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ABSTRACT

This study proposes a new flexible family of distributions called the Lambert-G family. The Lambert family is very
flexible and exhibits desirable properties. Its three-parameter special sub-models provide all significant monotonic
and non-monotonic failure rates. A special sub-model of the Lambert family called the Lambert-Lomax (LL)
distribution is investigated. General expressions for the LL statistical properties are established. Characterizations
of the LL distribution are addressed mathematically based on its hazard function. The estimation of the LL
parameters is discussed using six estimation methods. The performance of this estimation method is explored
through simulation experiments. The usefulness and flexibility of the LL distribution are demonstrated empirically
using two real-life data sets. The LL model better fits the exponentiated Lomax, inverse power Lomax, Lomax-
Rayleigh, power Lomax, and Lomax distributions.
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1 Introduction

Many approaches have been suggested to propose new families of distributions or to generalize
some of the classical distributions. These families and generalized distributions provide more flexibility
in modeling real-life data in different applied fields. The most common feature of the new families and
generalized distributions is represented by having one or more extra shape parameters. Hence, the
statistical literature contains many families to generate new distributions by adding one or more shape
parameters. Some examples include the Kumaraswamy-G by Cordeiro et al. [1], exponentiated T-X by
Alzaghal et al. [2], Weibull-G by Bourguignon et al. [3], odd moment exponential-G by Haq et al. [4],
Burr XII-G by Cordeiro et al. [5], generalized odd Burr III-G by Haq et al. [6], generalized odd half-
logistic-G by Altun et al. [7], Marshall–Olkin alpha power by Nassar et al. [8], new exponential-X by
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Ahmad et al. [9], new extended heavy-tailed family by Aljohani et al. [10], and modified generalized-G
by Shama et al. [11].

One of the most notable approaches to generating new distributions is constructed by using the
Lambert-W (LW) function which is also known as the product logarithm function. This approach is
discussed by Corless [12]. It is defined (for z ∈ [0, ∞)) as the roots of the following function:

W (z) eW(z) = z; z ∈ C. (1)

The above equation contains only one real-valued solution. Recently, the LW function has been
used in the distribution of prime numbers as discussed by Visser [13]. Goerg [14] adopted the LW
function to introduce new families of distributions in the context of random variable transformations.
Iriarte et al. [15] generated the Lambert-F class as an alternative family for positive data analysis.

This study introduces a new wider class based on the LW function called the Lambert-G (LG)
family, in which the baseline distribution is a continuous distribution with positive support. The
proposed approach applies a transformation to a baseline cumulative distribution function (cdf), as
illustrated in Definition 1. The newly generated cdf of the LG family, with two extra shape parameters,
has the quantile function (qf), which is expressed in a closed form in terms of the LW function; hence,
the proposed generator is called the LG family.

The LG family has some desirable properties and it can be justified as follows. (i) The three-
parameter special sub-models of the LG family are capable of modeling all important hazard rate (hr)
shapes including increasing, decreasing, unimodal, J-shape, reversed J-shape, bathtub, and modified-
bathtub failure rates; (ii) Moreover, the densities of its sub-models accommodate reversed J shaped,
right-skewed, symmetric, left-skewed, decreasing-increasing-decreasing densities; (iii) The LG special
sub-models generalize some well-known distributions in the distribution theory literature such as the
modified Weibull model [16]; (iv) The LG special models provide better fit than other generalized
models under the same baseline distribution as shown in case of the Lambert-Lomax (LL) model.

The paper is organized in the following sections. In Section 2, the LG family is presented. In
Section 3, we provide three special sub-models of the LG family. The properties of the LL distribution
along with its analytical shapes are explored in Section 4. In Section 5, the parameters of the LL
distribution are estimated via six classical estimation methods. Section 6 presents simulation results to
address the behavior of different estimators. To show the empirical importance of the LL distribution,
two real-life data sets are analyzed in Section 7. Final remarks are given in Section 8.

2 The LG Family

Definition 1. A random variable X is said to follow the LG family, denoted by X�LG (x; υ, ω, ξ),
if its cdf is given by

F (x; υ, ω, ξ) = 1 − exp
(
−

{
− ln

[
G (x; ξ)

]}υ

exp
{
−ω ln

[
G (x; ξ)

]})
, x > 0, υ, ω, ξ > 0, (2)

where υ and ω are additional shape parameters and G (x; ξ) is a baseline survival function (sf) with a
vector of unknown parameters ξ .

The probability density function (pdf) corresponding to Eq. (2) reduces to

f (x; υ, ω, ξ) =
{
υ − ω ln

[
G (x; ξ)

]}
h (x; ξ){

− ln
[
G (x; ξ)

]}1−υ
exp

{
−ω ln

[
G (x; ξ)

]}
F (x; υ, ω, ξ) , (3)
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where F (x; υ, ω, ξ) is the sf of the LG family and h (x; ξ) is the hr function (hrf) of a baseline
distribution.

The hrf of the LG family becomes

ϕ (x; υ, ω, ξ) =
{
υ − ω ln

(
G (x; ξ)

)}
h (x; ξ)

{
− ln

[
G (x; ξ)

]}υ−1

exp
{
−ω ln

[
G (x; ξ)

]}
. (4)

According to Eq. (4), the hrf of the LG family has a flexible property because it depends
on the value of the extra parameter υ and the baseline hrf. Furthermore, the importance of the
proposed family follows from its ability to generate new flexible distributions without adding new
extra parameters by letting υ = ω = 1 in Eq. (2). Then, Eq. (2) reduces to

F (x; ξ) = 1 − exp
{
−G (x; ξ) ln

[
G (x; ξ)

]}
= 1 −

[
G (x; ξ)

] 1
G(x;ξ) . (5)

Eq. (5) is called the reduced Lambert-G (RLG) family.

The pdf and hrf of the RLG are given, respectively, by

f (x; ξ) = h (x; ξ)
{

1 − ln
[
G (x; ξ)

]} [
G (x; ξ)

]−F(x;ξ)

(6)

and

ϕ (x; ξ) = h (x; ξ)
1 − ln

[
G (x; ξ)

]
G (x; ξ)

. (7)

3 Special Models of the LG Family

In this section, we provide three specific models of the LG family. These special distributions
provide modified flexible forms of some standard distributions namely the exponential, Pareto, and
Lomax distributions. The special sub-models of the LG family are called the Lambert-exponential
(LE), Lambert-Pareto (LP), and LL distributions. These special models are capable of modeling all
important hrf shapes including increasing, decreasing, unimodal, J-shape, reversed J-shape, bathtub,
and modified bathtub failure rates. Moreover, the densities of these sub-models can also provide
reversed J-shaped, right-skewed, symmetric, left-skewed, decreasing-increasing-decreasing densities.

3.1 The LE Distribution
The LE cdf follows from Eq. (2) by setting G (x; θ) = exp (−θx). Then, the LE cdf becomes

F (x; υ, α, λ) = 1 − exp
(−αxυeλx

)
, x > 0, υ, α, λ > 0, (8)

where α = θυ and λ = ωθ are scale parameters and υ is a shape parameter.

The corresponding pdf and hrf of the LE distribution take the forms

f (x; υ, α, λ) = α [υ + λx] xυ−1 exp
(
λx − αxυeλx

)
(9)

and

ϕ(x; υ, α, λ) = α [υ + λx] xυ−1 exp (λx) . (10)

The hrf shapes of the LE distribution depend only on the value of υ and can be increasing
or bathtub shaped. The LE distribution is also known in the literature as the modified Weibull
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distribution (see Lai et al. [16]). Hence, the LE model reduces to type I extreme-value distribution
for υ = 0 and reduces to the Weibull distribution for λ = 0.

3.2 The LP Distribution
Consider the sf of the Pareto distribution G (x; α) = (1/x)

α, x ≥ 1 and α > 0. Substituting
G (x; α) = (1/x)

α in (2) yields the cdf of the LP distribution

F (x; υ, λ, β) = 1 − exp
(−λxβ [ln (x)]υ

)
, x > 1, υ, λ, β > 0, (11)

where λ = αυ is a scale parameters and β = ωα and υ are shape parameters. The corresponding pdf
and hrf are given by

f (x; υ, λ, β) = λ [υ + β ln (x)] xβ−1 [ln (x)]υ−1 exp
(−λxβ [ln (x)]υ

)
(12)

and

ϕ (x; υ, λ, β) = λ [υ + β ln (x)] xβ−1 [ln (x)]υ−1 . (13)

The shape of the LP hrf depends on the values of β and υ and it can provide increasing or bathtub
shapes. The Weibull and Pareto distributions are special cases from the LP distribution. The Weibull
distribution follows when υ = 0 and the Pareto model is obtained for υ = 1 and β = 0. Fig. 1 provides
some possible shapes of the density and hazard functions of the LE and LP distributions.
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Figure 1: Possible shapes for the density and hazard functions of the LE and LP distributions
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3.3 The LL Distribution

By taking the sf of the Lomax distribution, G (x; α) =
(

1 + x
α

)−1

, α > 0, as a baseline sf in (2).

The cdf of the LL distribution reduces to

F (x; υ, ω, α) = 1 − exp
{
−

(
1 + x

α

)ω [
ln

(
1 + x

α

)]υ}
, x > 0, υ, ω, α > 0, (14)

where υ > 0 and ω > 0 are two extra shape parameters.

The corresponding pdf and hrf are

f (x; υ, ω, α) = 1
α

[
υ + ω ln

(
1 + x

α

)] (
1 + x

α

)ω−1 [
ln

(
1 + x

α

)]υ−1

F (x; υ, ω, α) (15)

and

ϕ (x; υ, ω, α) = 1
α

[
υ + ω ln

(
1 + x

α

)] [
1 + x

α

]ω−1 [
ln

(
1 + x

α

)]υ−1

. (16)

The Lomax distribution follows as a special case of the LL distribution with υ = 1 and ω = 0.
The behavior of the LL density is plotted in Fig. 2. The hrf plots of the LL model are shown in Fig. 3.
These figures show the strong effects of the two shape parameters ω and υ on the shapes of the pdf
and hrf of the LL distribution.
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Figure 2: Possible shapes for the pdf of the LL distribution

4 Properties of the LL Distribution

In this section, we provide some basic statistical properties of the LL distribution.

4.1 Behavior of the Density and Hazard Rate Functions
The pdf limits of the LL distribution as x → 0 and as x → ∞ are

lim
x→0

f (x; υ, ω, α) =
⎧⎨⎩∞ υ < 1,

1/α υ = 1,
0 υ > 1

and lim
x→∞

f (x; υ, ω, α) = 0.
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Figure 3: Possible shapes for the hrf of the LL distribution

Theorem 4.1. The graph of the pdf of the LL distribution is log-concave if υ ≥ 1 for all x.

Proof. Setting y = ln
(

1 + x
α

)
in the LL pdf (15) and taking the logarithm, we have

ψ (y) = 1
α

(υ + ωy) yυ−1exp ((ω − 1) y − yυeωy) .

Differentiating twice concerning y, we have

ψ ′′ (y) = − ω2

(υ + ωy)
2 − (υ − 1) (1 + υyυeωy)

y2
.

Note that y = ln
(

1 + x
α

)
implies that y > 0. So, we can conclude that for all values of ω and

υ ≥ 1, ψ ′′ (y) < 0. Hence, the pdf of the LL distribution is log-concave for all x.

The hrf limits of the LL distribution as x → 0 and as x → ∞ are

lim
x→0

ϕ (x; υ, ω, α) =
⎧⎨⎩∞ υ < 1,

1/α υ = 1,
0 υ > 1

and lim
x→∞

ϕ (x; υ, ω, α) =
{

0 ω < 1,
∞ ω ≥ 1.

Theorem 4.2. The hrf of the LL distribution is

• Increasing for υ ≥ 1 and ω ≥ 1.
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• Decreasing for υ ≤ 1 and ω < 0.5 or for υ < 1, 0.5 < ω < 1 and υ < 4 ω (1 − ω).

• Unimodal for υ ≥ 1 and 0.5 < ω < 1.

• Bathtub for υ < 1 and ω ≥ 1.

• Decreasing-increasing-decreasing for υ < 1, 0.5 < ω < 1 and υ ≥ 4 ω (1 − ω).

Proof. From Eq. (16), we have

ln [ϕ (x; υ, ω, α)] = − ln (α) + ln
[
υ + ω ln

(
1 + x

α

)]
+ (ω − 1) ln

[
1 + x

α

]
+ (υ − 1) ln

[
ln

(
1 + x

α

)]
.

The derivative of ln [ϕ (x; υ, ω, α)] follows as

d
dx

ln [ϕ (x; υ, ω, α)] = 

(
ln

(
1 + x

α

))
x + α

,

where


 (y) = ω (ω − 1) y2 + υ (2ω − 1) y + υ (υ − 1) , y > 0,

where y = ln
(

1 + x
α

)
.

Clearly, both the hrf of the LL distribution and 
 (y) have the same sign, hence the quantity 
 (y)

has the following cases:

Case 1: For ω = 1, 
 (y) reduces to y+υ−1 = 0, hence the hrf of the LL distribution is increasing
in x if υ ≥ 1. Also, if υ < 1, the hrf is a bathtub shape with a minimum value at the point y1 = 1 − υ

since 
 ′ (y1) > 0.

Case 2: If υ = 1, 
 (y) reduce to 
 (y) = ω (ω − 1) y2 +(2ω − 1) y. Hence, the LL hrf is increasing
in x for ω ≥ 1. The LL hrf is decreasing in x for ω ≤ 0.5. Moreover, the LL hrf is unimodal with

maximum value at the point y1 = 2ω − 1
ω (ω − 1)

for 0.5 < ω < 1 since 
 ′ (y1) < 0.

Case 3: If υ > 1 and ω > 1, then 
 (y) is positive. Hence, the LL hrf is increasing in x.

Case 4: If υ < 1 and ω ≤ 0.5, hence 
 (y) is negative. Then, the LL hrf is decreasing in x.

To discuss other cases, we have to get two critical values of 
 (y) which can be written as

y1 = υ (1 − 2ω) − √
4υω (ω − 1) + υ2

2ω (ω − 1)

and

y2 = υ (1 − 2ω) + √
υ [4ω (ω − 1) + υ]

2ω (ω − 1)
.

Case 5: For υ > 1 and ω < 1, 
 (y) has a critical value at the point y2 which changes the sign from
positive to negative. Thus, the LL hrf is unimodal.

Case 6: The function 
 (y) has two critical values y1 and y2 where the sign is negative on
(0, y1)

⋃
(y2, ∞) and positive on (y1, y2) if 4ω (1 − ω) < υ < 1 and 0.5 < ω < 1. Hence, the LL

hrf is decreasing-increasing-decreasing. Additionally, for υ < 4ω (1 − ω), the sign is always negative,
thus the LL hrf is decreasing.

Case 7: For υ < 1 and ω > 1, 
 (y) has a critical value at the point y2 which changes the sign from
negative to positive. Thus, the LL hrf is the bathtub.
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4.2 Moments
Theorem 4.3. The rth raw moments of the LL distribution can be obtained as

E (X r) = αr

r∑
i=0

∞∑
j=0

(
r
i

)
ij (−1)

r−i Ak1,...,kj

j!
�

(
Sj + 1

)
. (17)

Proof. The rth raw moments of the LL distribution can be defined as

E (X r) =
∫ ∞

0

xr

α
f (x; υ, ω, α) dx.

Let Y = ln
(

1 + X
α

)
, y > 0, then E (X r) becomes

E (X r) = αr

∫ ∞

0

(ey − 1)
r [υ + ωy] eωyyυ−1 exp (−yυeωy) dy.

By using the binomial and series expansions, the rth raw moments take the form

E (X r) = αr

∫ ∞

0

r∑
i=0

∞∑
j=0

(
r
i

)
ij (−1)

r−i

j!
[υ + ωy] eωyyj+υ−1 exp (−yυeωy) dy.

Let z = yυeωy, hence y in terms in z becomes y = ∑∞
k=1 akzk/υ , where ak = (−1)

k+1 kj−2 (ω/υ)
k−1

(k − 1) !
.

Then, the above integral reduces to

E (X r) = αr

∫ ∞

0

r∑
i=0

∞∑
j=0

(
r
i

)
ij (−1)

r−i

j!

( ∞∑
k=1

akzk/υ

)j

exp (−z) dz. (18)

Let
(∑∞

k=1 akzk/υ
)j = ∑∞

k1,...,kj=1 Ak1,...,kj z
Sj , where Ak1,...,kj = ak1

...akj and Sj = j1 + ... + jj. Hence, the
integral in (18) gives

E (X r) = αr

r∑
i=0

∞∑
j=0

(
r
i

)
ij (−1)

r−i Ak1,...,kj

j!

∫ ∞

0

zSj exp (−z) dz.

Finally, we have

E (X r) = αr

r∑
i=0

∞∑
j=0

(
r
i

)
ij (−1)

r−i Ak1,...,kj

j!
�

(
Sj + 1

)
,

which completes the proof.

As well as the measures of skewness, kurtosis, and asymmetry of the LL distribution are obtained
by the following relations:

β1 =
(
μ′

3 − 3μ′
2μ + 2μ3

)2

(μ′
2 − μ2)

3 , β2 = μ′
4 − 4μ′

3μ + 6μ′
2μ

2 − 3μ4

(μ′
2 − μ2)

2 and β3 = μ′
3 − 3μ′

2μ + 2μ3

(μ′
2 − μ2)

3/2 .

Table 1 provides some important LL measures for various parametric values. The numerical values
show that the LL distribution can be right skewed for different values of υ and ω.
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Table 1: Some LL measures for several parametric combinations of its parameters

Actual values Mean Variance Skewness Kurtosis Asymmetry CV

υ ω α

0.50 0.5353 0.7821 16.1629 31.3442 4.0203 1.6522
0.50 1.00 1.0706 3.1285 16.1629 31.3442 4.0203 1.6522

1.50 1.6059 7.0391 16.1629 31.3442 4.0203 1.6522

0.50 0.2775 0.1085 4.0298 8.4889 2.0074 1.1871
0.5 1.00 1.00 0.5551 0.4342 4.0298 8.4889 2.0074 1.1871

1.50 0.8326 0.9769 4.0298 8.4889 2.0074 1.1871

0.50 0.1986 0.0427 2.2224 5.5215 1.4908 1.0399
1.50 1.00 0.3973 0.1706 2.2224 5.5215 1.4908 1.0399

1.50 0.5959 0.3839 2.2224 5.5215 1.4908 1.0399

0.50 0.5280 0.3170 5.7621 12.4969 2.4004 1.0665
0.50 1.00 1.0559 1.2681 5.7621 12.4969 2.4004 1.0665

1.50 1.5839 2.8532 5.7621 12.4969 2.4004 1.0665

0.50 0.3521 0.0856 1.8671 5.4262 1.3664 0.8311
1.00 1.00 1.00 0.7042 0.3425 1.8671 5.4262 1.3664 0.8311

1.50 1.0563 0.7707 1.8671 5.4262 1.3664 0.8311

0.50 0.2758 0.0409 0.9781 3.9475 0.9890 0.7330
1.50 1.00 0.5516 0.1635 0.9781 3.9475 0.9890 0.7330

1.50 0.8275 0.3679 0.9781 3.9475 0.9890 0.7330

0.50 0.5499 0.1879 2.5495 6.9434 1.5967 0.7882
0.50 1.00 1.0998 0.7515 2.5495 6.9434 1.5967 0.7882

1.50 1.6497 1.6909 2.5495 6.9434 1.5967 0.7882

0.50 0.4093 0.0706 0.9585 4.1124 0.9790 0.6491
1.50 1.00 1.00 0.8187 0.2824 0.9585 4.1124 0.9790 0.6491

1.50 1.2280 0.6354 0.9585 4.1124 0.9790 0.6491

0.50 0.3358 0.0378 0.4804 3.3091 0.6931 0.5793
1.50 1.00 0.6716 0.1513 0.4804 3.3091 0.6931 0.5793

1.50 1.0074 0.3405 0.4804 3.3091 0.6931 0.5793

4.3 Quantile Function
The qf of the LL distribution follows, by inverting its cdf (15), as

x = Q (u) = α
{
exp

[
ek(u)

] − 1
}

, (19)
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where

k (u) = 1
υ

(
{ln [− ln (1 − u)]} − υW

(
ω [− ln (1 − u)]1/υ

υ

))
and W (.) is the LW function. Then, if U has a uniform distribution in (0, 1), the solution of nonlinear
equation x = Q (u) has the LL distribution. Setting u = 0.5 in (19) gives the median (M) of the LL
distribution. Additionally, by setting u = 0.25 and u = 0.75, one can obtain the lower and higher
quartiles, respectively. The qf is calculated by using the Maple software.

4.4 Order Statistics
The order statistic for the LL distribution will be discussed in this section. It will also be useful to

derive the pdf of the kth order statistic X(k) of the ordered sample X(1), X(2), ..., X(n) drawn from the LL
with parameters υ, ω and α. The pdf fX(k)

(x) of X(k) is given by

fX(k)
(x) = n

(
n − 1
k − 1

)
f (x)F(x)k−1 [1 − F(x)](n−k) , k = 1, 2, ..., n. (20)

We have

F(x; υ, ω, α)k−1 =
(

1 − e−(1+ x
α )

ω[ln(1+ x
α )]υ

)k−1

=
k−1∑
l=0

(
k − 1
l

)
(−1)

l e−l(1+ x
α )

ω[ln(1+ x
α )]υ (21)

and

[1 − F(x; υ, ω, α)](n−k) = e−(n−k)(1+ x
α )

ω[ln(1+ x
α )]υ . (22)

Substituting (21) and (22) in (20), one can write

fX(k)
(x; υ, ω, α) = n

(
n − 1
k − 1

) k−1∑
l=0

(
k − 1
l

)
(−1)

l

(
1
α

) (
1 + x

α

)ω−1 [
ln

(
1 + x

α

)]υ−1

×
(
υ + ω ln

(
1 + x

α

))
exp

(
− (n − k + l + 1)

(
1 + x

α

)ω [
ln

(
1 + x

α

)]υ)
.

(23)

Hence, the largest order statistic density follows as

fX(n)
(x; υ, ω, α) = n

n−1∑
l=0

(
k − 1
l

)
(−1)

l

(
1
α

) (
1 + x

α

)ω−1 [
ln

(
1 + x

α

)]υ−1 (
υ + ω ln

(
1 + x

α

))
exp

(
− (l + 1)

(
1 + x

α

)ω [
ln

(
1 + x

α

)]υ)
.

(24)

The smallest order statistic pdf reduces to

fX(1)
(x; υ, ω, α) = n

(
1
α

) (
1 + x

α

)ω−1 [
ln

(
1 + x

α

)]υ−1 (
υ + ω ln

(
1 + x

α

))
exp

(
− (n + l)

(
1 + x

α

)ω [
ln

(
1 + x

α

)]υ)
.

(25)
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5 Estimation of the LL Parameters

In this section, different techniques are used to estimate the LL parameters.

5.1 Maximum Likelihood
The LL parameters are estimated by the maximum likelihood (ML). Consider a random sample

from the LL distribution denoted by x1, x2, ..., xn. Hence, the log-likelihood function follows as

L (υ, ω, α) = n log [α] + (υ − 1)

n∑
i=1

log [log(δi)] +
n∑

i=1

log [υ + ω log(δi)]

+ (ω − 1)

n∑
i=1

log(δi) −
n∑

i=1

(δi)
ω log(δi)

υ ,

(26)

where δi =
(

1 + xi

α

)
.

The ML estimators (MLE) of υ, ω and α can be obtained by simultaneously solving the following
non-linear system:

∂

∂υ
L (υ, ω, α) =

n∑
i=1

log [log(δi)] −
n∑

i=1

(δi)
ω log(δi)

υ log [log(δi)] +
n∑

i=1

[υ + ω log(δi)]
−1 , (27)

∂

∂ω
L (υ, ω, α) =

n∑
i=1

{
ω + v [log(δi)]

−1}−1 −
n∑

i=1

log(δi)
υ+1(δi)

ω +
n∑

i=1

log(δi) (28)

and

∂

∂α
L (υ, ω, α) = − n

α
− ω − 1

α

n∑
i=1

xi

(α + xi)
− υ + ω − 1

α2

n∑
i=1

xi [(δi) log(δi)]
−1

− 1
α2

n∑
i=1

[
xi (δi)

ω−1 log(δi)
υ
(−υ log(δi)

−1 − ω
)]

. (29)

5.2 Least-Squares and Weighted Least-Squares
The least squares (LS) and the weighted LS (WLS) methods are introduced by Swain et al. [17].

The LS estimators (LSE) of the LL parameters are calculated by minimizing the following function
concerning υ, ω and α:

B (υ, ω, α) =
n∑

i=1

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − i
n + i

)2

, (30)

where δ(i) =
(

1 + x(i)

α

)
. Moreover, the LSE is obtained by simultaneously solving the following non-

linear system:

∂B (υ, ω, α)

∂υ
=

n∑
i=1

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − i
n + i

)
F ′

υ

(
x(i)

) = 0, (31)

∂B (υ, ω, α)

∂ω
=

n∑
i=1

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − i
n + i

)
F ′

ω

(
x(i)

) = 0 (32)
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and

∂B (υ, ω, α)

∂α
=

n∑
i=1

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − i
n + i

)
F ′

α

(
x(i)

) = 0, (33)

where

F ′
υ

(
x(i)

) = (
δ(i)

)ω

log
(
δ(i)

)υ

log
(
log δ(i)

)
exp

[− (
δ(i)

)ω

log
(
δ(i)

)υ]
, (34)

F ′
ω

(
x(i)

) = (
δ(i)

)ω

log
(
δ(i)

)υ+1
exp

[− (
δ(i)

)ω

log
(
δ(i)

)υ]
(35)

and

F ′
α

(
x(i)

) = −x(i)

α

(
δ(i)

)ω−1
log

(
δ(i)

)υ−1
f

(
x(i); υ, ω, α

)
. (36)

The WLS estimators (WLSE) of the LL parameters follow by minimizing the function

W (υ, ω, α) =
n∑

i=1

ϕ(i, n)

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − i
n + i

)2

, (37)

where ϕ(i, n) = (n + 1)
2
(n + 2)/i (n − i + 1) .

Also, these estimators are determined by solving the following non-linear system:
n∑

i=1

ϕ(i, n)

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − i
n + i

)
F ′

k

(
x(i)

) = 0, (38)

where F ′
k

(
x(i)

) = 0 are given in Eqs. (34)–(36) for k = υ, ω, α.

5.3 Cramér–Von Mises
The Cramér–von Mises (CM) method was introduced by Choi et al. [18] depending on the CM

statistics (Boos [19]). Then, the CM estimators (CME) of the LL parameters minimize the following
function:

C (υ, ω, α) = 1
12n

+
n∑

i=1

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − 2i − 1
2n

)2

, (39)

with respect to υ, α and ω. They also are obtained by solving the following non-linear system:
n∑

i=1

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ] − 2i − 1
2n

)
F ′

k

(
x(i)

) = 0, (40)

where F ′
k

(
x(i)

) = 0 are given in Eqs. (34)–(36) for k = υ, ω, α.

5.4 Anderson–Darling and Right-Tail Anderson–Darling
Depending on the Anderson–Darling (AD) statistic, the AD method was proposed by Anderson

et al. [20] and [21]. Hence, the AD estimators (ADE) of the LL parameters are calculated by minimizing
the function
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A (υ, ω, α) = −n − 1
n

n∑
i=1

(2i − 1)
{
log

(
1 − exp

[− (
δ(i)

)ω (
ln δ(i)

)υ]) + log
(
exp

[− (
δ(i)

)ω (
ln δ(i)

)υ])}
. (41)

Therefore, the ADE is also obtained by solving the following non-linear system:
n+1∑
i=1

(2i − 1)

(
F ′

k

(
x(i)

)
F

(
x(i)

) − F ′
k

(
x(n+1−i)

)
1 − F

(
x(n+1−i)

))
= 0, k = υ, ω, α, (42)

where F ′
k

(
x(i)

) = 0 are given in Eqs. (34)–(36).

Luceno [22] applied some motivations to the AD statistic called the right-tail AD (RAD) statistic.
Hence, to obtain the RAD estimators (RADE) of the LL parameters, we minimize the following
function:

RA (υ, ω, α) = n
2

− 2
n∑

i=1

F
(
x(i)

) − 1
n

n∑
i=1

(2i − 1) log
(
1 − F

(
x(n+1−i)

))
. (43)

Additionally, the RADE is obtained by solving the non-linear system

∂RA (υ, ω, α)

∂υ
= −n

n∑
i=0

F ′
k

(
x(i)

)
F

(
x(i)

) + 1
n

n+1∑
i=1

(2i − 1)
F ′

k

(
x(n−i+1)

)
1 − F

(
x(n−i+1)

) = 0, k = υ, ω, α, (44)

where F ′
k

(
x(i)

) = 0 are given in Eqs. (34)–(36).

All above mentioned non-linear systems of equations have no exact solutions, so the optim and
nlminb functions in R software can be adopted for this purpose.

6 Simulation Analysis

This section presents numerical simulation results to explore the efficiency and performance of
different estimators for the LL parameters. The following algorithm is adopted to evaluate different
estimators:

1. Set different initial values of sample size n and the parameters υ, ω and α.

2. Generate several random samples of size n from the LL distribution using its qf.

3. The outcomes in the previous step are used to calculate the parameter estimates, �̂ = (υ̂, ω̂, α̂),
by using the MLE, LSE, WLSE, CME, ADE and RADE.

4. The three above steps are repeated 6,000 times.

5. Based on �̂ and �, the absolute bias (AB) and root-mean-squared error (RMSE) are deter-
mined using the following formulae:

AB
(
�̂

) = 1
6000

6000∑
i=1

∣∣�̂ − �
∣∣

and

RMSE
(
�̂

) =
√√√√ 1

6000

6000∑
i=1

(
�̂ − �

)2
.
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From the LL distribution 6,000 samples are generated for n = {20, 50, 100, 200} and several
parametric values for υ = (0.6, 0.4, 1.5), ω = (0.8, 1.5, 0.4) and α = (1.5, 0.8, 0.6) using different
estimation methods.

The AB and RMSE of the MLE, CME, LSE, ADE, WLSE, and RADE are presented in Tables 2–
4. Moreover, the partial and overall ranks of the estimators are calculated in Table 5. From the values
in these tables, one can note that

1. All estimates show the property of consistency, i.e., the AB and RMSE decrease as sample size
increases for all parametric combinations.

2. According to AB and RMSE, the ordering of performance of estimators (from best to worst)
for all parameters is the MLE, ADE, WLSE, RADE, LSE and CME.

Table 2: The AB and RMSE of different estimators for υ = 0.6, ω = 0.8 and α = 1.5

n Est. Est. Par. MLE LSE WLSE CME ADE RADE

υ̂ 0.0264 0.0581 0.1284 0.1578 0.1051 0.1754
AB ω̂ 0.3019 1.4720 1.3029 1.7125 0.6682 1.1226

20 α̂ 0.6472 3.1034 2.2290 2.5726 1.2439 2.0723

υ̂ 0.0653 0.0961 0.1917 0.2471 0.1763 0.2772
RMSE ω̂ 2.4905 3.2428 3.0630 3.8694 1.6943 2.5228

α̂ 4.3459 5.8860 4.5391 5.1254 2.7913 4.2717

υ̂ 0.0030 0.0330 0.0721 0.0843 0.0427 0.0919
AB ω̂ 0.0091 0.6705 0.4907 0.6270 0.2050 0.4111

50 α̂ 0.0243 1.5432 0.9413 1.0911 0.4128 0.8535

υ̂ 0.0185 0.0441 0.0976 0.1166 0.0778 0.1308
RMSE ω̂ 0.0728 1.4914 1.0426 1.3586 0.4923 0.7953

α̂ 0.1906 3.1088 1.7544 2.1046 0.8887 1.5772

υ̂ 0.0002 0.0235 0.0495 0.0560 0.0187 0.0601
AB ω̂ 0.0003 0.3304 0.2686 0.3341 0.0797 0.2492

100 α̂ 0.0008 0.7874 0.5549 0.6240 0.1636 0.5225

υ̂ 0.0040 0.0305 0.0641 0.0736 0.0424 0.0794
RMSE ω̂ 0.0080 0.5500 0.4027 0.5182 0.1830 0.3524

α̂ 0.0231 1.2495 0.8125 0.9439 0.3792 0.7404

υ̂ 1.824E-5 0.0173 0.0337 0.0389 0.0042 0.0409
AB ω̂ 3.647E-5 0.2194 0.1714 0.2127 0.0178 0.1677

200 α̂ 4.895E-5 0.5296 0.3555 0.4061 0.0361 0.3589

υ̂ 0.0014 0.0222 0.0434 0.0497 0.0166 0.0525
RMSE ω̂ 0.0028 0.2969 0.2324 0.2994 0.0700 0.2277

α̂ 0.0038 0.7261 0.4757 0.5632 0.1452 0.4852



CMES, 2024, vol.140, no.1 527

Table 3: The AB and RMSE of different estimators for υ = 0.4, ω = 1.5 and α = 0.8

n Est. Est. Par. MLE LSE WLSE CME ADE RADE

υ̂ 0.1031 0.1550 0.1364 0.1744 0.1113 0.2030
AB ω̂ 1.5750 3.4991 3.0284 3.5275 1.6103 2.8384

20 α̂ 0.7193 1.6832 1.4733 1.5649 0.7893 1.4113

υ̂ 0.1861 0.2483 0.2167 0.2836 0.1976 0.3421
RMSE ω̂ 3.7365 6.6284 5.9463 6.6117 3.8827 5.7166

α̂ 1.6107 3.2113 2.8603 2.9109 1.8347 2.8283

υ̂ 0.0421 0.0898 0.0781 0.0918 0.0443 0.1018
AB ω̂ 0.3909 1.6592 1.2153 1.6029 0.4151 1.1408

50 α̂ 0.2039 0.8158 0.6186 0.7613 0.2209 0.6092

υ̂ 0.0812 0.1207 0.1060 0.1297 0.0867 0.1455
RMSE ω̂ 0.9886 3.6132 2.6606 3.3993 0.9859 2.4690

α̂ 0.4764 1.6838 1.2597 1.5159 0.5045 1.2460

υ̂ 0.0164 0.0606 0.0529 0.0621 0.0153 0.0649
AB ω̂ 0.1142 0.8530 0.6218 0.8429 0.1220 0.6206

100 α̂ 0.0624 0.4337 0.3358 0.4209 0.0668 0.3467

υ̂ 0.0435 0.0791 0.0694 0.0816 0.0410 0.085
RMSE ω̂ 0.3236 1.5718 1.0518 1.6204 0.3309 1.0746

α̂ 0.1719 0.7609 0.5323 0.7661 0.1812 0.5814

υ̂ 0.0036 0.0424 0.0368 0.0422 0.0031 0.0452
AB ω̂ 0.0201 0.5118 0.3919 0.5163 0.0221 0.4035

200 α̂ 0.0114 0.2665 0.21587 0.2662 0.0121 0.2285

υ̂ 0.0179 0.0542 0.0472 0.0541 0.0157 0.0584
RMSE ω̂ 0.0991 0.7735 0.5505 0.7676 0.1079 0.5725

α̂ 0.0559 0.3948 0.3019 0.3894 0.0582 0.3225

Table 4: The AB and RMSE of different estimators for υ = 1.5, ω = 0.4 and α = 0.6

n Est. Est. Par. MLE LSE WLSE CME ADE RADE

υ̂ 0.4811 0.5322 0.5088 0.5657 0.4728 0.5389
AB ω̂ 1.1040 2.0602 1.757 2.0698 1.1153 1.6573

20 α̂ 0.8345 1.6631 1.3916 1.5393 0.8873 1.4196
υ̂ 0.5817 0.6417 0.6108 0.6962 0.5707 0.6441

RMSE ω̂ 2.574 4.9099 4.3821 4.8676 2.8235 4.16114
α̂ 1.9135 3.9267 3.3962 3.5889 2.2378 3.6226

(Continued)
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Table 4 (continued)

n Est. Est. Par. MLE LSE WLSE CME ADE RADE

υ̂ 0.33430 0.3964 0.3667 0.4070 0.3472 0.4116
AB ω̂ 0.4330 0.7562 0.5572 0.7544 0.4472 0.5720

50 α̂ 0.3337 0.5948 0.4391 0.5740 0.3485 0.4710
υ̂ 0.4040 0.4713 0.4364 0.4875 0.4181 0.4846

RMSE ω̂ 0.7342 1.7734 1.0560 1.7807 0.6869 1.1838
α̂ 0.5925 1.3937 0.8317 1.3576 0.5711 1.0537
υ̂ 0.2501 0.3121 0.2808 0.3158 0.2718 0.3284

AB ω̂ 0.2798 0.4248 0.3332 0.4202 0.3032 0.3554
100 α̂ 0.2105 0.3244 0.2520 0.3109 0.2300 0.2768

υ̂ 0.3084 0.3726 0.3368 0.3785 0.3310 0.3911
RMSE ω̂ 0.3727 0.6582 0.4588 0.7003 0.4066 0.5013

α̂ 0.2946 0.5332 0.3667 0.5300 0.3248 0.4301
υ̂ 0.1842 0.2391 0.2058 0.2452 0.2025 0.2500

AB ω̂ 0.1898 0.2877 0.2254 0.2934 0.2195 0.2535
200 α̂ 0.1421 0.2098 0.1652 0.2108 0.1618 0.1903

υ̂ 0.2313 0.2897 0.2558 0.2966 0.2514 0.3054
RMSE ω̂ 0.2444 0.3778 0.2884 0.3877 0.2819 0.3252

α̂ 0.1879 0.2893 0.2186 0.2915 0.2157 0.2587

Table 5: Partial and overall ranks of all estimation methods for various combination of υ, ω and α

Est. Par. Initial values MLE LSE WLSE CME ADE RADE

First 8 19 32 40 21 48
υ̂ Second 12 34 24 38 12 48

Third 11 46 28 48 17 32

First 10 48 35 47 15 26
ω̂ Second 11 53 36 51 17 35

Third 11 46 28 48 17 32

First 11 54 35 45 17 30
α̂ Second 8 49 29 43 16 29

Third 9 46 24 41 15 33

Sum 90 381 267 396 144 326

Overall rank 1 5 3 6 2 4
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7 Real-Life Applications

In this section, we analyze two real-life data sets to demonstrate the performance of the LL
distribution in practice. Two real-life data sets are fitted to compare the proposed LL model with
other five known competitors, namely:

1. The Exponentiated Lomax (EL) distribution [23] with pdf

g (x; β, λ, α) = λβ

α

(
1 + x

α

)−λ−1
(

1 −
(

1 + x
α

)−λ
)β−1

, x > 0, β, λ, α > 0.

2. The Poisson–Lomax (PoL) distribution [24] with pdf

g (x; β, λ, α) = λ α β

1 − exp(−λ)
(1 + βx)−α−1 exp [−λ(1 + βx)−α] , x > 0, β, λ, α > 0.

3. The Lomax-Rayleigh (LR) distribution [25] with pdf

g (x; λ, α) = 2λ

α
x

(
1 + x2

α

)−λ−1

, x > 0, β, λ, α > 0.

4. The power Lomax (PL) distribution [26] with pdf

g (x; β, λ, α) = λβ

α
xβ−1

(
1 + xβ

α

)−λ−1

, x > 0, β, λ, α > 0.

5. The Lomax (L) distribution [27] with pdf

g (x; λ, α) = λ

α

(
1 + x

α

)−λ−1

, x > 0, λ, α > 0.

The first data represent 63 service times (thousand hours) of aircraft windshield (unit in thousand
hours) as reported in Murthy et al. [28]. The data are as follows:

0.046 1.436 2.592 0.140 1.492 2.600 0.150 1.580
2.670 0.248 1.719 2.717 0.280 1.794 2.819 0.313
1.915 2.820 0.389 1.920 2.878 0.487 1.963 2.950
0.622 1.978 3.003 0.900 2.053 3.102 0.952 2.065
3.304 0.996 2.117 3.483 1.003 2.137 3.500 1.010
2.141 3.622 1.085 2.163 3.665 1.092 2.183 3.695
1.152 2.240 4.015 1.183 2.341 4.628 1.244 2.435
4.806 1.249 2.464 4.881 1.262 2.543 5.140

The second data represents 63 strengths of 1.5 cm glass fibers which are measured by the National
Physical Laboratory, in England as reported in Smith et al. [29]. The data are as follows:
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0.55 1.64 1.39 1.82 1.60 1.13 1.70 1.55
0.93 1.68 1.49 2.01 1.62 1.29 1.77 1.61
1.25 1.73 1.53 0.77 1.66 1.48 1.84 1.63
1.36 1.81 1.59 1.11 1.69 1.50 0.84 1.67
1.49 2.00 1.61 1.28 1.76 1.55 1.24 1.70
1.52 0.74 1.66 1.42 1.84 1.61 1.30 1.78
1.58 1.04 1.68 1.50 2.24 1.62 1.48 1.89
1.61 1.27 1.76 1.54 0.81 1.66 1.51

Table 6 provides a brief summary for both data sets.

Table 6: Summary of the aircraft windshield and glass fibers data

Data Min Q1 median Mean Q3 SD Skewness Kurtosis Max

Aircraft windshield 0.0460 1.1220 2.0650 2.0850 2.8200 1.2452 0.4292 −0.3535 5.1400
Glass fibers 0.5500 1.3750 1.5900 1.5070 1.6850 0.3241 0.0000 0.00000 2.2400

The parameters of the fitted distributions are estimated using the ML method and some discrimi-
nation measures are calculated to explore the efficiency of the competing distributions. These measures
include the Akaike information criterion (AIC), Bayesian IC (BIC), corrected AIC (CAIC), Hannan–
Quinn IC (HQIC), and –�, where � is the maximized log-likelihood. Additionally, goodness-of-fit
statistics such as Anderson–Darling (An), Cramér–von Mises (Cr), and Kolmogorov–Smirnov (K-S)
with its corresponding p-value (K-S p-value) are also calculated. More details about the goodness-of-
fit statistics can be explored by Shama et al. [30].

Tables 7 and 8 present the MLEs of the parameters of the fitted distributions along with their
discrimination measures for both data sets, respectively. Based on Tables 7 and 8, we conclude that the
LL distribution is the best model as compared to other Lomax extensions. Tables 9 and 10 provide
the values of goodness-of-fit measures of the LL model and other models for the two data sets. These
results also indicate that the LL model provides a better fit to aircraft windshield and glass fibers data
as compared to other Lomax models.

Table 7: The MLEs and discrimination measures for aircraft windshield data

Models Estimates –� AIC BIC CAIC HQIC

LL (υ, ω, α) 0.9211 3.9175 7.2869 98.12831 202.2566 208.6861 211.6861 204.7853
EL (β, λ, α) 1.9012 228722.8 329853.6 103.5468 213.0936 219.5232 222.5232 215.6224
PoL (α, β, λ) 216.4421 0.0041 3.3768 100.4224 206.8449 213.2743 207.2516 209.3736
LR (λ, α) 15.99717 88.1644 — 102.4106 208.8212 213.1075 215.1075 210.5071
PL (β, λ, α) 1.8978 79935.96 115504.9 103.5469 213.0937 219.5231 213.5005 215.6224
L (λ, α) 17638.99 36780.66 — 109.2997 222.5995 226.8858 228.8858 224.2853
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Table 8: The MLEs and discrimination measures for glass fibers data

Models Estimates –� AIC BIC CAIC HQIC

LL (υ, ω, α) 2.1658 29.8357 10.7791 14.3206 34.6413 41.0707 35.0481 37.1700
EL (β, λ, α) 31.3556 23822.5418 9120.6519 31.3852 68.7704 75.1998 69.1772 71.2991
PoL (α, β, λ) 331.0121 0.0081 34.8844 30.6526 67.3052 73.7347 67.7120 69.8340
LR (λ, α) 2687.635 6379.087 — 49.8010 103.6019 107.8882 103.8019 105.2878
PL (β, λ, α) 31.3664 7007.7084 2682.2111 31.3893 68.7786 75.2081 69.1854 71.3074
L (λ, α) 26613.03 40103.90 — 88.8314 181.6629 185.9492 181.8629 183.3487

Table 9: Goodness-of-fit statistics of the competing models for aircraft windshield data

Models Cr An K-S K-S p-value

LL 0.0347 0.2403 0.0667 0.9241
EL 0.2341 1.3196 0.1442 0.1321
PoL 0.0992 0.6039 0.1062 0.4451
LR 0.0757 1.1182 0.0849 0.7217
PL 0.2035 1.2315 0.1438 0.1340
L 0.7790 3.8821 0.2078 0.0073

Table 10: Goodness-of-fit statistics of the competing models for glass fibers data

Models Cr An K-S K-S p-value

LL 0.1710 0.9615 0.1358 0.1953
EL 0.7862 4.2873 0.2290 0.0027
PoL 0.7565 4.1374 0.2224 0.0039
LR 0.4656 2.5544 0.3339 0.0000
PL 0.7863 4.2878 0.2290 0.0027
L 18.5583 121.9004 0.7739 0.0000

The probability-probability (P-P) plots of the fitted distributions for both data sets are provided
in Figs. 4 and 5. The fitted density, cdf, sf, and P-P plots of the LL distribution for both data
sets are displayed in Figs. 6 and 7. The plots support the results in Tables 7–10 and illustrate that
the LL distribution provides a better approximation between the theoretical and empirical curves.
Furthermore, Figs. 8 and 9 present the histograms of aircraft windshield and glass fibers data along
with the fitted densities of the LL model and other studied distributions. All plots provide evidence
that the LL distribution is the most well-adjusted model for aircraft windshield and glass fibers data.
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Figure 4: P-P plots for aircraft windshield data
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Figure 5: P-P plots for glass fibers data
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Figure 6: Plots of the fitted functions of the LL model for aircraft windshield data
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Figure 7: Plots of the fitted functions of the LL model for glass fibers data
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Figure 8: Histogram of aircraft windshield data along with the estimated densities
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Figure 9: Histogram of glass fibers data along with the estimated densities

8 Conclusions

This study introduces a new flexible family called the LG family. Its special sub-models can
represent various shapes of aging failure criteria, including monotonic and non-monotonic failure
rates. The densities of the sub-models of the LG family can be reversed-J shaped, right-skewed,
symmetric, left-skewed, decreasing-increasing-decreasing densities. One of its special models, namely
the LL, is studied in detail. The failure rate shapes of the LL distribution are derived and proved
mathematically. In addition, various statistical properties of the LL distribution are investigated. Six
estimation methods are employed to estimate the LL parameters, and their performance is explored
via simulation results. The numerical experiments illustrate the accuracy of the maximum likelihood;
hence, they are recommended for estimating the LL parameters. Two real-life datasets are analyzed,
indicating that the LL distribution can provide a better fit for modeling actual data compared to some
competing Lomax models.

The perspectives of this study can include the development of a bivariate LL distribution and the
construction of a discrete version of the LL model.
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