (18)
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The transformation matrix Mdg from the Og-xg, yg, zg coordinate system to the Od-xd, yd, zd

coordinate system is:

Mdg =

⎡⎢⎢⎣
cos ψ sin ψ 0 Rgψ cos ψ

− sin ψ cos ψ 0 −Rgψ sin ψ

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (19)

Then, the tooth’s surface equation can be obtained⎡⎢⎢⎣
xd

yd

zd

1

⎤⎥⎥⎦ = MdgMgt

⎡⎢⎢⎣
xt

yt

zt

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 Rt

0 0 1 −Rg

0 −1 0 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

cos ψ sin ψ 0 Rgψ cos ψ

− sin ψ cos ψ 0 −Rgψ sin ψ

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

xt

yt

zt

1

⎤⎥⎥⎦ (20)

Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xd =
[
−
(

Rt ∓ π

4
m ± u sin α

)
cos θ + Rt + Rgψ

]
cos ψ + (u cos α − Rg

)
sin ψ

yd =
[(

Rt ∓ π

4
m ± u sin α

)
cos θ − Rt − Rgψ

]
sin ψ + (u cos α − Rg

)
cos ψ

zd =
(

Rt ∓ π

4
m ± u sin α

)
sin θ

u = ∓ sin α

cos θ
(

Rt ∓ π

4
m
)

− (Rgψ + Rt

)
cos θ

(21)

3 Contact Stress Analysis for VH-CATT Gear Based on Finite Element
3.1 Gear Three-Dimensional Model

The 3D model of the VH-CATT gear was established using the gear modeling method described
in previous studies [7,8]. The parameters of the VH-CATT gear investigated in this paper are shown
in Table 1.

Table 1: Specific parameters of the studied VH-CATT gear

Z1 Z2 α-pressure
angle (O)

m-modulus
(mm)

B-tooth radius
(mm)

RT–tooth
radius (mm)

31 62 20 3.2 40 250

A single-gear and 5-tooth assembly model is shown in Fig. 4.
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Figure 4: Three-dimensional model

3.2 Definition Material Property
CrNiMo6 was chosen as the gear material. Its primary composition includes C (0.15%–0.20%), Si

(≤0.40%), Mn (0.40%–0.60%), S (≤0.035%), P (≤0.035%), Cr (1.50%–1.80%), Ni (1.40%–1.70%), and
Mo (0.25%–0.35%). The mechanical properties of this material are as follows: σ b (1180–1420 MPa), σ s

(835 MPa), δ (≥7%), ψ (≥30%), and αkv (≥41 J/cm2). The material also has an elasticity modulus (E)
of 2.08 GPa and a Poisson’s ratio of 0.298. This material data for CrNiMo6 was input into ABAQUS
and then applied to the VH-CATT gears.

3.3 Set Contact and Constraint Boundaries
The interaction was designated as “Static, General” and as “surface to surface contact (Stan-

dard)”, both illustrated in Fig. 5a. Using a nonlinear approach, the interaction type was defined as the
contact. For the contact stress finite element analysis, the contact type is “Frictionless,” the numerical
solution type is “Direct,” and the solution method follows the “Full Newton” approach. The MPC
(multi-point constraint) originates from the rotation centers of both the active and the driven wheels.
Except for its rotation axis, other directions of the driving wheel are fixed. Additionally, other rotation
and translation axes are fixed. For the driven wheel, the MPC is both fixed and omnidirectional, as
depicted in Fig. 5b.

3.4 Meshing
The sweeping method was employed to segment the mesh of the gear pair, choosing the mesh type

as C3D8I. For the entire gear, the finite element mesh size was set at 2 mm, while it was 0.02 mm for
the contact area. Fig. 6 illustrates the results of the gear mesh segmentation. For the driving wheel,
there were 171477 nodes and 161600 N.mm elements, all the C3D8I linear hexahedral element type.
In contrast, the driven wheel had 181278 nodes and 171120 elements of the same C3D8I type. The
combined total number of elements for both gears amounted to 332720.
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Figure 5: Contact setting and constraint boundaries

Figure 6: Meshing results of gears

3.5 Solution and Visualization
After executing the “Definition Material Property,” “Set Contact and Constraint Boundaries,”

and “Meshing” steps, the software was run to analyze the contact stress. Parallel computation in the
solution was utilized due to the significant number of finite elements, totaling 332,720 for each gear
pair. The finite element analysis provides the contact stress nephogram for the gear and pinion of
VH-CATT gear, as shown in Fig. 7. Specifically, Fig. 7a depicts the contact stress nephogram for the
pinion wheel of VH-CATT gear, while Fig. 7b showcases the stress nephogram for the driven wheel
of VH-CATT gear. Fig. 8 details the contact area between the pinion wheel and the gear wheel of the
VH-CATT gear. In Fig. 8a, the contact area for the pinion wheel of VH-CATT gear is presented, and
Fig. 8b highlights the contact area for the gear wheel of VH-CATT gear.

From Fig. 7, the maximum contact stress of the driving wheel is 457.149 MPA, found at the 82452
elements and 88592 nodes, while for the driven wheel, it is 457.9923 MPA, located at the 85072 elements
and 91328 nodes. The difference in stress between the pinion wheel and the gear is 0.8433 MPA.
The findings from our analysis method closely match the Hertz contact theory. Fig. 8 shows that the
contact area between the pinion wheel and the gear becomes elliptical under load, which aligns with
the theoretical expectations of VH-CATT. This confirms that the contact region for point contact
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gears is elliptical when subjected to load, further emphasizing that the contact type for a cylindrical
gear with an arc tooth is point contact.

Figure 7: Contact stress analysis results for the VH-CATT

Figure 8: Contact area situation for VH-CATT

In summary, the contact region between the driving and driven wheels under load takes an
elliptical shape, consistent with the theoretical model of VH-CATT gears. This reaffirms the elliptical
nature of the contact area for VH-CATT gears under load.

4 Contact Stress Reliability Analysis Model for VH-CATT Gears Based on an Improved Metamodel
4.1 Test Design and Response Results

The probability density function (PDF) for variables adhering to a particular distribution can be
represented as follows:∫ Pi

−∞
f (p)dp = kq, q = 1, 2, 3 . . . N (22)

where N is the number of the variables, f (p) is the probability density function of the variable, and kq

is the probability level point. The Pi is the value of the sample at kq. Here, kq and Pi are different.

If the design parameters such as modulus, pressure angle, tool radius, and tooth width follow a
normal distribution, then:

Pi = μ + σφ−1(kq) (23)
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where μ is the mean value of the variable, σ is the standard deviation of the variable, φ(·) is the standard
normal distribution function, and φ−1(kq) is obtained by looking up a table.

According to reference [25], the contact characteristics of VH-CATT gear exhibit nonlinearity.
Therefore, this paper selects appropriate values of k1, k2, k3 for each design parameter. k1 = 0.05, k2 =
0.5, k3 = 0.95, according to the formula Pi = μ+σφ−1(kq), the design parameters are categorized into
three levels, as detailed in Table 2.

Table 2: Levels of VH-CATT gear parameters

Variables Level 1 Level 2 Level 3

Tooth width (mm) 38.83685 40.00000 41.16315
Modulus (mm) 2.96737 3.20000 3.43263
Pressure angle (O) 18.83685 20.00000 21.16315
Tooth radius (mm) 191.84250 250.00000 308.15750

We used the orthogonal test method for our experimental design. As outlined in Table 2, our
study considers four factors: pressure angle, tooth width, modulus, and tooth radius. Each of these
factors has three parameter levels, necessitating the use of an L9(34) orthogonal test table. We employed
finite element analysis to assess the contact stress for various combinations of these four factors, as
presented in the L9(34) orthogonal table. The comprehensive results of the orthogonal test can be
found in Table 3.

Table 3: L9(34) orthogonal test results with contact stress simulation

Order Tooth width
(mm)

Modulus Pressure angle
(°)

Tooth radius
(mm)

Contact
force (MPa)

1 38.83685 2.96737 18.83685 191.8425 542.7
2 38.83685 3.2 20 250 457.2
3 38.83685 3.43263 21.16315 308.1575 396.8
4 40 2.96737 20 308.1575 452.9
5 40 3.2 21.16315 191.8425 494.1
6 40 3.43263 18.83685 250 449.1
7 41.16315 2.96737 21.16315 250 469.6
8 41.16315 3.2 18.83685 308.1575 440.2
9 41.16315 3.43263 20 191.8425 476.7

Full factor experiments were carried out on all factors in Table 2, and 9 test combinations in
the orthogonal test were excluded. Among the remaining 72 test combinations, 5 combinations were
randomly selected as the testing set, shown in the Table 4.
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Table 4: Testing set results with contact stress simulation

Order Tooth width
(mm)

Modulus Pressure angle
(°)

Tooth radius
(mm)

Contact force
(MPa)

1 41.16315 3.2 20 308.1575 426.5
2 41.16315 3.2 21.16315 191.8425 493.9
3 41.16315 2.96737 20 308.1575 452.3
4 40 2.96737 21.16315 191.8425 518.3
5 40 2.96737 20 250 485.3

4.2 Kriging Metamodel
4.2.1 Principle of Kriging Metamodel

The Kriging model excels in fitting highly nonlinear functions. The fitting process can be
understood as assigning linear weights to the response values of the known sampling function [18].

y (x) =
k∑

j=1

βjfj (x) + Z (x) (24)

where fj (x) denotes the function, βj denotes the corresponding coefficient; Z (x) denotes the static
random process, whose mean is 0, and variance is σ2. The covariance between the random variables
corresponding to two different points in the design space is:

Cov
[
Z
(
xi
)

, Z
(
xj
)] = σ2R

(
xi, xj
)

(25)

R
(
xi, xj
) =

Ns∏
l=1

Rl

(
θl, xi

l, xj
l

)
(26)

where R
(
xi, xj
)

represents the correlation function, representing the correlation index when random
variables are located at different positions.

In Eq. (26), the accuracy of the Kriging model is influenced by a specific parameter. The opti-
mization of the Kriging model’s accuracy can be addressed using the maximum likelihood estimation
method.

max
{
−Ns

2
ln
(
σ̃ 2
)− 1

2
ln (R) − Ns

2
ln (2π)

}
, θ > 0

σ̃ 2 = 1
Ns

(
ys − Fβ̃

)T
R−1
(
ys − Fβ̃

) (27)

To minimize the root mean square error (RMSE) between the predicted and actual values of the
Kriging model, the following approximate expression of the Kriging model can be employed as:

ỹ (x) = f T
x β̃ + [R (x, x(1)

)
, R
(
x, x(2)

)
, · · · , R

(
x, x(Ns)

)]T
R−1
(
ys − Fβ̃

)
(28)

where the F-matrix comprises a basis function vector f T
x ; β̃-represents the coefficient of the Kriging

model using least squares estimation; R is the correlation matrix; Ns is the sample number.
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4.2.2 Accuracy Evaluation Indexes of Metamodel

The correlation coefficient (denoted as R2), root mean square error (RMSE), and relative maxi-
mum absolute error (RMAE) are commonly employed to evaluate the accuracy of the metamodel [18].

(1) Coefficient Correlation (R2)

R2 = 1 −

n∑
i=1

(
fi − f̂i

)2

n∑
i=1

(
fi − f

)2 (29)

(2) Root Mean Square Error (RMSE)

RMSE =

√√√√√ n∑
i=1

(
fi − f̂i

)2

n
(30)

(3) Relative Maximum Absolute Error (RMAE)

RMAE =
max

{
|f1 − f̂1|, |f2 − f̂2|, · · · , |fn − f̂n|

}
√

1
n

n∑
i=1

(
fi − f

)2
(31)

In Eqs. (29) to (31), N represents the number of samples used to test the effectiveness of the model,
fi represents the actual value of the ith test sample, and f̂i represents the predicted value of the metamodel
corresponding to the ith test sample point. When R2 approaches 1, it suggests that the metamodel
exhibits a strong global approximation capability. As RMSE and RMAE approach 0, it signifies a
greater accuracy of the metamodel.

4.3 GA-Genetic Algorithm
The Genetic Algorithm (GA) is an adaptive global optimization search algorithm inspired by

the principles of “natural selection” and the “mechanism of favoring the strong and eliminating the
weak” from biology. It emulates the processes of natural selection and genetic variation from biological
evolution to find the optimal solution to a problem. GA is a subset of evolutionary computing
and was first introduced by Professor John H. Holland from the University of Michigan. The
execution of a genetic algorithm involves three fundamental genetic operations: selection, crossover,
and mutation [26].

(1) Selection: Based on the principle of natural selection, which is often described as “survival of
the fittest,” individuals with distinct characteristics are chosen from the initial population to form a
new generation. Assume that in a D-dimensional target search space, the population size is lg, and the
ith individual can be represented as: Xi = {Xi1 Xi2 · · · XiD

}
,i = 1, 2, · · · , lg. To determine the fitness

value of each individual using the objective function, the likelihood of selecting that individual is:

P (Xi) = f (Xi)
lg∑

i=1

f (Xi)

(32)
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(2) Crossover: The selected individuals are placed in the crossover pool. With a set probability,
these individuals undergo crossover to generate a new set of individuals. In the nth generation, two
individuals X n

i , X n
j crossover with a specified probability to produce a new individual.{

X n+1
i = qnX n

i + (1 − qn)X n
j

X n+1
j = qnX n

j + (1 − qn)X n
i

(33)

where q ∈ [0, 1], is a random number with different values at different positions.

(3) Mutation: During the crossover process, specific genetic information (represented by 1 and 0 s
at particular positions) might get lost, leading to variation. To acquire new genetic information, it is
essential to introduce a controlled degree of variation. For every position xid(d = 1, 2, . . . , D) of each
individual Xi, a mutation is performed based on a certain probability Pmutation.

x
′
id = xid + qid�xid (34)

where qid ∈ [−1, 1], and is a uniform random number, �xid is the variation range for xid.

The pseudo-code and process of the genetic algorithm are illustrated in Fig. 9.

Figure 9: Process and pseudo-code of genetic algorithm

4.4 IQPSO-Improved Quantum Particle Swarm Optimization
According to reference [18], the algorithm for updating the standard quantum particle swarm

position is as follows:

Xi,j(t + 1) = pi,j(t) ± α
∣∣Cj(t) − Xi,j(t)

∣∣ ln(1/ui,j(t)), ui,j(t) ∼ U(0, 1) (35)

pi,j(t) = Pg,j(t) + ϕi,j(t)[Pi,j(t) − Pg,j(t)] (36)
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Cj (t) =
(

1
M

M∑
i=1

Pi,1 (t) ,
1

M

M∑
i=1

Pi,2 (t) , · · · ,
1

M

M∑
i=1

Pi,N (t)

)
(37)

The “Inertia weight” is a crucial parameter in the QPSO algorithm that signifies its search
capability. A prominent issue with the QPSO algorithm is its tendency for premature local optimization
and slow convergence. This issue arises because the inertia weight value diminishes as the number of
iterations increases.

In reference [18], adaptive methods were employed to dynamically adjust these parameters.
This approach effectively addresses the challenge of the algorithm prematurely settling into local
optimization. Furthermore, a natural selection strategy is applied to diversify the particle swarm, which
enhances the algorithm’s global search capabilities and hastens its convergence rate.

The evolution rate of individual particles is defined as:

ipi (t) = Fitness(Pg,j(t))
Fitness(Pi,j(t))

(38)

where the population dispersion is defined as:

gst (t) = {gi,1(t), gi,2(t), · · · , gi,N (t)
} =
{

∂(pi,1(t)
∂X1(Xi,1(t))

,
∂(pi,2(t)

∂X2(Xi,2(t))
, · · · ,

∂(pi,N(t)
∂XN(Xi,N(t))

}
(39)

The improved quantum particle swarm position updating algorithm is as follows:

pi,j(t) = ipi(t)Pg,j(t) + ϕi,j(t)ipi(t)[Pi,j(t) − Pg,j(t)] (40)

Cj (t) =
(

1
M

M∑
i=1

Pi,1(t),
1

M

M∑
i=1

Pi,2(t), · · · ,
1

M

M∑
i=1

Pi,N (t)

)
(41)

Xi,j(t + 1) = pi,j(t) ± α
∣∣Cj(t) − (1 − gsi,j(t))Xi,j(t)

∣∣ ln(1/ui,j(t)), ui,j(t) ∼ U(0, 1) (42)

The enhanced QPSO algorithm incorporates both adaptive evolution speed and dynamic popula-
tion dispersion. The adaptive evolutionary speed ipi(t) denotes how close an individual is to the global
optimum. This dynamic parameter ranges from 0 to 1. When the adaptive evolutionary speed ipi(t)
approaches 0, there is a significant gap between the global and individual optima, necessitating an
increase in evolutionary speed. Conversely, when the adaptive evolutionary speed ipi(t) approaches
1, the difference between the global and individual optima is minimal, justifying a decrease in
evolutionary speed. The convergence rate of the algorithm discussed in this paper improves with the
introduction of adaptive evolution speed.

4.5 Improved Kriging Based on GA-QPSO
A genetic algorithm promotes the transmission of superior genes from parents to offspring

through processes such as selection, crossover, and mutation. This ensures a strong global search
capability. However, its downside is an increase in computational time, which diminishes the efficiency
of problem resolution. On the other hand, quantum particle swarm optimization (QUPSO) works by
allowing particles to benchmark themselves against the best in their group. They then enhance their
fitness by learning from the top performers emulating self-awareness and social learning mechanisms.
While QPSO is straightforward to implement and converges rapidly, it tends to get trapped in local
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optima. As cited in reference [18], this paper introduces an adaptive approach to dynamically adjust
QPSO parameters. This mitigates the issue of premature local optimization. Concurrently, a natural
selection method was employed to sustain the diversity of the particle population. This boosts the
overall search capability of QPSO, quickens its convergence speed, and increases efficiency.

Consequently, we devised a new hybrid algorithm termed genetic quantum particle swarm (GA-
IQPSO). This method synergizes the strengths of both the genetic algorithm and the enhanced
quantum particle swarm optimization. It fully capitalizes on the genetic algorithm’s superior gene
transmission properties and the adaptive learning prowess of the improved quantum particle swarm
approach. The “parental genetics + self-learning” optimization method it employs aligns more cohe-
sively with biological evolution theories and learning development processes. Fig. 10 illustrates the
optimization process of the GA-IQPSO algorithm [18].

Figure 10: The optimization process of the GA-IQPSO algorithm

As illustrated in Fig. 10, the algorithm begins by randomly generating l0 individuals (or particles)
and performs a genetic operation. Based on fitness values, individuals are categorized into two
groups: lb individuals with good performance and l0-lb individuals with poor performance. Genetic
optimization was performed for lb individuals with good performance, and quantum particle swarm
optimization was performed for l0-lb individuals with poor performance. New l0 individuals are
obtained, and the above steps are repeated until the termination condition has been satisfied. The
basic operation formula is shown in equations from (31)–(34) and (40)–(42).

GA-IQPSO algorithm was used to optimize the kriging model, and the mathematical model of
gear contact stress prediction and analyzing influencing factors were obtained. The main flow of the
model is shown in Fig. 11.
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Figure 11: Improvement process of Kriging metamodel based on GA-IQPSO algorithm

4.6 Contact Stress Reliability Analysis Model for VH-CATT Gears
The contact stress reliability analysis model for VH-CATT gears are established based on the

stress-strength interference model (shown in Fig. 12). The safety margin determined by conventional
design methods in parts will attenuated, and the safety margin becomes smaller. The strength and stress
distribution function is used from interval to crossover, and the crossover area is the unsafe area, which
width is h).

Figure 12: Stress-strength interference mode

Assuming that the contact stress mathematical model of the VH-CATT gears established based on
the proposed improved kriging metamodel based on GA-IQPSO algorithm is δ(X) and the allowable
contact stress of the material is σ , the reliability calculation model g(x) can be defined as:

g(x) = g(x1, x2, · · · , xn) = σ − δ(X) > 0 (43)
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According to the definition of reliability, the reliability is:

R = P(σ > δ(X)) = P(σ − (X) > 0) (44)

5 Numerical Simulation
5.1 Numerical Simulation Analysis

To evaluate the efficacy of the GA-IQPSO hybrid intelligent algorithm introduced in this article
for optimizing Kriging, we employed the MATLAB numerical simulation platform. Furthermore,
to enhance the accuracy of the Kriging model, we established a contact stress prediction model for
VH-CATT gear using the proposed GA-IQPSO-Kriging model. We assessed the optimization impact
of the Kriging model using performance metrics such as R2, RMSE, and RMAE. The performance
indicators before and after the optimization are presented in Table 5.

Table 5: Evaluation indexes before and after optimization

Indexes Kriging GA-IQPSO-Kriging Optimization effect

R2 0.9852 0.9974 1.22%
RMSE 3.9210 1.6492 57.94%
RMAE 0.1823 0.0753 58.69%

Table 3 reveals that the GA-IQPSO-Kriging algorithm demonstrates improved metrics over the
unimproved Kriging model. Specifically, the R2 value increased from 0.9852 to 0.9974, an improvement
of 1.22%, suggesting a superior approximation capability of the GA-IQPSO-Kriging algorithm.
RMSE decreased from 3.9210 to 1.6492, marking an enhancement in performance by 57.94%. This
indicates the GA-IQPSO-Kriging algorithm’s better ability to reproduce sample values with lower
global errors. RMAE dropped from 0.1823 to 0.0753, a decline of 58.69%. A value of RMAE
closer to 0 suggests that the GA-IQPSO-Kriging algorithm has reduced local errors and increased
precision. Consequently, the GA-IQPSO-Kriging algorithm, as presented in this paper, possesses
superior approximation, global precision, and local precision. The contact stress calculation and
analysis model for VH-CATT gear demonstrates greater accuracy when employing the GA-IQPSO-
Kriging algorithm than when using the unimproved Kriging model.

Fig. 13 illustrates the prediction outcomes of both the GA-IQPSO-Kriging and Kriging algo-
rithms. Specifically, Fig. 13a presents the Kriging model’s predictions, while Fig. 13b displays those
of the GA-IQPSO-Kriging model. It is evident from both Figs. 13a and 13b that the GA-IQPSO-
Kriging model aligns closely with the sample data, showcasing superior fitting accuracy compared to
the unimproved Kriging model.
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Figure 13: Residual diagram of GA-IQPSO-Kriging model

The residual diagrams for both the GA-IQPSO-Kriging algorithm and the Kriging algorithm are
depicted in Fig. 14. Specifically, Fig. 14a presents the residual diagram for the Kriging model, while
Fig. 14b illustrates the residual diagram for the GA-IQPSO-Kriging model.

Figure 14: (Continued)
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Figure 14: Residual diagram of contact stress prediction model

From Figs. 14a and 14b, it is evident that the GA-IQPSO-Kriging model introduced in this paper
effectively restores sample data. Its prediction error lies within the range of [−3, 3]. In contrast, the
prediction error for the Kriging model spans the interval [−3, 6]. Consequently, the error range of the
Kriging model is notably greater than that of the enhanced GA-IQPSO-Kriging model.

5.2 Finite Element Verification
To evaluate the agreement between the proposed algorithm and the conventional finite element

method, we randomly selected ten sets of parameters from the full-factor experiment. The contact
stress was then computed using both the GA-IQPSO-Kriging and the finite element methods, the
contact stress calculated by finite element methods was shown in the Fig. 15. The finite element
analysis approach was set up in the same manner as previously described in this paper.

The contact stress results from both GA-IQPSO-Kriging and finite element analysis are presented
in Table 6.
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(a) Verification Set 1 (b) Verification Set 2

(c) Verification Set 3 (d) Verification Set 4

(e) Verification Set 5 (f) Verification Set 6

(g) Verification Set 7 (h) Verification Set 8

(i) Verification Set 9 (j) Verification Set 10

Figure 15: Finite element results for the verification set
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Table 6 displays the contact stress calculations for ten randomly selected parameters using both the
GA-IQPSO-Kriging algorithm and the finite element method. While there are discrepancies between
the predicted results from GA-IQPSO-Kriging and those from the finite element analysis, the largest
error is 12.11667 MPA, which represents only 2.85% of the actual value. Thus, the GA-IQPSO-Kriging
model presented in this paper is effective for determining contact stresses and examining the impact
of VH-CATT gear parameters.

Table 6: Gear parameters of finite element analysis

Order Tooth width
(mm)

Modulus
(mm)

Pressure
angle (°)

Tooth radius
(mm)

Finite element
stress (MPa)

Predicted
stress (MPa)

Error
(MPa)

Percentage

1 38.83685 2.96737 18.83685 308.1575 462.3 464.48333 2.18333 0.47%
2 40 3.2 18.83685 250 469.3 476.28333 6.98333 1.49%
3 38.83685 3.2 18.83685 308.1575 441.6 440.71667 −0.88333 −0.20%
4 40 3.43263 18.83685 191.8425 495 489.78333 −5.21667 −1.05%
5 38.83685 3.43263 18.83685 250 450.4 454.21667 3.81667 0.85%
6 40 3.43263 18.83685 308.1575 419.2 415.25000 −3.95000 −0.94%
7 40 3.2 20 308.1575 426.6 427.10000 0.50000 0.12%
8 38.83685 2.96737 21.16315 191.8425 519.2 515.18333 −4.01667 −0.77%
9 40 3.2 21.16315 308.1575 426.2 415.18333 −11.01667 −2.58%
10 41.16315 3.2 21.16315 308.1575 425.6 413.48333 −12.11667 −2.85%

6 Influence of Design Parameters on Contact Stress

The contact stress calculation model for VH-CATT gear was devised using the GA-IQPSO-
Kriging model. We then analyzed how varying combinations of tooth width, modulus, pressure
angle, and tooth line radius parameters impacted the VH-CATT gear’s contact stress. The results are
displayed in Fig. 16, Fig. 16a depicts the contact stress variation due to the combined effects of tooth
width and modulus. Fig. 16b presents the contact stress changes when tooth width and pressure angle
are coupled. Fig. 16c illustrates the change in contact stress resulting from the combination of tooth
width and tooth line radius. Fig. 16d demonstrates the contact stress alteration from the coupling of
modulus and pressure angle. Fig. 16e showcases the contact stress changes due to the interplay of
modulus and tooth line radius. Lastly, Fig. 16f displays the contact stress variations when pressure
angle and tooth line radius are combined.

Figs. 16a–16f demonstrate that variations in tooth width, modulus, pressure angle, and tooth line
radius correlate negatively with contact stress. Specifically, the tooth line radius alteration leads to the
most significant contact stress change, followed by the modulus and pressure angle. The last change
in contact stress arises from modifications in tooth width.

From Figs. 16a to 16f, the cross coupling between different parameters causes the difference in the
variation amplitude of gear contact stress. The variation range of contact stress of VH-CATT gear are
as follows: variation [435.8, 484.6], [442.6, 469.1], [428.4, 507.4], [425.6, 494.8], [406.5, 529.5], [418.0,
517.5] MPA. From the range of gear contact stress change, the degree of influence on the contact
stress of the gear from large to small is: Modulus-tooth line radius coupling changes > Pressure angle-
tooth line radius coupling changes > Tooth width-tooth line radius coupling changes > Modulus-
pressure angle coupling changes > Tooth width-modulus coupling changes > Tooth width-pressure
angle coupling changes.
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(a) Tooth width - modulus coupling changes (b) Tooth width - pressure angle coupling changes

(c) Tooth width - tooth line radiuscoupling changes (d) Modulus - pressure angle coupling changes

(e) Modulus - tooth line radius coupling changes (f) Pressure angle - tooth line radiuscoupling changes

Figure 16: Contact stress in VH-CATT gears under the coupling of design parameters

From Figs. 16a to 16c, it is evident that tooth width varies with modulus, pressure angle, and tooth
line radius. The contact stress contour resulting from both the tooth width-modulus and tooth width-
pressure angle interactions is gentle, showcasing a linear state. This suggests that these interactions
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do not produce highly complex contact stress contour planes and do not significantly affect contact
stress. In contrast, the contour arising from the tooth width-tooth line radius interaction is less gentle,
manifesting a nonlinear state. This implies a high complexity in the contact stress contour plane and
signifies that the tooth width-tooth line radius interaction considerably influences the contact stress.

From Figs. 16d to 16e, the variation in modulus with both modulus-pressure angle and tooth
line radius is clear. The contact stress contour plane driven by modulus-pressure angle interaction is
smooth and linear, it, denoting low complexity and suggesting that this interaction does not notably
affect the contact stress. However, the contour caused by the modulus-tooth line radius interaction
changes sharply, revealing a nonlinear state. This denotes a high level of complexity and underscores
the significant effect of the modulus-tooth line radius interaction on the contact stress.

From Fig. 16f, the nonlinear contours of contact stress due to the interaction between pressure
angle and tooth line radius depict high complexity, signifying a strong influence on contact stress.

In summary, the tooth line radius exhibits notable coupling with other parameters, whereas the
coupling among other parameters is relatively subtle.

7 Conclusion

(1) R2 improved from 0.9852 to 0.9974, moving closer to 1, suggesting the GA-IQPSO-Kriging
algorithm’s enhanced global approximation capability. RMSE decreased from 3.9210 to 1.6492,
reflecting a reduced global error. RMAE moved closer to 0, declining from 0.1823 to 0.0753, signifying
the GA-IQPSO-Kriging algorithm’s reduced local error and heightened precision. When compared
to the basic kriging model, the R2, RMSE, and RMAE have improved. The GA-IQPSO-Kriging
algorithm introduced in this paper possesses superior approximation capacity, global accuracy, and
local precision. This GA-IQPSO-Kriging model can effectively replicate sample data with a prediction
error range between [−3, 3]. In contrast, the Kriging model’s prediction error spans from [−3, 6],
marking a notably larger error range than the GA-IQPSO-Kriging model.

(2) The contact stress for the ten parameter sets chosen at random in the full factor experiment
was computed using both GA-IQPSO-Kriging and the finite element method. The findings indicate
that the maximum deviation is 12.11667 MPA, which represents 2.85% of the real value. Thus, the
GA-IQPSO-Kriging model presented in this paper is apt for calculating contact stress and analyzing
the influence of VH-CATT gear parameters.

(3) The modulus, tooth width, pressure angle, and tooth line radius all negatively impact contact
stress. Altering the tooth line radius leads to the most notable shift in contact stress, followed by the
modulus and pressure angle, with the tooth width causing the least variation in contact stress.

(4) As the tooth line radius interacts with the tooth width, modulus, and pressure angle, the
contact stress contour is nonlinear and possesses a high level of complexity. There is a certain
interconnectedness between the tooth line radius and the tooth width, modulus, and pressure angle.
However, when the tooth width, modulus, and pressure angle parameters interact, the contact stress
contour becomes nearly linear, and its complexity is considerably reduced. The interrelation between
tooth width, modulus, and pressure angle is relatively minimal.
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