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ABSTRACT

Understanding and modeling individuals’ behaviors during epidemics is crucial for effective epidemic control.
However, existing research ignores the impact of users’ irrationality on decision-making in the epidemic. Mean-
while, existing disease control methods often assume users’ full compliance with measures like mandatory isolation,
which does not align with the actual situation. To address these issues, this paper proposes a prospect theory-
based framework to model users’ decision-making process in epidemics and analyzes how irrationality affects
individuals’ behaviors and epidemic dynamics. According to the analysis results, irrationality tends to prompt
conservative behaviors when the infection risk is low but encourages risk-seeking behaviors when the risk is high.
Then, this paper proposes a behavior inducement algorithm to guide individuals’ behaviors and control the spread
of disease. Simulations and real user tests validate our analysis, and simulation results show that the proposed
behavior inducement algorithm can effectively guide individuals’ behavior.

KEYWORDS
Disease spread; behavior model; irrationality; prospect theory

1 Introduction

The outbreak of COVID-19 has led to a severe public health crisis and great economic losses.
Governments worldwide have taken various measures, including lockdowns and mandatory quaran-
tines, to inhibit the spread of the disease. However, individuals may not comply with these policies,
as many have their own opinions and preferences. In such public health crises, individuals tend to act
irrationally, such as excessive panic in an epidemic outbreak and underestimation of the dangers of the
epidemics in its later spread, which can significantly affect individuals’ decisions and ultimately affect
the spread of the epidemic. Moreover, individuals’ behaviors and the epidemic affect each other. For
example, individuals’ behaviors such as social distancing, wearing masks, and isolating can inhibit the
spread of the epidemic, and individuals tend to choose protective behaviors when the pandemic is more
severe. Therefore, it is crucial to model individuals’ behaviors during the epidemic and determine how
to control the spread of the epidemic by guiding individuals’ behaviors without resorting to mandatory
measures.
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1.1 Literature Review
In the following, this paper reviews recent works on epidemic control over networks, individual

behavior modeling during an epidemic, and irrational behavior modeling.

1.1.1 Epidemic Control

There are numerous studies on how to control the epidemic spread over networks, and many
attempted to inhibit the epidemic spread on a network by removing nodes. Wang et al. pointed out
that the epidemic spread on a network is highly correlated with the largest eigenvalue of the graph’s
adjacency matrix [1]. Based on this, existing studies [2–5] attempted to manipulate the adjacency
matrix’s eigenvalues by removing nodes to minimize the likelihood of epidemic outbreaks. Meanwhile,
some studies [6–8] investigated macro-level approaches to control epidemic spread, such as restricting
population movement or implementing proportional quarantine. Besides, studies [9–12] examined the
impact of isolation and immunization on disease spread.

The studies on epidemic control investigated how to control the spread by isolating individuals,
restricting population movement, etc. However, these studies all assumed that individuals would
comply with the control policies, which is usually not the actual situation. In reality, individuals have
their own ideas and may not necessarily obey policies such as isolation and movement restrictions.

1.1.2 Individual Behavior Modeling during an Epidemic

Some prior works attempted to model individual behaviors during an epidemic. The studies [13–
17] showed that as the proportion of infected individuals in the environment increases, people are more
likely to adopt protective behaviors. Zhang et al. assumed that individuals would be more likely to take
protective behavior when there is a large proportion of infected neighbors [14], and they analyzed the
effect of individual protective behavior on epidemic spread. The model proposed in [15] assumed that
an individual’s adoption of protective behavior is affected by the proportion of infected neighbors, as
well as regional and global infection rates. The studies [18–20] observed that information dissemination
also affects individual protective behavior during the epidemic.

These studies modeled and analyzed individuals’ behavioral choices in the epidemic. However,
they did not consider the common and critical issue of individual irrationality, which can significantly
affect their decision-making process during an epidemic.

1.1.3 Irrational Behavior Modeling

Individuals usually resort to irrational decision-making when confronted with risks, such as
the potential for infection during an epidemic. For instance, many people may be overly panicky
in the early stages of an epidemic and may underestimate the risk of the epidemic in the later
stages. A challenge here is how to mathematically model such irrational behaviors. Prospect theory
provides theoretical models to quantify how individuals tend to overestimate small probabilities
and underestimate high probabilities [21–25]. It is crucial to analyze the impact of this irrationality
on individuals’ decisions. The study [26] considered risk aversion during the consensus reaching
process (CRP) in group decision-making. The studies [27–29] analyzed the impact of irrationality on
individuals’ decisions on whether to take vaccination during an epidemic, and they assumed that this
is a one-time binary decision problem where users only make one binary decision during the entire
epidemic. However, in reality, individuals can take multiple protective behaviors, such as wearing a
mask, washing hands, and isolating at home, and they need to continuously decide whether to take
such protective behaviors and which behavior to take during the entire epidemic. Individuals may
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choose to adopt the highest-level protective measures such as self-isolation when the epidemic is rapidly
spreading, and choose to not take any protective behaviors when the epidemic is declining.

The existing studies modeled individuals’ irrationality and simple decisions such as whether to
take a vaccination. However, they did not consider the continuous interaction and mutual influence
between the epidemic spread and individual choices over time in the context of irrational behaviors.

1.2 Our Contribution
Our work differs from prior works in two aspects. First, prior works on individual behavior

modeling in epidemics either ignore the impact of irrational decision-making or fail to consider the
continuous interaction and mutual influence between the epidemic spread and individual behaviors.
In this paper, the prospect theory is applied to model individuals’ irrational decisions during an
epidemic and the co-evolution of individuals’ behaviors and the epidemic. We theoretically analyze
the impact of the individuals’ irrationality on their decisions as well as the epidemic. Second, existing
works on epidemic control assume individuals’ absolute compliance with the government’s policies
such as mandatory isolation. In this paper, based on the individual behavioral model, we propose an
effective method to guide individuals’ behaviors and control the epidemic spread. In contrast to prior
approaches, our disease spread control method does not rely on mandatory measures.

The main contributions of our work are:

• We build an M-choice epidemic-behavior co-evolution model to simulate individuals’ irrational
decision-making and analyze their impact on the epidemic. We theoretically analyze the co-
evolution of user behavior and epidemic and its steady state. Also, the impact of irrationality
on individuals’ behaviors and disease spread is theoretically analyzed.

• Given the above individual behavior model, we propose a behavior inducement algorithm to
guide individuals’ decisions to control the epidemic.

• We validate our individual behavior model and behavior inducement algorithm through
simulations. In addition, we use real user tests to validate the conclusions about the impact
of irrationality on individuals’ behavior.

The rest of the paper is organized as follows. Section 2 introduces our proposed epidemic-behavior
co-evolution model. Section 3 analyzes the steady state of the epidemic-behavior dynamics and the
influence of irrationality. Section 4 presents the behavior inducement method to control the disease
spread. Section 5 provides the simulation results. Section 6 shows the results of real user tests, and
conclusions are given in Section 8. The important notations of this paper are listed in Table 1.

Table 1: Notations

Notations Meaning

s(t), i(t) The fractions of susceptible and infected individuals at t
a1, a2, ..., aM The possible behaviors individuals can adopt
xj(t) The proportion of susceptible individuals adopting action aj at time t
cj The actual payoff when behavior aj is adopted
cn The loss of being infected
βj The infection rate when the individual takes action aj

(Continued)
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Table 1 (continued)

Notations Meaning

γ The recovery rate
N The number of individuals
k̄,d̄ The degree of the physical contact network and the information network
uE(x), uP(x) The value function of the expected utility theory and prospect theory
ω(p, α) The weighting function of the prospect theory
α The irrationality coefficient
(iE, xE

1 ) The steady state of the 2-behavior model following the expected utility
theory

(iP, xP
1 ) The steady state of the 2-behavior model following the prospect theory

2 The M-Choice Epidemic-Behavior Co-Evolution Model

During an epidemic, individual behavioral choices and the spread of the disease mutually
influence each other. When the probability of infection and the potential losses are high, people tend to
adopt protective behaviors, which in turn can inhibit the epidemic spread. In this section, we propose
a model to capture the co-evolution of individual behavioral choices and disease spread during a
pandemic. We consider irrational behavior in our model and use the model with rational behavior
assumption as a baseline to analyze the impact of irrationality on the evolutionary dynamics of the
epidemic and its steady states. Based on the model presented in [30], we assume that individuals have
a choice among M possible behaviors based on the severity of the epidemic, and these behavioral
choices, in turn, affect the epidemic spread.

Following the work in [19], two undirected networks are used in this paper to represent the
connections among individuals. The first network is the physical contact network where the disease
spreads. The second network is the information network where individuals exchange information
about their current health state and behavioral choices. It is worth noting that the two networks are
different. In reality, an individual may get infected by strangers in a restaurant or on a bus, while their
behaviors will not be influenced by these strangers since they have not interacted with them. Similarly,
individuals’ decisions may be influenced by their friends on the Internet without any physical contact
with each other. To simplify the analysis, we make the assumption that both the physical contact
network and the information network are regular networks consisting of N nodes, where each node
represents an individual. In a regular network, each node has a fixed degree, denoted as k̄ for the
physical contact network and d̄ for the information network. As individuals communicate with each
other in the information network, we assume that they have knowledge of the health states of their
neighbors in the information network. However, in the physical contact network, there is information
exchange, and we assume that individuals do not have knowledge of the health states of their neighbors.
In the following, we will use the terms “graph” and “network” interchangeably, and the terms “node”,
“user”, and “individual” interchangeably.

Our model consists of two interconnected parts: the disease spread model and the behavior change
model. The disease spread model quantifies how the epidemic spreads through the network given
the current behaviors of all individuals, and the behavior change model describes how individuals
update their behaviors based on the current number of infected individuals and the behaviors of their
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neighbors. The illustration of our model is in Fig. 1. In the following, the two components of our
model will be introduced in detail.

Figure 1: The proposed M-choice epidemic-behavior co-evolution model

2.1 The Disease Spread Model
We use the classic Susceptible-Infected-Susceptible (SIS) model to depict disease spread, which

describes the disease spread process using differential equations. In addition to depicting disease
spread, this method of differential equations has a wide range of applications, such as describing the
spread of viruses in the body [31,32] and the evolution of opinions [33,34]. In the SIS model, each
individual can be in one of two health states: susceptible or infected. We divide time into slots of
equal length. At each time slot, a susceptible individual can be infected by an infected individual at a
certain infection rate, and an infected individual recovers at a certain recovery rate. We assume that
susceptible individuals can adopt different protective measures to reduce their risk of infection, and
they have a total of M possible behavioral options {a1, a2, ..., aM}. For example, some may take the
epidemic very seriously and adopt self-quarantine to avoid contact with infected individuals; some
may adopt medium-level protective behaviors such as wearing masks when going out and washing
hands frequently; while others may take no protective behaviors and act as if the epidemic does not
exist. To simplify the analysis, we also assume that all susceptible individuals taking action aj have the
same infection rate βj. For those already infected with the disease, we consider the worst-case scenario
where they do not take any protective behavior such as home isolation to prevent the disease from
further spreading. This assumption is grounded in the understanding that infected individuals might
not possess the same level of motivation or necessity to embrace protective measures since they are
already infected. We also assume that all infected people have the same recovery rate γ to simplify the
analysis. Let s(t) and i(t) be the fractions of susceptible and infected individuals respectively at time t,
while xj(t) denotes the fraction of individuals adopting action aj among all susceptible individuals at
time t. Then the mean-field equation of the disease spread is:

ds
dt

= γ i(t) − s(t)i(t)β̄k̄, and
di
dt

= s(t)i(t)β̄k̄ − γ i(t), (1)

where s(t) + i(t) = 1 and β̄ = ∑n

j=1 βjxj(t). By substituting s(t) = 1 − i(t) into (1), the differential
equation modeling the disease spread can be obtained:

di(t)
dt

= i(t)(1 − i(t))β̄k̄ − γ i(t). (2)
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2.2 The Behavior Change Model
The individual behavior model quantifies the dynamics of {xj(t)}, j = 1...M, which represents the

proportion of susceptible individuals adopting action aj at time t. The change in xj(t) can be attributed
to two main factors. First, individuals may change their decisions over time in response to the severity
of the epidemic and the influence of their neighbors’ behaviors. We use Dj(t) to represent this part of
the change in xj(t). Meanwhile, due to nodes’ changes in their health state, the proportion of susceptible
individuals adopting different behaviors may also change. For example, a susceptible individual who
was taking action aj at time t − 1 may become infected at time t, or an infected person recovers at time
t and decides to take action aj. We use Bj(t) to represent this part of the change in xj(t). Then we have:

dxj(t)
dt

= Dj(t) + Bj(t). (3)

In Section 2.2.1, we focus on modeling Dj(t), where individuals’ decisions are influenced by their
neighbors and the severity of the epidemic. In Section 2.2.2, we study Bj(t) and analyze how the
changes in individuals’ health states may affect the change in xj(t).

2.2.1 Analysis of Dj(t)

Game theory models strategic interactions among agents, providing insights into decision-making
across diverse scenarios, from social networks [35] to supply chains [36] and beyond. To model indi-
viduals’ active behavior changes in response to their neighbors’ impact and the proportion of infected
individuals, we employ the evolutionary game theory, which is a useful framework to investigate the
impact of neighbors on individuals’ decisions [37,38]. The basic elements of the evolutionary game
theory include individual, strategy, payoff, and strategy update rules. These elements will be introduced
one by one in the following.

Individual and Strategy: Each individual is represented as a node in the information network.
As mentioned in Section 2.1, we assume that there are a total of M possible protective behaviors
{a1, · · · , aM} for susceptible individuals, and each behavior aj corresponds to one strategy for a
susceptible individual. For infected individuals, as mentioned in Section 2.1, they do not take any
protective behavior such as home isolation to prevent the disease from spreading. Therefore, in this
work, we focus on the analysis of susceptible individuals’ behavior and study how their decisions are
affected by their neighbors and the severity of the epidemic. In each time slot, m percent of susceptible
individuals are randomly chosen as focal individuals. These focal individuals observe and imitate their
neighbors’ behaviors. The remaining susceptible individuals maintain their actions unchanged during
this time slot.

The Payoff: In this paper, we study the protective behavior of susceptible individuals. Note
that infected individuals have different health states from susceptible ones, and they adopt
the same and fixed strategy of no protective behaviors. Therefore, in this work, we assume
that susceptible individuals do not value these infected individuals’ decisions, and the strategies of
all susceptible individuals are only affected by their susceptible neighbors. So we define the payoff
for susceptible individuals only, and ignore the payoffs of infected individuals, as they do not affect
susceptible individuals’ update of their strategies.

In each time slot, every susceptible individual receives a payoff determined by the chosen strategy
and interactions with neighbors. In this paper, we consider two scenarios where the susceptible
individual is rational and irrational. Therefore, we define the payoff of different behaviors based on the
expected utility theory (EUT) [39] and prospect theory (PT) [23], respectively, where EUT models the
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individual as a rational person and PT considers the individual’s irrationality. Here, following the prior
work in [29], to simplify the analysis, we assume that either all individuals are rational or they are all
irrational, and compare the two results to analyze the impact of users’ irrationality on the co-evolution
of individuals’ behaviors and the epidemic.

Rational individuals’ payoff function: Expected utility theory (EUT) is an economic theory that
models the decision-making of rational individuals. When an individual chooses a specific behavior,
denoted as aj, it leads to L potential actual payoffs oj,1, oj,2, ..., oj,L with probabilities pj,1, pj,2, ..., pj,L,
respectively. It is worth noting that an individual may receive more than one actual payoff for their
behavior, and

∑
k=1...L pj,k �= 1. For example, if an individual decides to go out for dinner during an

epidemic, they will receive a positive payoff from enjoying the fine cuisine, while they may also face a
negative payoff if they become infected. In addition, according to EUT, the perceived payoff may differ
from the actual payoff. For example, the relationship between the perceived and actual payoffs is often
not linear, and there is a phenomenon of diminishing marginal payoff [21]. In prior works in EUT, the
value function uE(x) is used to model the relationship between the actual payoff x and the perceived
payoff uE(x). Various forms of uE(x) have been used in the previous works, including the simplest form
of uE(x) = x, as well as the power function and the exponential function form [40]. Thus, in EUT, the
payoff associated with adopting behavior aj is calculated as the expected utility, which is denoted as
UEUT

j and is defined as:

UEUT
j =

∑
k=1...L

uE(oj,k)pj,k. (4)

In our behavior modeling and epidemic control problem, every susceptible individual adopting
protective behavior aj will obtain a fixed actual payoff of cj, which is the payoff from the behavior
itself, and the probability of obtaining this outcome is 1. One example is the gain from enjoying the
fine cuisine of dining outside during an epidemic. If the individual is infected at the next moment, it
will suffer from a loss of cn with cn < 0. For an individual adopting aj, the probability of being infected
at time t is approximately k̄βj i(t) [41]1. Therefore, in our model, the individual who takes aj will obtain
two potential actual payoffs. A payoff of cj with probability 1, and a payoff of cn with probability
k̄βj i(t). So the expected utility in (4) becomes

UEUT
j = uE(cj) + uE(cn)k̄βj i(t). (5)

Irrational individuals’ payoff function: Different from the expected utility theory (EUT), the
prospect theory (PT) considers the irrational tendencies exhibited by individuals when faced with
uncertainty. In PT, individuals tend to overestimate the probability of small risks and underestimate
the probability of large risks [21]. Therefore, not only are the actual and the perceived payoffs different,
but the actual and the perceived probabilities are also different when irrational individuals face
uncertainties.

Similar to EUT, the value function uP(x) in PT can take different forms, and one commonly used
form is the power function [25]:

uP(x) =
{

xσ , if x ≥ 0,
−λ(−x)σ , if x < 0, (6)

1We consider those epidemics with βj � 1, such as SARS, MERS and common influenza [42–44], and we assume that k̄βj < 1.
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where λ reflects the individual’s sensitivity to gain and loss, and σ ∈ (0, 1] reflects the curvature and
shape of the value function. It is worth noting that the theoretical analysis in Sections 3 and 4 do not
rely on the specific form of uP(x).

In addition, instead of using the actual probability pj, individuals’ perceived probability is ω(pj, α),
where ω(p, α) is the probability weighting function. Following the prior work in [22], in this work, we
use the following weighting function to describe the relationship between the perceived probability
ω(p, α) and the actual probability p:

ω(p, α) = e(−(−lnp)α), p ∈ [0, 1], α ∈ (0, 1], (7)

where α is the irrationality coefficient. A smaller α indicates that the individual is more irrational (or
equivalently, less rational), and the difference between the actual and the perceived probabilities is
larger. Note that when α = 1, we have ω(p, 1) = p, and the perceived and actual probabilities are the
same. Meanwhile, from (7), we have ω(1, α) = 1 define ω(0, α) = 0. This ensures that ω(p, α) ∈ [0, 1]
and ω(p, α) is an increasing function of p. For simplicity, we use the mean-field method and assume
all individuals have the same α.

Given the probability weighting function in (7) and the value function uP(x), when an irrational
individual chooses behavior aj, which leads to L different potential payoffs {oj,k} with corresponding
probabilities {pj,k}, the expected payoff is

UPT
j =

∑
k=1...L

uP(oj,k)ω(pj,k, α). (8)

In our problem, same as the analysis of UEUT
j in the above, the individual who chooses behavior

aj will obtain two potential actual payoffs: a payoff of cj with probability 1, and a payoff of cn with
probability k̄βj i(t). So (8) can be expressed as

UPT
j = uP(cn) · ω[k̄βj i(t), α] + uP(cj). (9)

Note that if the value functions of EUT and PT are identical (i.e., uE(x) = uP(x)) and the
irrationality coefficient α is set to 1, then PT degenerates to EUT.

Strategy Update Rules: In each time unit, mN0(t) individuals are randomly selected as the focal
individuals to update their strategies and others will keep their strategies unchanged, where m is
the fraction of individuals who are chosen as the focal individuals, and N0(t) is the total number of
susceptible individuals at time t in the network. The focal individuals tend to imitate their neighbors’
behavior with a high payoff. Following the work in [45], given a focal individual v with strategy aj and
given v randomly chooses a neighbor z using strategy ak, the probability the individual v changes its
strategy to ak is

p(aj → ak) = 1
2

+ w
2

1
Umax

(Uk − Uj), (10)

where w ∈ (0, 1] measures the strength of selection, and Umax is the normalization term to ensure
p(aj → ak) ≤ 1. Uj and Uk are the payoffs of strategy aj and ak, respectively.

In our work, we assume that individuals with different behaviors are uniformly distributed in the
entire network. Therefore, the probability that the focal individual v chooses behavior aj is xj(t), which
represents the proportion of susceptible individuals who choose behavior aj at time t in the entire
network. Meanwhile, the proportion of focal individual v’s susceptible neighbors choosing behavior
aj is the same as the proportion of susceptible individuals choosing behavior aj in the entire network.
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Then the probability that xj(t) increases by
1

N0(t)
due to individuals’ strategy change is

p
(

�xj = 1
N0(t)

)
=

M∑
l=1

xj(t)xl(t)p(al → aj), (11)

where N0(t) = N0s(t) is the number of susceptible individuals at time t. Similarly, the probability that

xj(t) decreases by
1

N0(t)
due to individuals’ strategy change is

p
(

�xj = − 1
N0(t)

)
=

M∑
l=1

xj(t)xl(t)p(aj → al). (12)

Combining (10) and (12), we have

Dj(t) = mN0(t)
{

p
(

�xj = 1
N0(t)

)
× 1

N0(t)
− p

(
�xj = − 1

N0(t)

)
× 1

N0(t)

}

= mw
Umax

M∑
l=1

xj(t)xl(t)(Uj − Ul).

(13)

2.2.2 Analysis of Bj(t)

In reality, even if individuals do not change their behaviors, the proportion of susceptible
individuals with different behaviors will change over time due to transitions in health states. Let sj(t)
be the fraction of individuals who are susceptible and adopt behavior aj at time t among the entire
population, that is, sj(t) = s(t)xj(t), where s(t) is the fraction of susceptible individuals among all
users in the network, and xj(t) is the fraction of individuals adopting aj among all the susceptible
individuals. Note that s(t) = ∑M

j=1 sj(t), when all individuals do not change their behavior, we have

Bj(t) = d
dt

(
sj(t)
s(t)

)
= d

dt

(
sj(t)∑M

l=1 sl(t)

)
=

∑M

l=1[s
′
j(t)sl(t) − s′

l(t)sj(t)]

s2(t)
. (14)

Note that s′
j(t), the first order derivative of sj(t), contains two parts. The first part represents the

change caused by the infection of susceptible individuals, while the second part represents the change
caused by the recovery of infected individuals. For the first part, as there are a total of sj(t) susceptible
individuals adopting behavior aj, and each of them has probability βj k̄i(t) to be infected, we have
s′

j1(t) = −sj(t)βj k̄i(t). For the second part, we assume that the recovered individuals would choose
their behaviors based on the ratio of different behaviors of susceptible individuals in the network,
similar to the work in [46]. Therefore, γ i(t) infected individuals will recover, xj(t) of whom will choose
action aj, and we have s′

j2(t) = γ xj(t)i(t). By combining these two parts (s′
j(t) = s′

j1(t) + s′
j2(t)), we have

s′
j(t) = −s(t)xj(t)βj k̄i(t) + γ xj(t)i(t). (15)

Given (14), (15) and sj(t) = s(t)xj(t), we have

Bj(t) =
M∑

l=1

xj(t)xl(t)k̄i(t)(βl − βj). (16)
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2.2.3 The Overall Behavior Change Dynamics

Combining (3), (13) and (16), the complete differential equations describing the dynamics of
individual behavior change are

dxj(t)
dt

=
M∑

l=1

xj(t)xl(t)k̄i(t)(βl − βj) + mw
Umax

M∑
l=1

xj(t)xl(t)(Uj − Ul), j = 1...M. (17)

2.3 The Dynamics and the Steady States of the Epidemic-Behavior Co-Evolution Model
Based on the disease spread Eq. (2) and the behavior change dynamics (17), the M-choice

epidemic-behavior co-evolution model is obtained as follows:

di
dt

= i(t)(1 − i(t))β̄k̄ − γ i(t),

and
dxj

dt
=

M∑
l=1

xj(t)xl(t)k̄i(t)(βl − βj) + mw
Umax

M∑
l=1

xj(t)xl(t)(Uj − Ul), j = 1...M. (18)

Here, the first differential equation represents the dynamics of individuals’ health states, and the
subsequent M equations model the changes in the proportions of susceptible individuals choosing
each of the M behaviors.

At the steady state, both the proportion of infected individuals i(t) and the proportions of
individuals adopting different behaviors {xj(t)} reach a stable state where there are no further changes
in i(t) and {xj(t)}. Even if a small group of individuals becomes infected/recovered or changes their
strategies, the steady state would be restored. We denote the steady state of the M-choice model as
(i∗, x∗

1, · · · , x∗
M−1) with x∗

M = 1 − ∑M−1

j=1 x∗
j .

To find the steady state of our M-choice disease spread and behavior change model, we follow an
approach that is similar to [46] and apply Lyapunov’s first method [47].

Definition 1. The steady-state (i∗, x∗
1, · · · , x∗

M−1) satisfies: for j = 1, · · · , M − 1,

di
dt

∣∣∣∣
i=i∗

= 0,
dxj

dt

∣∣∣∣
xj=x∗

j

= 0, Re(λk) < 0, k = 1, ..., M, (19)

where {λk} are the eigenvalues of the Jacobian matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂i′

∂i
∂i′

∂x1

· · · ∂i′

∂xM−1
∂x′

1

∂i
∂x′

1

∂x1

· · · ∂x′
1

∂xM−1
...

...
. . .

...
∂x′

M−2

∂i
∂x′

M−2

∂x1

· · · ∂x′
M−2

∂xM−1
∂x′

M−1

∂i
∂x′

M−1

∂x1

· · · ∂x′
M−1

∂xM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(i∗,x∗

1,··· ,x∗
M−1),

(20)

and Re(x) represents the real part of x. As it is usually difficult to find the closed-form solution of
(19), we often use numerical methods to find the steady states of the co-evolution of disease spread
and behavioral choice.
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3 Analysis of the Steady State and the Influence of Irrationality for the 2-Behavior Model

To obtain insights into the co-evolution process of epidemic spread and behavioral choice and their
steady states, in this section, we consider a simple scenario where each susceptible individual can take
two possible behaviors and the theoretical solution of (19) can be obtained. For example, a susceptible
individual may either choose risky behavior such as continuing to go out in spite of the epidemic, or
choose conservative behavior such as home isolation. Home isolation can significantly reduce the risk
of being infected, but it leads to substantial economic loss and affects people’s physical and mental
well-being. During the epidemic, individuals need to choose between high-cost low-risk conservative
behavior and low-cost high-risk risky behavior. Their decisions are often influenced by the severity of
the epidemic and the potential loss due to home isolation. People tend to choose self-isolation when
the epidemic poses a greater threat to their health, and they tend to go out when the loss due to home
isolation is too high (e.g., losing their jobs and income). By investigating this simple scenario, this
paper aims to gain insights into the co-evolution process and its steady states, and theoretically analyze
the impact of irrationality on the epidemic as well as individuals’ behaviors. For the more general
scenario with more than two possible behavior choices, we use numerical solutions and simulation
results to show the evolution process, and an example with three possible behavior choices is provided
in Appendix A in Supplementary Material.

In this section, based on our model in the previous section, we analyze the evolution of the
epidemic and the dynamics of individuals’ choices between two behaviors: the risky behavior (going
out) represented by a1, and the conservative behavior (home isolation) represented by a2. As an
example, we assume that the infection rate for the risky behavior is β1, while the infection rate for
the conservative behavior is β2 = 0 as isolation ensures no infection risk. Then we analyze the steady
states when the individuals are all rational or irrational, respectively, and compare their results to
investigate the influence of irrationality.

3.1 Steady State Analysis
3.1.1 The Steady States with All Rational Individuals

When all individuals are rational, the payoff is modeled by EUT in (5). Since x1(t) + x2(t) = 1,
x2(t) can replaced by 1−x1(t). With two possible behavior choices and given the EUT payoff function
(5), the differential equations in (18) can be expressed as:⎧⎪⎪⎨
⎪⎪⎩

di
dt

= β1k̄i(t)x1(t)(1 − i(t)) − γ i(t),

dx1

dt
= −β1k̄x1(t)(1 − x1(t))i(t) + k0x1(t)(1 − x1(t)) · (uE(c1) + uE(cn)β1k̄i(t) − uE(c2)),

(21)
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where k0 = mw
Umax

> 0. To find the steady states of (21), we have the following Theorem 1.

Theorem 1. The steady state (iE, xE
1 ) of (21) satisfies (22),

(iE, xE
1 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 1), if k̄ <
γ

β1

,

(
1 − γ

k̄β1

, 1
)

, if k̄ >
γ

β1

, 
1 < 0,

(
i(1),

γ

(1 − i(1))k̄β1

)
, if k̄ >

γ

β1

, 
1 ≥ 0,

(22)

where i(1) = k0(uE(c2) − uE(c1))

(k0uE(cn) − 1)k̄β1

, 
1 = −k0(uE(c1) − uE(c2)) + (γ − k̄β1)(k0uE(cn) − 1).

When k̄ = γ

β1

, there is no steady state.

Proof : See Appendix B in Supplementary Material.

From Theorem 1, there are three possible steady states, which correspond to three different
situations in reality:

• Case 1: The steady state (0, 1) represents the extreme situation where the infection rate is too
low and the epidemic will die out eventually even without any protection. So all individuals
choose the risky behavior of going out. The evolution process reaches the steady state (0, 1) when

k̄ <
γ

β1

, which is equivalent to
β1

γ
<

1

k̄
. The term

1

k̄
is the epidemic threshold of a homogeneous

network [48]. If
β̄

γ
<

1

k̄
, the epidemic will die out; otherwise, it will spread out. Since β̄ =

β1x1(t) ∈ [0, β1], in this scenario, the epidemic will die out no matter which behavior individuals
choose. Therefore, all individuals will choose the risky behavior in this steady state since it gives
a higher payoff. Therefore, when k̄ <

γ

β1

, the stable state is i = 0 and x1 = 1.

• Case 2: For the steady state
(

1 − γ

k̄β1

, 1
)

, two constraints need to be satisfied. The first

constraint is k̄ >
γ

β1

, which means that if all individuals choose the risky behavior, the epidemic

will spread out. The second constraint is 
1 < 0. To understand the second constraint, note
that when all individuals choose the risky behavior with x1 = 1, the proportion of infected
individuals will reach the stable state î = 1 − γ

k̄β1

, which represents the maximum extent to

which the epidemic can spread (proof: see Appendix C in Supplementary Material). If for all

possible values of i in the range [0, î], we have
dx1(t)

dt
> 0 for all x1(t) ∈ (0, 1),2 then more

individuals will choose the risky behavior over time, and ultimately all individuals will choose
risky behavior at the steady state with x1 = 1. This may happen when the payoff of risky behavior
is much higher than that of the conservative behavior, with c1 
 c2, or when the cost of being

2Note that from (21), if x1(t) = 0 or 1, we have
dx1(t)

dt
= 0.
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infected cn is very low. Note that from (21),
dx1

dt
|0≤i≤î,0<x1<1 > 0 is equivalent to 
1 < 0, where


1 is defined in (22). Therefore, when k̄ >
γ

β1

and 
1 < 0, the steady state
(

1 − γ

k̄β1

, 1
)

is

reached, where all individuals choose the risk behavior, and the proportion of infected people
reaches the maximum level î.

• Case 3: The steady state
(

i(1),
γ

(1 − i(1))k̄β1

)
represents the scenario other than the above two

extreme cases. In this scenario, the epidemic will not die out, nor will it spread to the maximum
extent, and at the steady state, 0 < i(1) < î of the individuals in the network will be infected.
Meanwhile, 0 <

γ

(1 − i(1))k̄β1

< 1 of susceptible individuals will choose the risky behavior. This

happens when k̄ >
γ

β1

and 
1 ≥ 0.

3.1.2 The Steady States with Irrational Individuals

Next, we consider the scenario where all individuals are “irrational”, and model their payoff
function using the PT. By substituting the PT utility function (9) into (17), the dynamic of the epidemic
and the behavior can be expressed as:⎧⎪⎪⎨
⎪⎪⎩

di
dt

= β1k̄i(t)x1(t)(1 − i(t)) − γ i(t),

dx1

dt
= −β1k̄x1(t)(1 − x1(t))i(t) + k0x1(t)(1 − x1(t)) · (uP(c1) + uP(cn) · ω[β1k̄i(t), α] − uP(c2)).

(23)

Similarly, we can get the steady state of (23) in Theorem 2.

Theorem 2. The steady state (iP, xP
1 ) of (23) satisfies:

(iP, xP
1 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 1), if k̄ <
γ

β1

,

(
1 − γ

k̄β1

, 1
)

, if k̄ >
γ

β1

, 
2 < 0,

(
i(2),

γ

(1 − i(2))k̄β1

)
, if k̄ >

γ

β1

, 
2 ≥ 0,

(24)

where 
2 = −k0(uP(c1) − uP(c2)) − (γ − k̄β1) − k0uP(cn) · ω[k̄β1 − γ , α],

and i(2) satisfies k0uP(cn) · ω[k̄β1i(2), α] − k̄β1i(2) + k0(uP(c1) − uP(c2)) = 0. (25)

When k̄ = γ

β1

, there is no steady state.

Proof : See Appendix D in Supplementary Material.

The three stable states in PT are similar to those in EUT:

• Case 1: The steady state (0,1) is the same as Case 1 under EUT. In this situation, the epidemic
will always die out, and all individuals will choose the risky behavior.
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• Case 2: The steady state
(

1 − γ

k̄β1

, 1
)

is the same as Case 2 under EUT. In situations where

the payoff for the risky behavior is extremely high or when the loss of being infected is very
small, all individuals will choose risky behavior, causing the epidemic to spread to its maximum
extent. Note that the first constraints in (22) and (24) are the same, while the second constraints
are different as 
1 �= 
2.

• Case 3: The steady state
(

i(2),
γ

(1 − i(2))k̄β1

)
is similar to Case 3 under EUT, where the epidemic

does not extinct, nor does it spread to the maximum range.

3.2 Analysis of Individuals’ Irrationality
In this section, we analyze the influence of individuals’ irrationality on the steady state. In the

weighting function in (7), the irrationality coefficient quantifies the irrationality degree of individuals,
and a smaller value of α indicates that individuals are more irrational as the difference between the
actual and perceived risk becomes larger. To analyze the impact of the irrationality coefficient on
individuals’ behavior, this paper compares the steady states (iP, xP

1 ) at different α, and we have the
following Theorem 3.

Theorem 3. Given the same set of system parameters (β1, γ , k0, c1, c2, cn and k̄) and the same
value function uP(x), let 0 < α < ᾱ < 1 be two irrationality coefficients, and (īP, x̄P

1 ) and (iP, xP
1 ) are

the steady states with ᾱ and α, respectively, where the individuals with ᾱ have low irrationality and
individuals with α have high irrationality. Then we have:

3a. When k̄ <
γ

β1

, all individuals, regardless of their irrationality degrees, will choose risky behavior

with x̄P
1 = xP

1 = 1, and the epidemic will eventually die out with īP = iP = 0.

3b. When k̄ >
γ

β1

, 
2 ≥ 0 is not simultaneously satisfied for ᾱ and α, we have the following

conclusions.

If 1 − γ

k̄β1

≤ 1

k̄β1e
, there are two possibilities.

– When 
2 < 0 for both ᾱ and α, all individuals, regardless of their irrationality degrees, will
choose risky behavior with x̄P

1 = xP
1 = 1.

– When 
2 < 0 for ᾱ and 
2 ≥ 0 for α, all individuals with low irrationality will choose the
risky behavior with x̄P

1 = 1. Meanwhile, only a subset of individuals with high irrationality will
choose risky behavior with xP

1 < 1.

On the contrary, if 1 − γ

k̄β1

≥ 1

k̄β1e
, there are two possibilities.

– When 
2 < 0 for both ᾱ and α, all individuals, regardless of their irrationality degree, will
choose risky behavior with x̄P

1 = xP
1 = 1.

– When 
2 < 0 for α and 
2 ≥ 0 for ᾱ, all individuals with high irrationality will choose risky
behavior with xP

1 = 1. Meanwhile, only a subset of individuals with low irrationality will choose
risky behavior with x̄P

1 < 1.
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3c. When k̄ >
γ

β1

, 
2 ≥ 0 for both ᾱ and α, the epidemic will neither die out nor spread to the

maximum extent, and a fraction of individuals will choose the risky behavior at the steady state.

– In addition, if īP ≤ 1

k̄β1e
, we have īP ≥ iP, x̄P

1 ≥ xP
1 , i.e., compared to individuals with high

irrationality, fewer individuals with low irrationality would choose the conservative behavior.

– On the contrary, if īP ≥ 1

k̄β1e
, we have īP ≤ iP, x̄P

1 ≤ xP
1 , i.e., compared to individuals with high

irrationality, more individuals with low irrationality would choose the conservative behavior.

Proof : See Appendix E in Supplementary Material.

To better understand Theorem 3, note that in (24), Case 1 represents the situation where the
infection rate is too low and the epidemic will eventually die out no matter how individuals choose
their behaviors. Therefore, individuals’ irrationality will not affect the outcome when k̄ <

γ

β1

, as stated

in Theorem 3a.

For Theorem 3b, when k̄ >
γ

β1

and 
2 ≥ 0 are not simultaneously satisfied for ᾱ and α, if 1− γ

k̄β1

≤
1

k̄β1e
, the percentage of individuals with high irrationality choosing the risky behavior will be less than

or equal to the percentage of individuals with low irrationality, i.e., xP
1 ≤ x̄P

1 . This is because, in this

scenario, the risk of being infected is low (i.e., īP = iP = 1 − γ

k̄β1

≤ 1

k̄β1e
), and higher irrationality

makes individuals overestimate this small probability of risk, causing them to be more conservative. On

the contrary, if 1− γ

k̄β1

≥ 1

k̄β1e
, the percentage of individuals with high irrationality choosing the risky

behavior will be larger than or equal to the percentage of individuals with low irrationality, i.e., xP
1 ≥ x̄P

1 .

This is because, in this scenario, the risk of being infected is high (i.e., īP = iP = 1 − γ

k̄β1

≥ 1

k̄β1e
), and

higher irrationality makes individuals underestimate this large probability of risk, causing them to be
more adventurous.

For Theorem 3c, when k̄ >
γ

β1

and 
2 ≥ 0 for both ᾱ and α, both (īP, x̄P
1 ) and (iP, xP

1 ) belong to

Case 3 in Theorem 2, where some individuals get infected while the rest do not. In this case, if the risk

of getting infected is low when stable (i.e., īP ≤ 1

k̄β1e
), higher irrationality can motivate individuals to

adopt conservative behaviors as they tend to overestimate this small risk, resulting in a decrease in the
probability of being infected. On the contrary, if the risk of getting infected is high when stable (i.e.,

īP ≥ 1

k̄β1e
), higher irrationality can reduce individuals’ cautiousness as they tend to underestimate this

large risk, causing more people to be infected.

Note that from Section 2.2, if the value functions of EUT and PT are identical (i.e., uE(x) = uP(x)),
then EUT can be considered as a special case of PT with α = 1. Therefore, we can also apply Theorem
3 to make comparisons between rational individuals (following EUT) and irrational individuals
(following PT).
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In summary, irrationality tends to make individuals become more extreme, that is, risk-averse
when the risk is small and risk-seeking when the risk is high.

4 Behavior Inducement to Control the Disease Spread

In this section, based on our previous analysis in Sections 2 and 3, we study how to guide
individuals’ behaviors and control epidemic spread through policy design and develop effective
behavior inducement algorithms.

4.1 The Optimal Behavior Inducement Algorithms
We first discuss measures that governments can take to guide individuals’ behaviors during

an epidemic. For example, they can incentivize or penalize certain behaviors, such as subsidizing
risky behaviors (e.g., going out) to boost the economy, penalizing risky behaviors, or encouraging
conservative behaviors (such as staying at home and wearing masks) to control the disease spread.
In our model, this means the parameters c1 and c2 can be changed. In addition, during an epidemic,
individuals usually have different perceptions of the loss of being infected, which are largely due to
the various propaganda efforts. So we assume that the parameter cn can also be adjusted. Moreover,
note that propaganda via social networks and media often affects individuals’ irrationality [49], and
thus, we assume that the irrationality coefficient α can be changed as well. In this work, to simplify
the analysis, we consider the simple scenario where these parameters c1, c2, cn, and α can be changed
to the desired values. Our future work will consider a more practical scenario where the optimization
parameters are the actions the government can take (such as rewarding or punishing specific behaviors
through policies) instead of the exact values of these parameters.

Next, we discuss the goals of behavior guidance. The first goal is to control the spread of the disease
at the steady state. For example, the government may wish to keep the number of infected people as low
as possible. Here, the loss caused by the epidemic is represented as l1(iP), where (iP, xP

1 ) is the steady state
of PT. Also, if a large percentage of individuals choose conservative behavior such as self-isolation, it
will significantly affect the economy and individuals’ mental health. Therefore, the second loss term
considered in our paper is the loss due to such conservative behavior l2(xP

1 ). Furthermore, note that
changing the values of c1, c2, cn, and α through behavior inducements such as propaganda, subsidies,
and penalties will incur costs. Therefore, the third goal is to minimize the cost associated with behavior
guidance l3(δδδ), where δδδ = [�α, �cn, �c1, �c2] is the intervention vector quantifying the extent to which
these variables are changed. Given c1, c2, cn, and α before behavior guidance, the adjusted parameters
are

α′ = α + �α, c′
n = cn + �cn, c′

1 = c1 + �c1, and c′
2 = c2 + �c2. (26)

Since the irrationality coefficient should fall within (0, 1] and the payoff of being infected should
be negative, we have 0 < α + �α ≤ 1 and cn + �cn < 0. The goal is to find the optimal δδδ to minimize
the total loss. The optimization problem is:

min
δδδ

l1(iP(δδδ)) + l2(xP
1 (δδδ)) + l3(δδδ)

s.t. 0 < α + �α ≤ 1,

cn + �cn < 0.

(27)
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In this work, we do not specify the specific forms of l1(iP), l2(xP
1 ), and l3(δδδ), and they are assumed

to be differentiable, i.e.,
∂l1

∂i
,

∂l2

∂x1

, and
∂l3

∂δδδ
exist. Moreover, we assume that l3(δδδ) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂l3

∂�α
> 0 if �α > 0,

∂l3

∂�α
< 0 if �α < 0,

(28)

and the same constraint also holds for
∂l3

∂�cn

,
∂l3

∂�c1

and
∂l3

∂�c2

. This implies that compared to the case

where no behavior guidance is taken with δδδ = 0, increasing or decreasing any of the variables (c1, c2,
cn, and α) will result in an increase in l3(δδδ), and l3(δδδ) has the minimum value at 000 with no behavior
guidance.

From (24), there are three possible steady states. To solve the optimization problem (27), we need
to consider all three possible steady states and analyze the optimal solution for each, which is very
complicated. Then we introduce Theorem 4 to simplify this problem.

Given the system parameters and δδδ, let (i0, x0
1) and (iP, xP

1 ) be the steady states without and with
behavior inducement, respectively. Let δδδ

(3) be the optimal adjustment parameter when the steady state
after adjustment (iP, xP

1 ) belongs to Case 3 in Theorem 2. That means

δδδ
(3) = argmin

δδδ

l1(iP(δδδ)) + l2(xP
1 (δδδ)) + l3(δδδ)

s.t. 0 < α + �α ≤ 1,

cn + �cn < 0,

k̄ >
γ

β1

, 
2 ≥ 0,

(29)

where 
2 is defined in (24).

From our analysis in Appendix F in Supplementary Material, we have the following Theorem 4.

Theorem 4. For the optimization problem (27), if l3(δδδ) satisfies (28), given δδδ
(3) defined in (29), let

(i0, x0
1) and (iP, xP

1 ) be the steady states without and with behavior guidance, respectively. Then the
optimal solution of (27) is either 000 or δδδ

(3). Specifically,

• if i0 = 0 and x0
1 = 1, i.e., the original steady state without behavior guidance belongs to Case 1

in (24), the optimal solution is 000. That means no behavior guidance is needed, and the objective
function in (27) is minimized at 000.

• If i0 = 1 − γ

k̄β1

and x0
1 = 1, i.e., the original steady state belongs to Case 2 in (24), the optimal

solution is either 000 or δδδ
(3), and the optimal solution can be obtained by comparing l1(i0) + l2(x0

1)

with l1(iP) + l2(xP
1 ) + l3(δδδ

(3)
).

• If 0 < i0 < 1 − γ

k̄β1

and 0 < x0
1 < 1, i.e., the original steady state belongs to Case 3, the optimal

solution is δδδ
(3).

From Theorem 4, we only need to model and solve the problem for Case 3 in (24), which greatly
reduces the complexity of our problem.
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4.2 Solving the Optimization Problems
In this section, we consider the following scenario and use it as an example to demonstrate how to

model and solve the optimization problem in (27). Consider the scenario where the government wants
to control epidemic spread and reduce its impact on the economy and people’s mental health. It means
that, at the steady state after behavior inducement (iP, xP

1 ), the percentage of infected people iP is no
more than im, and the ratio of people choosing the risky behavior xP

1 is at least xm. That is, there are
two constraints 0 ≤ iP ≤ im and 1 ≥ xP

1 ≥ xm. Here, we assume that 0 ≤ im ≤ 1 and 0 ≤ xm ≤ 1.

Since the infection rate β1, the recovery rate γ , and the average degree of the networks k̄ are
assumed to be fixed and cannot be changed, it is possible that there is no δδδ that can make the steady-
state (iP, xP

1 ) satisfy both constraints simultaneously. For example, from the analysis in Section 3, when
the infection rate is very high, it is unlikely to control the epidemic to a very small range while everyone
goes out without any protective measures. Therefore, given β1, γ and k̄, the first step is to determine
if the two constraints 0 ≤ iP ≤ im and 1 ≥ xP

1 ≥ xm are feasible, i.e., whether it is possible to
find δδδ that make the steady state satisfy both constraints. Section 4.2.1 investigates how to determine
the feasibility of the two constraints. If they are feasible, Section 4.2.2 explains the details of the
optimization problem and proposes a fast algorithm to solve it. If they are not feasible, Section 4.2.3
investigates how to reformulate the problem and let the steady state (iP, xP

1 ) be as close as possible to
the constraints.

4.2.1 The Feasibility Test

From Theorem 4, we only need to get the optimal solution in Case 3 and then we can get the
optimal solution of the whole space by comparing it with 000. From (24), if the steady state (iP, xP

1 )

belongs to Case 3, it should satisfy

xP
1 = γ

(1 − iP)k̄β1

. (30)

Note that in (30), xP
1 is an increasing function of iP. Therefore, given 0 ≤ iP ≤ im, we have xP

1 =
γ

(1 − iP)k̄β1

∈ [
γ

k̄β1

,
γ

(1 − im)k̄β1

]. If xm ≤ γ

(1 − im)k̄β1

, then it is possible to find δδδ whose corresponding

steady-state (iP, xP
1 ) satisfies 0 ≤ iP ≤ im and 1 ≥ xP

1 ≥ xm simultaneously, and thus the two constraints
are feasible. Otherwise, the two constraints are infeasible and cannot be satisfied at the same time.

Fig. 2 presents two examples of the feasible region of (im, xm). The green area encompasses all (im,
xm) pairs where the constraints are feasible, while the red area comprises all infeasible constraints. If our
behavior inducement algorithm attempts to reduce the infection proportion below im while increasing
the proportion of individuals choosing risky behaviors above xm, the point (im, xm) should fall within
the green area, i.e., satisfying xm ≤ γ

(1 − im)k̄β1

for this goal to be feasible.

4.2.2 Solving the Optimization Problem with Feasible Constraints

If 0 ≤ iP ≤ im and 1 ≥ xP
1 ≥ xm are feasible, we discuss how to solve the optimization problem.

Given the two constraints, we adopt the exterior-point method and transform the two constraints into
a penalty function:

μ[P(iP − im) + P(−iP) + P(xm − xP
1 ) + P(xP

1 − 1)], (31)
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Figure 2: The range of im and xm when (a)
β1

γ
= 2

3
(b)

β1

γ
= 1

2
with k̄ = 10. The green area represents

the feasible constraints, and the red area represents the infeasible constraints

where μ is a parameter that determines the intensity of the penalty, and P(x)
�=(max{0, x})2. We let

l1(iP) = μ[P(iP − im) + P(−iP)] and l2(xP
1 ) = μ[P(xm − xP

1 ) + P(xP
1 − 1)], then the optimization problem

(27) becomes:

min
δδδ

μ[P(iP − im) + P(−iP) + P(xm − xP
1 ) + P(xP

1 − 1)] + l3(δδδ),

s.t. 0 < α + �α < 1, 1©
cn + �cn < 0. 2©

(32)

According to Theorem 4, the optimization problem can be transformed into the problem in Case
3 and then we can get the optimal solution of the whole space by comparing it with 000. Here we only
consider the situation where k̄ >

γ

β1

.3 Then the optimization problem in Case 3 becomes:

min
δδδ

μ[P(iP − im) + P(−iP) + P(xm − xP
1 ) + P(xP

1 − 1)] + l3(δδδ),

s.t. 0 < α + �α < 1, 1©
cn + �cn < 0, 2©
(1 − iP)k̄β1xP

1 − γ = 0, 3©
k0(uP(c1 + �c1) − uP(c2 + �c2)) + (γ − k̄β1) + k0uP(cn + �cn) · ω[k̄β1 − γ , α + �α] ≤ 0, 4©
k0uP(cn + �cn) · ω[k̄β1iP, α + �α] − k̄β1iP + k0(uP(c1 + �c1) − uP(c2 + �c2)) = 0. 5©

(33)

3If k̄ <
γ

β1
, the optimal solution is 000, and no calculation is required. So we do not consider it in our work.
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Here, ω[p, α] = e(−(−lnp)α). Constraints 3©, 4©, and 5© guarantee that the steady state belongs to Case
3 in Theorem 2. The method for solving the problem is provided in Appendix G in Supplementary
Material.

4.2.3 Reformulation of the Optimization Problem When the Constraints Are Infeasible

If the constraints 0 ≤ iP ≤ im and 1 ≥ xP
1 ≥ xm are not feasible, we reformulate the optimization

problem and make (iP, xP
1 ) as close to (im, xm) as possible. Specifically, we transform the two constraints

0 ≤ iP ≤ im and 1 ≥ xP
1 ≥ xm into (iP − im)2 +(xP

1 −xm)2 in the objective function, so that the steady-state
(iP, xP

1 ) is close to (im, xm) in the i − x1 plane. Then the optimization problem (33) becomes

min
δδδ

(iP − im)2 + (xP
1 − xm)2 + l3(δδδ),

s.t. 0 < α + �α < 1,

cn + �cn < 0,

(1 − iP)k̄β1xP
1 − γ = 0,

k0(uP(c1 + �c1) − uP(c2 + �c2)) + (γ − k̄β1) + k0uP(cn + �cn) · ω[k̄β1 − γ , α + �α] ≤ 0,

k0uP(cn + �cn) · ω[k̄β1iP, α + �α] − k̄β1iP + k0(uP(c1 + �c1) − uP(c2 + �c2)) = 0. (34)

We can use the same method in Section 4.2.2 to solve (34), and the details are provided in Appendix
H in Supplementary Material.

5 Simulation Results

In this section, we first run simulations to validate our steady state analysis of the co-evolution
process and the effect of irrationality on individuals’ behaviors and epidemic spread in Section 3.
Then we validate the effectiveness of the behavior guidance algorithms proposed in Section 4. As there
are few previous works have analyzed how to model irrational individuals in a pandemic, we do not
compare our method with other works in this section.

5.1 Simulations of the Steady States of EUT and PT
Theorem 1 and Theorem 2 give theoretical analyses of the steady states when individuals are

rational and irrational, respectively. To validate the two theorems, as an example, we conducted
simulations on regular networks with 500 nodes. The physical contact network has a fixed degree
of 10, while the information network has a degree of 20. We observe similar trends on other types
of networks and with other parameters. We set the recovery rate to γ = 0.03 as an example and let
the infection rate β1 vary. We first run the simulation to validate the three cases of the steady state of
EUT and PT. Since risky behaviors such as going out and not wearing a mask are the default behaviors
most people take in their daily lives, we set c1 = 0; conservative behaviors such as isolation and wearing
masks can be regarded as behaviors with losses, so we set c2 < 0. In this work, we let c1 = 0, c2 = −1,
and cn = −20. In order to facilitate the comparison between EUT and PT, we set uE(x) = uP(x) and
use the power function in (6) with σ = 0.65 and λ = 1 as an example. For other value functions, we
observe the same trend and omit the results here. For each simulation setup, we repeat the experiment
50 times and show the average result below.

Fig. 3 shows the simulation and theoretical results of (iE, xE
1 ) and (iP, xP

1 ) with different infection
rates β1, where the theoretical results are calculated using Theorem 1 and Theorem 2. It can be seen
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that the simulation results match the theoretical results very well. The red area represents Case 1 in
Theorem 1 and Theorem 2, wherein the infection rate is too low, resulting in no disease spread, then
all individuals choose the risky behavior. Moving to the green area denoting Case 2 in Theorem 1 and
Theorem 2, we observe a gradual rise in the proportion of infected individuals corresponding to an
increasing infection rate. Despite this, as the infection rate is not high enough and the payoff for risky
behavior remains high, individuals tend to choose risky behavior. Moving to the blue area denoting
Case 3 in Theorem 1 and Theorem 2, the infection rate continues to increase, causing the payoff of
the risky behavior to gradually decrease. Consequently, more individuals tend to choose conservative
behavior, leading to a decline in the percentage of infected individuals.

Figure 3: Simulation results of the steady states with rational and irrational individuals

Then we validate Theorem 3 and investigate the impact of irrationality on the steady states using
the same simulation setup as before. Fig. 4 shows the average results of 50 simulation runs. We observe
the same trend for other types of networks and other parameter settings. Note that in Fig. 4, α = 1
(EUT) corresponds to the scenario with rational individuals, as explained in Section 2.2.1. In Fig. 4, as
β1

γ
increases, Point A is the boundary point separating Case 1 and Case 2, and Points B, C, and D are

the boundary points separating Cases 2 and 3 with α = 0.6, α = 0.8, and α = 1 (EUT), respectively.
Then we analyze the results of α = 0.6 and α = 0.8 as an example. We use (iP, xP

1 ) and (īP, x̄P
1 ) to

represent the steady states for α = 0.6 and α = 0.8. From Figs. 4a and 4b, we have:
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• Before Point A, i.e., when
β1

γ
<

1

k̄
, irrationality does not influence individuals’ behavior and

the steady states in Case 1, as both curves with α = 0.6 and α = 0.8 have x̄P
1 = xP

1 = 1 and
īP = iP = 0. Also, the boundary points separating Case 1 and Case 2 (Point A in Figs. 4a and
4b) are the same with different values of α. The results validate Theorem 3a.

• Between Points A and B,
β1

γ
>

1

k̄
, 
2 < 0 for both α = 0.6, 0.8. Therefore, from Theorem

3b, both individuals with low irrationality (α = 0.8) and individuals with high irrationality
(α = 0.6) choose the risky behavior with xP

1 = x̄P
1 = 1 while the epidemic spreads to the

maximum extent with iP = īP = 1 − γ

k̄β1

, and this corresponds to Case 2 for both (iP, xP
1 ) and

(īP, x̄P
1 ).

• Between Points B and C,
β1

γ
>

1

k̄
, 
2 < 0 for α = 0.8 but 
2 ≥ 0 for α = 0.6. From Theorem

3b, all individuals with low irrationality still choose the risky behavior with the steady state
(īP = 1 − γ

k̄β1

, x̄P
1 = 1) in Case 2; while individuals with high irrationality are risk-averse with

xP
1 < 1, and (iP, xP

1 ) belongs to Case 3.

• After Point C,
β1

γ
>

1

k̄
, 
2 ≥ 0 for both α = 0.8 and α = 0.6. From Theorem 2, both steady

states for α = 0.8 and α = 0.6 belong to Case 3. Compared (iP, xP
1 ) with (īP, x̄P

1 ), as īP ≤ 1

k̄β1e
,

from Theorem 3c, irrationality makes individuals risk-averse and more individuals with high
irrationality choose conservative behaviors with xP

1 < x̄P
1 , and the epidemic spreads to a smaller

range with iP < īP.

Figure 4: Simulation results of the steady states with different
β1

γ
. (a) iE and iP (b) xE

1 and xP
1

The above shows an example where irrationality promotes conservative behaviors, and in most
parameter settings, irrationality makes individuals more conservative. Appendix I in Supplementary
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Material shows an example where irrationality makes individuals risk-seeking. This situation only
occurs when the infection rate is high, and the loss of disease is extremely low.

In summary, the simulation results effectively validate our analysis in Theorem 3.

5.2 Simulations of the Behavior Inducement Algorithm
Then we simulate the behavior inducement algorithm proposed in Section 4. We run simulations

on regular networks with 500 nodes and a fixed degree of 10 for both the physical contact network
and the information network. We let c1 = 0.5, c2 = −1, cn = −10, γ = 0.03 and β1 = 0.01, 0.02. For
the loss term l3(δδδ), we use the simple 2-norm l3(δδδ) = ‖δδδ‖2

2 as an example, and observe similar trends for
other loss functions. We conducted simulations to validate the behavior inducement algorithm under
feasible and infeasible constraints, respectively. The corresponding results are illustrated in Figs. 5 and
6. Additionally, the loss function value of the algorithm is shown in Fig. 7.

Figure 5: Simulation results of behavior inducement algorithm with feasible constraints (im, xm)

Figure 6: Simulation results of the behavior inducement algorithm with infeasible constraints (im, xm)
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The results of the proposed algorithm under feasible constraints are shown in Fig. 5. The black
solid line represents the boundary between the feasible and infeasible regions; (im, xm) above this line
are feasible constraints where it is possible to find δδδ to satisfy 0 ≤ iP ≤ im and 1 ≥ xP

1 ≥ xm, and (im, xm)

below this line are infeasible. Moreover, since β1, γ , and k̄ are fixed, the black solid line includes all
possible (iP, xP

1 ), where point E represents Case 2 and the other points in the black solid line represent
Case 3. The red dots represent the limits (im, xm) we set in our simulations, and it can be seen that
they are all feasible. The blue dots show the steady states after using the proposed behavior guidance
algorithm in Section 4.2.2, and they all satisfy 0 ≤ iP ≤ im and 1 ≥ xP

1 ≥ xm. Using the constraint
(im, xm) labeled as Point C in Fig. 5a, the steady state (iP, xP

1 ) should fall within the range from point
A to point B to satisfy the constraints 0 ≤ iP ≤ im and 1 ≥ xP

1 ≥ xm, and the proposed behavior
guidance algorithm selects Point D in this range to minimize the loss function in (33). The values of
the loss function in (33) at each iteration are shown in Fig. 7a. As shown there, the loss function value
decreases after each iteration and converges after 10,000 iterations. From Figs. 5 and 7a, under feasible
constraints, our behavior inducement algorithm gets great results and converges well.
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Figure 7: Simulation results of the behavior inducement algorithms. (a) The loss function in (33) with
feasible constraints, and (b) the loss function in (34) with infeasible constraints

Simulation results of the proposed behavior inducement algorithm with infeasible constraints are
shown in Fig. 6. Here, the given two constraints (im, xm) are below the boundary of the feasible region
and impossible to satisfy at the same time. It can be seen that although the steady state with behavior
guidance cannot satisfy the two constraints simultaneously, it is on the boundary of the feasible region
and very close to (im, xm). The value of the loss function in (34) after each iteration is shown in Fig. 7b,
where it decreases and converges as the number of iterations increases. From Figs. 6 and 7b, under
infeasible constraints, our behavior inducement algorithm successfully moves the steady state closer
to (im, xm) with good convergence.

In summary, from Fig. 5–7, our behavior inducement algorithm is effective and converges well.
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6 Real User Tests

While the simulation experiments have validated our theoretical analysis, it is necessary to further
validate our conclusions using real user tests. However, obtaining real user data on behavioral
choices, network structure, and spread data simultaneously poses a significant challenge. Therefore, we
qualitatively validate our conclusions through sociological experiments. In our test, 550 subjects were
interviewed, including 237 males and 313 females. The distribution of data is provided in Appendix J
in Supplementary Material.

In our test, we first collect data to estimate the irrationality coefficient α of the subjects. Note that
in Sections 2 and 3, to simplify the analysis, we assume that all individuals have the same value of α,
which can be considered as the average value of α over the entire network. In reality, the irrationality
coefficient α varies from person to person. Therefore, in our test, we estimate α for each individual
separately. Next, we gather data on the subjects’ behavioral choices in various scenarios during a
pandemic. This data collection process allows us to capture individuals’ risk preferences. Finally, we
analyze the relationship between the irrationality coefficient α and the risk preference. By examining
this relationship, we gain insights into how individuals’ irrationality impacts their decisions during an
epidemic and validate our analysis in Section 3.

6.1 Estimating the Irrationality Coefficient α

Data collection: Following the works in [23–25], we estimate the subjects’ irrationality coefficient
α in a way similar to gambling games. In our experiments, subjects are presented with a scenario
where they have a probability pi of suffering from a large financial loss. However, they are also given
the option to purchase insurance at different prices to mitigate the potential loss. Then, the subjects
are asked to make a decision regarding whether they would choose to buy the insurance. Below is an
example we use in our experiment.

Question A: You have a 10% probability of losing ¥100, but if you choose to buy insurance, it can be
guaranteed that you will avoid this loss. Then, what is the insurance price you can accept?

a. When the price is lower than ¥10, I will buy the insurance.

b. When the price is lower than ¥20 but higher than ¥10, I will buy the insurance.

c. When the price is lower than ¥30 but higher than ¥20, I will buy the insurance.

d. When the price is lower than ¥40 but higher than ¥30, I will buy the insurance.

e. When the price is lower than ¥50 but higher than ¥40, I will buy the insurance.

f . Even if the price is higher than ¥50, I will buy the insurance.

After the subjects have made their initial choices, a refined set of choices is presented to them to
obtain fine-grained results. For instance, if a subject chooses option c in the above question, the prices
shown in the subsequent question will be narrowed down to a range between ¥30 and ¥40, such as {¥30–
¥32, ¥32–¥34, ¥34–¥36, ¥36–¥38, ¥38–¥40}. This process continues until the range is narrowed down
to ¥1. For each subject, we change the probability pi in the questionnaire, repeat the above process,
and get multiple pairs of (pi, ri), where ri is the final acceptable insurance price of the subject.

Estimation of α: If the subject chooses an acceptable insurance price of ri to avoid the loss of ¥100
with probability pi, then for this subject, a loss of ¥100 with probability pi is equivalent to a loss of ri

with probability 1. Then from (8), we have:

ω(pi, α)uP(−100) + ω(1 − pi, α)uP(0) = ω(1, α)uP(−ri). (35)
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Similar to [25], we use (7) and (6) as the probability weighting function and the value function,
respectively, in our work. Note that from the definitions, we have uP(0) = 0 and ω(0, α) = 0, then we
have:

− e(−(−lnpi)
α)λ(100)σ = −λ(ri)

σ , (36)

which is equivalent to

ln
(
−ln

( ri

100

))
= αln(−ln(pi)) − ln(σ ). (37)

In (37), ln
(
−ln

( ri

100

))
is a linear function of ln(−ln(pi)). We set σ = 0.65 following the work in

[25]. Given the collected pairs {(pi, ri)} from one subject, we use linear regression to find α in (37) for
this subject.

6.2 Measuring Individuals’ Risk Preference
Data Collection: Then we proceed to collect data on the behavioral choices of different subjects

when confronted with risky scenarios during a pandemic. In each question of this section, subjects are
presented with a specific epidemic situation. Within each scenario, subjects must choose between going
out and staying at home. They are informed that if they choose to go out, there is a certain probability
of becoming infected. If they decide to stay at home, they are guaranteed not to be infected, but they
will suffer from some form of loss. Below is an example in our experiment.

Question B: There is an epidemic spreading right now. If you come into contact with an infected
person, you have a 5% probability of being infected. If you choose to go out, you will be in close contact
with 20 people every day. If you decide to stay at home, you are guaranteed not infected but will suffer
from some losses. However, if you go out, there is a chance of becoming infected. The loss of being infected
is 20 times that of the loss due to home isolation. Your city has a population of 1 million, then:

a. When there is no confirmed case in the city, I will go out.

b. When the number of confirmed cases in the city is less than 10, I will go out.

c. When the number of confirmed cases in the city is less than 100, I will go out.

d. When the number of confirmed cases in the city is less than 1,000, I will go out.

e. When the number of confirmed cases in the city is less than 10,000, I will go out.

f . When the number of confirmed cases in the city is less than 100,000, I will go out.

g. When the number of confirmed cases in the city is higher than 100,000, I will still go out.

Calculating Individuals’ Risk Preference Ix: We use the risk preference Ix to reflect the behavioral
tendencies of the subjects. The risk preference Ix for each individual corresponds to the proportion
of times choosing the risky behavior in various scenarios in the questionnaire. This indicator ranges
between 0 and 1, where values closer to 1 indicate a more risky behavioral tendency. It is important to
note that in our model, xP

1 denotes the proportion of individuals choosing the risky behavior. A higher
Ix value within a group implies a greater inclination of individuals towards risky behavior, resulting in
a higher xP

1 value. Then we analyze the relationship between irrationality and behavioral choice.

6.3 Analysis of the Relationship between Irrationality and Behavioral Choice
We classify subjects into different groups based on their irrationality coefficient α, with the aim of

grouping together individuals who share similar values of α within each respective group. We calculate
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the mean value of Ix and analyze the relationship between α and Ix. The results are illustrated in Fig. 8a.
We can see that groups with a smaller α (i.e., a higher degree of irrationality) also have a smaller
average risk preference Ix, which is consistent with our conclusion. The Spearman coefficient of α

and average Ix in different groups is 1.00 (p < 0.01), which means α and Ix have a strong correlation.
In our theoretical analysis and simulations, we find that irrationality makes more conservative in
most parameter settings, and irrationality makes individuals more risk-seeking only occurs when the
infection rate is high, and the loss of disease is extremely low. Since the parameter settings of our real
user tests do not meet this condition, irrationality causes individuals to be more conservative. The
results of real user tests are consistent with the theoretical analysis.
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Figure 8: (a) The relationship between α and average risk preference Ix. (b) The scatter plot of α and
risk preference Ix. The dashed line shows regression estimates

Moreover, we also plot scatter plots of α and Ix for all samples, as shown in Fig. 8b. It can be seen
that there is a certain correlation between the two. The Pearson correlation coefficient of α and Ix of
each sample is 0.619 (p < 0.001), indicating a strong correlation between the two [50,51]. This indicates
that irrationality causes individuals to be more conservative, which is consistent with our conclusion.

7 Discussion
7.1 The Impact of Cultural and Social Elements

Cultural and social elements can influence individual behavioral choices and disease spread, and
our model can be used to analyze them to a certain extent.

First, in reality, an individual’s understanding and views of an epidemic may be affected by
culture, beliefs, and social environment. For example, people in different countries have different
opinions about COVID-19 [52]. Moreover, political opinions will also affect individuals’ concerns
about COVID-19 [53]. In our model, people with different cultures and political opinions can have
different cn and α. That is, they have different perceptions of the losses caused by the epidemic and
may have different degrees of irrationality. Therefore, our model can be used to analyze the impact of
culture, political opinions, social elements, etc., on individual behavioral choices and epidemic spread.

In addition, different costs of implementing policies in different cultures and countries can be
reflected in our behavior inducement algorithm. For example, in some countries or cultures, the cost
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of implementing policies is lower, and individuals are more inclined to obey behavioral inducement. In
our model, that means they have a lower l3(δδδ). Therefore, our behavior inducement method can also
analyze the effects of government guidance in different cultures and countries.

7.2 The Implementation of Behavior Inducement Method
In Section 4, we discuss how to control the spread of disease through behavior inducement. We

assume that individuals’ cn, c1, c2 and α can be changed, here we discuss how to implement the behavior
inducement method.

Change people’s understanding of the diseases: Propaganda can influence people’s awareness of the
dangers of diseases. For example, during the COVID-19 crisis, there was a tendency among supporters
of the US Democratic Party to perceive COVID-19 as more harmful compared to supporters of the
Republican Party. This disparity largely stemmed from the propaganda policies employed by the two
parties [53]. Therefore, individuals’ cn can be changed by propaganda.

Reward or punish specific behaviors: Governments can guide people’s behavior by rewarding and
punishing specific behaviors. For example, reward the behavior of staying at home or punish the
behavior of going out to control the spread of the disease. In this approach, an individual’s c1 and
c2 can be changed.

Change people’s irrationality coefficient: Propaganda via social networks and media can influence
individuals’ irrationality [49]. For example, the government can publicize during the disease that people
do not need to overestimate the probability of small events and do not need to panic too much, which
could reduce the irrationality of individuals. Then individuals’ α can be changed.

7.3 Guidelines
Through theoretical analysis and experiments, we get some insights into disease spread control,

which can guide government policies to a certain extent.

First, considering the practicalities of governance, the government can employ a multifaceted
approach to control spread, utilizing methods like incentivizing and penalizing behaviors and raising
awareness about the disease through propaganda. Through our experiments, we observe that the
efficacy of a singular measure diminishes as its intensity increases. Therefore, employing multiple
measures simultaneously can yield superior outcomes at a reduced cost.

Second, the influence of irrationality has great significance. The degree of individual irrationality
can be affected by propaganda and other means. Through experiments, we find that changing the
irrational coefficient α can effectively affect individual behavioral choices and disease spread. In reality,
this provides a new approach to controlling the spread of disease by influencing the irrational degree
of individuals.

Finally, as discussed in Section 4.2, there are limits to the two goals of controlling spread and
reducing economic losses. Therefore, governments need to formulate reasonable policies and make
a trade-off between controlling the spread of disease and reducing economic losses. For example, in
the case of certain seasonal and highly detrimental diseases, the government may opt to maximize
control measures to limit the spread, even if it will lead to substantial short-term economic losses. In
the case of prolonged epidemic diseases, it becomes crucial to pay increased attention to the long-term
economic loss.
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8 Conclusion

In this paper, we propose an epidemic-behavior co-evolution framework to analyze the co-
evolution of user behavior and the disease spread during an epidemic. Our model considers the
irrationality of individuals’ decision-making processes, and our theoretical analysis shows that indi-
vidual irrationality polarizes individual behavior choices. That is, irrationality makes users risk-
averse when the probability of being infected is small, while they tend to be risk-seeking when the
probability of being infected is large. We then propose a behavior inducement algorithm to control
the disease spread and reduce losses by guiding individual behavior. Simulation results show the
correctness of our theoretical analysis and verify the validity of our guidance control method. We also
qualitatively prove the correctness of our conclusions using real-user tests. Different from the prior
works, in this work, we use prospect theory to model the individuals’ irrational behaviors during an
epidemic and the co-evolution of individuals’ behaviors and the epidemic. Our research contributes to
comprehending the irrational behavioral choices made by individuals during epidemics. Additionally,
our behavior inducement approach does not rely on mandatory policies like prior works, providing a
viable framework for governments to effectively control disease spread during epidemics.
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