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ABSTRACT

Autonomous driving has witnessed rapid advancement; however, ensuring safe and efficient driving in intricate
scenarios remains a critical challenge. In particular, traffic roundabouts bring a set of challenges to autonomous
driving due to the unpredictable entry and exit of vehicles, susceptibility to traffic flow bottlenecks, and imper-
fect data in perceiving environmental information, rendering them a vital issue in the practical application of
autonomous driving. To address the traffic challenges, this work focused on complex roundabouts with multi-lane
and proposed a Perception Enhanced Deep Deterministic Policy Gradient (PE-DDPG) for Autonomous Driving in
the Roundabouts. Specifically, the model incorporates an enhanced variational autoencoder featuring an integrated
spatial attention mechanism alongside the Deep Deterministic Policy Gradient framework, enhancing the vehicle’s
capability to comprehend complex roundabout environments and make decisions. Furthermore, the PE-DDPG
model combines a dynamic path optimization strategy for roundabout scenarios, effectively mitigating traffic
bottlenecks and augmenting throughput efficiency. Extensive experiments were conducted with the collaborative
simulation platform of CARLA and SUMO, and the experimental results show that the proposed PE-DDPG
outperforms the baseline methods in terms of the convergence capacity of the training process, the smoothness
of driving and the traffic efficiency with diverse traffic flow patterns and penetration rates of autonomous vehicles
(AVs). Generally, the proposed PE-DDPG model could be employed for autonomous driving in complex scenarios
with imperfect data.
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1 Introduction

The rapid application of autonomous driving technology has introduced significant challenges
to achieving safe and efficient driving in complex scenarios. Among various urban traffic scenarios,
roundabouts have garnered particular attention due to their unique structure and function. The
inherent randomness of vehicle entries and exits, the potential for traffic gridlock, and the complexities
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of environmental perception make roundabouts a core challenge and a focal point of research in
autonomous driving. In recent years, many researchers have dedicated their efforts to these issues [1–
5]. These studies not only underscore the importance of roundabout scenarios in autonomous driving
but also emphasize the pressing need to ensure safety and efficiency in such environments.

Despite extensive research on autonomous driving in roundabout scenarios, some key issues
remain challenging. Existing studies in this domain could be summarized as environmental perception,
decision-making, and path planning. For example, Belz et al. [6] proposed three distinct behavioral
categories for vehicles at roundabouts: taking priority, yielding priority, and yielding at roundabout
locations. Abbasi et al. [7] employed eye-tracking to investigate how drivers perceive behavior within
roundabouts. Perez et al. [8] introduced the concept of lateral control in roundabouts, addressing
lane-keeping issues with a focus on entrances and exits. Cao et al. [9] proposed an adaptive decision-
making model based on optimized embedded reinforcement learning. Huang et al. [10] employed
the Deep Deterministic Policy Gradient algorithm in a driving simulator to learn optimal driving
behaviors for continuous actions, demonstrating its efficacy in scenarios like forward driving and
stopping. Wei et al. [11] used a residual structure and a Transformer structure in the network
structure of the generator in the adversarial network, which improved the accuracy of snow removal
tasks and the safety of autonomous vehicles (AVs). These studies have made significant efforts for
autonomous driving in roundabouts. However, existing studies often impose specific requirements
on traffic scenarios, such as necessitating all vehicles to be interconnected or assuming single-laned
roundabouts. In the real world, traffic at roundabouts on actual roads is more intricate. Variables
like varying penetration rates, which is the ratio of AVs, make vehicle coordination challenging,
and incorrect driving strategies can easily lead to traffic gridlock within roundabouts. Additionally,
dynamic path optimization in roundabout scenarios remains a crucial challenge.

To address these issues and consider the characteristics of roundabout traffic, we propose an
enhanced Perception Enhanced Deep Deterministic Policy Gradient (PE-DDPG) model to enable
autonomous driving in complex roundabout scenarios. The approach ensures that vehicles can adapt
to various traffic patterns and different penetration rates, thus enhancing driving efficiency, safety, and
stability in complex scenarios. The main innovations of this work could be summarized as follows:

1) To tackle the issue of traffic gridlock that roundabouts are prone to, we introduce a multi-lane
dynamic path optimization mechanism within the roundabout to effectively mitigate the issue
of traffic gridlock and enhance traffic flow efficiency.

2) We Propose a Perception Enhanced Deep Deterministic Policy Gradient for Adaptive
Autonomous Driving (PE-DDPG) in roundabouts. The model integrates an enhanced
variational autoencoder with a spatial attention mechanism to capture and parse key features
in complex traffic scenarios. Then, the model employs the Deep Deterministic Policy Gradient
(DDPG) to learn and generate driving control decisions for complex roundabout scenarios.

3) Extensive autonomous driving experiments in roundabout traffic scenarios were constructed
with a joint simulation platform integrating CARLA and SUMO, and results show that the
proposed PE-DDPG model outperforms the state-of-the-art models significantly.

The structure of this work is as follows: Section 2 reviews related works. Section 3 provides a
detailed description and problem modeling of the issue. Section 4 describes the proposed model,
including the modules of enhanced perception feature extraction, adaptive mechanisms, and the
integration of the Variational Autoencoder (VAE) with the Deep Deterministic Policy Gradient
for enhanced perception. Section 5 elaborates on the experimental details, analyzes the results, and
discusses briefly. Finally, conclusions are presented in Section 6.
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2 Related Works

In recent years, rapid growth of related studies has been carried out, and significant progress has
been made for autonomous driving in various scenarios. However, in the case of complex roundabout
scenes, There remain critical challenges.

2.1 Autonomous Driving Technology in Roundabouts
Roundabouts, as core components of urban transportation infrastructure, play a vital role in

traffic flow and safety. Elvik [12] demonstrated that roundabouts can effectively reduce the probability
of severe traffic accidents. However, the road structure and traffic flow within such scenarios are
exceptionally intricate, posing significant challenges for AVs in terms of scene comprehension and
intelligent control decision-making. For scenarios with complex and diverse state spaces, Deep
Reinforcement Learning (DRL) emerges as the preferred method to address decision-making in
roundabout autonomous driving. Academic endeavors have been made to explore autonomous driving
methods tailored for roundabout scenarios. For instance, García et al. [13] proposed a method based
on the Q-learning algorithm to train autonomous vehicle agents to navigate appropriately within
roundabouts. Wang et al. [14] introduced a driving strategy based on the Soft Actor-Critic (SAC)
algorithm to ensure safety while minimizing costs. Zhang et al. [15] employed optimization-embedded
reinforcement learning (OERL) to achieve adaptive decision-making at roundabout intersections.
However, many existing studies often assume relatively simplistic dynamic traffic flows within the
scene [16].

In complex traffic flow scenarios, especially when considering varying penetration rates of AVs,
there remains a research gap in navigating roundabouts safely, swiftly, and stably. Furthermore,
research efforts have also been directed toward understanding and navigating single-lane roundabouts.
Rodrigues et al. [17] developed an adaptive tactical behavior planner (ATBP) for autonomous
vehicles to navigate non-signalized roundabouts, combining naturalistic behavior planning and tactical
decision-making. This approach focuses on human-like motion behaviors in simpler environments.
However, these studies tend to overlook the complexities of multi-lane roundabouts, where traffic
patterns are more dynamic and unpredictable. The assumption of uniform and predictable traffic in
single-lane studies simplifies the real-world challenges posed by multi-lane roundabouts. This work
aims to bridge this research gap by developing a robust and adaptable DRL framework, specifically
designed for the nuanced and complex nature of multi-lane roundabouts, incorporating comprehensive
considerations for safety, efficiency, and stability under diverse traffic conditions.

2.2 Perception Enhancement Methods for AVs
To improve the perception capabilities of AVs, Singh et al. [18] proposed a parameterized two-

layer optimization method to calculate optimal behavioral decisions and downstream trajectories
jointly. Compared with other existing methods, the method performs well regarding collision rate
in relatively simple scenarios. From a visual perspective, the VAE has begun to be applied in the
field of autonomous driving, which handles high-dimensional and complex data representation,
especially in visual perception and decision-making. This kind of method has shown great potential
and attracted widespread attention. For example, Azizpour et al. [19] proposed a method to integrate
semantic segmentation and VAE methods with a camera-based end-to-end controller. Plobe and
da Lio [20] implemented a semi-supervised VAE, whose architecture best approximates two related
neurocognitive theories, providing deeper visual perception for autonomous driving. In addition, to
improve the interpretability of autonomous driving systems, Abukmeil et al. [21] proposed a VAE-
based explainable semantic segmentation (ESS) model that uses multi-scale second-order derivatives



560 CMES, 2024, vol.140, no.1

between the latent space and the encoder layer to capture the curvature of neuron responses. These
methods provide sufficient interpretability and reliability for autonomous driving systems in relatively
simple scenarios. However, building an efficient representation mechanism and making vehicular
driving safer and more stable in complex scenarios such as roundabouts remains a critical challenge.

3 Problem Description and Definition

Modern transportation systems pay special attention to roundabouts due to their unique structure
and function. Roundabouts are designed to improve traffic flow, reduce accidents, and enhance driving
safety. However, with increasing traffic and rapid urbanization, roundabouts face challenges like
congestion, gridlocks, and collisions [22].

As illustrated in Fig. 1, this work focuses on the scenario of a traffic roundabout. Here, a vehicle
enters at entrance A aiming for exit E. The multi-lane nature of roundabouts means the vehicle’s path
can vary. Throughout its journey, actions like lane changing and overtaking are common. Vehicles
must dynamically decide their route and control strategy as they drive.

Figure 1: Traffic scenario in roundabouts

Definition 1. Environmental Information: A roundabout R_A consists of entries R_E, exits R_X,
lane number L, driving intentions I, and vehicles including autonomous Vehicle AV and non-autonomous
Vehicle nAV vehicles. Then, the roundabout R_A with environmental information could be formally
represented as:

R_A = {R_E, R_X , I , AV , nAV , L}. (1)

Definition 2. Vehicular State Information: For a vehicle Q, state information includes visual data P,
speed S_p, throttle and brake T, steering angle φ, road center deviation D, and waypoint O. Then, the
vehicular state information of Q could be represented as:

Q = {P, S_p, T , φ, D, O}. (2)

Definition 3. Driving Control Sequence: A control sequence C for vehicle Q in roundabout R_A
includes operational parameters like throttle and brake T and steering angle φ. Then, the driving control
sequence for Q in roundabout R could be formally represented as:

C = {T , φ}. (3)
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Definition 4. Markov Decision Process (MDP): The problem of intelligent driving control in
roundabouts is modeled as an MDP, defined as a tuple (S, A, T , R), S is the set of states, A is the set
of actions, T is the transition function denoting the probability of moving, and R is the reward function.
The objective in an MDP is to find an optimal policy π ∗ that maximizes the expected cumulative
reward as:

π ∗ = arg max
π

E

[ ∞∑
t=0

γ tR(st, at)

]
, (4)

where γ is the discount factor.

This formulation clearly states the MDP components and the optimization objective, integrating
it seamlessly into the context of intelligent driving control in roundabouts.

4 Methodology

Considering the challenges of understanding the environment in roundabouts, we propose a PE-
DDPG for Adaptive Autonomous Driving. As shown in Fig. 2, the framework of PE-DDPG mainly
comprises a Perception Enhanced Feature Extraction module and an intelligent driving decision
module. The feature extraction module is primarily used to efficiently extract critical features from
raw images, while the intelligent decision module is designed to generate safe driving control strategies
specific to roundabouts and implement complex control behaviors.

Figure 2: The framework of PE-DDPG for autonomous driving

In the model, the feature extraction module integrates an Enhanced Variational Autoencoder
(E-VAE) with attention to improving the understanding capacity of environment information, and
the intelligent driving decision module introduces a DDPG to construct a policy learning agent.
The agent is employed to act with the environment and learn the driving control decisions such
as “lane change”, “accelerate” or “decelerate”. In this model, we have specifically incorporated the
concept of ‘lane change’ into the vehicle’s actions within roundabouts. This integration is crucial for
addressing the prevalent issue of gridlocks in roundabouts. To further facilitate this, our method has
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been adapted to more strongly encourage lane-changing behaviors. By doing so, the model not only
learns to optimize for speed and safety but also becomes adept at recognizing and reacting to potential
deadlock situations commonly encountered in roundabouts. The enhanced focus on lane changing as
a strategic maneuver significantly contributes to alleviating traffic congestion and improving overall
traffic flow efficiency, thereby resolving the problem of roundabout gridlocks.

4.1 Perception Enhanced Feature Extraction Module
The Perception Enhanced Feature Extraction module integrates an E-VAE with spatial attention

mechanisms to improve the perception ability in complex scenarios. As shown in Fig. 3, the E-
VAE focuses on significant regions of images and captures information more precisely related to the
specific task.

Figure 3: The perception enhanced feature extraction module

Due to every pixel in image data is associated with its surrounding pixels, a spatial attention
mechanism is employed to assign a weight to each pixel and emphasize areas of greater importance
for the current task. For a given input image x, a weight matrix A is first computed through the spatial
attention network, given by the formula:

A = Softmax(Wsx + bs), (5)

where Ws and bs are the parameters of the spatial attention network. Here, s in Ws and bs denotes
‘spatial’, indicating that these parameters are specifically for the spatial aspect of the attention
mechanism. Ws represents the weights and bs represents the bias in the spatial attention network.
Considering the encoder part of the traditional VAE, we get:

qϕ (z|x) = N(z; μ (x), σ 2 (x) I), (6)

where μ and σ are the encoder outputs and are influenced by the weighted input x′. Here, μ (x) is the
mean and σ 2 (x) is the variance of the latent variable distribution for the weighted input. The latent
variable z represents the encoded information in a compact form. N stands for the normal (Gaussian)
distribution, which is used to model the distribution of the latent variables. I is the identity matrix,
which is used here to represent the independence of the latent variables in the distribution. Then, the
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weighted input x′ is computed from the attention weights and the original input image:

x′ = A � x. (7)

Thus, the representation of the weighted input could be rewritten as:

qϕ (z|x′) = N(z; μ (x′), σ 2 (x′) I). (8)

In this model, E-VAE maps the input image to a latent space and ensures that the representation
in this space emphasizes the critical parts of the image. In the same way, a similar attention mechanism
can be employed to reconstruct the input image during the decoding phase.

Building upon the previously described features of the E-VAE with spatial attention, we delve
deeper into its practical implications in complex traffic environments. The spatial attention mechanism
plays a pivotal role in enhancing the model’s performance under such conditions. It allows the E-VAE
to selectively focus on crucial aspects within the visual field, such as identifying vehicles and pedestri-
ans in dense and dynamic traffic scenarios. This ability is particularly beneficial in environments with
high variability and unpredictability, like crowded urban intersections or roundabouts.

The integration of E-VAE with spatial attention not only refines the accuracy of feature extraction
but also bolsters the model’s capacity to distinguish subtle but essential differences in the visual data.
For instance, the model becomes more adept at quickly recognizing and reacting to sudden pedestrian
movements, thereby elevating the safety and reliability of the autonomous driving system.

Thus, the module integrates VAE with a spatial attention mechanism to capture and distinguish
subtle scene differences from imperfect data. In particular, the module could be employed to capture
image features of complex roundabouts, avoiding the randomness, ambiguity, and uncertainty of scene
information collection. This module provides data support for the intelligent driving decision module
in the PE-DDPG framework.

4.2 The PE-DDPG for Intelligent Driving Decision
To generate reasonable driving control decisions in complex roundabout scenarios, we constructed

a decision module with the DDPG, which merges deep learning with policy gradient methods and aims
to achieve optimal performance in complex environments.

After the model leverages the E-VAE to capture critical features from driving scenario image data,
the decision-making is modeled based on the MDP, and every action is contingent upon the current
state with the objective being to maximize the expected long-term return.

Mathematically, the objective function of the reinforcement learning agent could be represented
as:

J(π) = Est ,at π

[ ∞∑
t=0

γ tr(st, at)

]
, (9)

where γ is the discount factor, determining the present value of future rewards; r(st, at) is the immediate
reward obtained when action at is executed in state st.

As an intelligent driving model, PE-DDPG combines the control strategy based on the DDPG
with VAE and the spatial attention mechanism. It aims to determine appropriate driving behaviors
by real-time monitoring of various state components of the driving scene, such as road conditions,
traffic flow, and driving environment. PE-DDPG takes suitable actions based on the current state and
continuously improves its driving decision-making capability by learning and optimizing policies.



564 CMES, 2024, vol.140, no.1

Specifically, the operational procedure of PE-DDPG is illustrated in the pseudocode shown in
Table 1. In the model, to ensure that the system can be explored broadly in its initial stages, PE-
DDPG employs the Ornstein-Uhlenbeck process to introduce noise. Moreover, PE-DDPG utilizes
an experience replay mechanism to ensure learning stability, allowing the agent to draw lessons from
historical interactions. Based on this, we designed a reward function to address the roundabout
deadlock issue and optimize vehicle traffic efficiency.

Table 1: PE-DDPG algorithm procedure

Input: Vehicular state Q = {P, S_p, T , φ, D, O},
Environmental information R_A = {R_E, R_X , I , AV , nAV , L}.

Output: Control sequence C = {T , φ}
1: P′ ← Enhanced_VAE(P) %Process image P with enhanced VAE.
2: st ← Concatenate(P′, S, T , φ, D, O) %Combine P′ with state variables to form St.
3: for each driving step do
4: at ← π(st|θπ) %Determine action at from state st.
5: st+1 ← T (st, at, R) %Compute next state st+1.
6: rt ← R(st, at) %Calculate reward rt for action at.
7: Q ← Q ∪ {(st, at, rt, st+1)} %Add experience to replay pool.
8: �← sample from Q %Sample from replay pool.
9: Q × (st, at) ← rt + γ maxat+1

Q(st+1, at+1|φQ) %Compute Q-value.
10: φQ ← φQ − α∇φQ(Q(st, at|φQ) − Q × (st, at))

2 %Update Q-network.
11: end for
12: return C = {T , φ} based on optimized π %Return control sequence C.

4.3 The Perception Enhanced Reward Function
Within the deep learning framework of autonomous driving systems, the design of the reward

function is crucial, as it directly dictates the vehicle’s driving behavior. We proposed a perception-
enhanced reward function that integrates all three aspects to ensure that AVs exhibit efficient, safe,
and stable driving behaviors in complex traffic environments. This function holistically considers three
key metrics: the vehicle’s efficiency, safety, and stability.

Given the vehicle state Q and vehicle action C, the reward function R (Q, C) represents the
immediate reward obtained when action C is executed in state Q. We then set the reward function
based on the three criteria to evaluate the vehicle’s driving performance in roundabouts.

R (Q, C) = we × E (Q, C) + ws × S (Q, C) + wc × C (Q, C), (10)

where S (Q, C) is the safety assessment when action C is taken in state Q, E (Q, C) is the efficiency
assessment when action C is taken in state Q, and C (Q, C) is the stability assessment when action C
is taken in state Q. ws, we, wc are the corresponding weights.

Efficiency is a key performance metric for evaluating autonomous driving performance.
Aittoniemi [23] found a consistent speed can significantly enhance the overall efficiency of traffic
flow. Therefore, the proposed model considers the relationship between the vehicle’s current speed
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and its speed from the previous timestep. Then, we set the efficiency evaluation rules as follows:

E (Q, C) =
⎧⎨
⎩

1 CurrentSpeed ≥ LaststepSpeed
2 CurrentSpeed ≥ 2 × LaststepSpeed
−30 CurrentSpeed < LaststepSpeed.

(11)

Furthermore, safety is the core objective of autonomous driving. As pointed out by Elsagheer
Mohamed et al. [24], maintaining an appropriate safety distance from other vehicles and obstacles
is vital to avoiding collisions. Therefore, the reward function is computed based on the distance
between the vehicle and the obstacle ahead. We have defined a minimum safety distance, denoted
as MinsafetyDis1/4 and rewards or penalties are given based on the distance between the vehicle and
the obstacle. Specifically, we constructed the safety evaluation rules as follows:

S (Q, C) =
⎧⎨
⎩

1 Distance ≥ MinsafetyDis
2 Distance ≥ 2 × MinsafetyDis
−30 Distance < MinsafetyDis.

(12)

Lastly, it is noteworthy that stability is also a significant evaluation metric. As described by
Zeng et al. [25], abrupt acceleration and deceleration behaviors significantly impact passenger comfort.
To encourage smooth driving behaviors, we have incorporated calculations for the vehicle’s abrupt
acceleration and deceleration behaviors in PE-DDPG, and then we employed them as indicators of
stability. The reward function is primarily defined based on an object’s jerk, which is the rate of change
of acceleration.

Specifically, it is defined based on the absolute value of the time derivative of the object’s
acceleration a(t). This reward function aims to penalize situations with a significant change in the
object’s acceleration. In autonomous driving, significant changes in acceleration can lead to passenger
discomfort or potentially unsafe driving behaviors. Thus, we construct the stability evaluation rules as
follows:

C (Q, C) = − |da(t)
dt |

Maxa

, (13)

where a(t) is the instantaneous acceleration, and Maxa represents the maximum possible value of jerk,
used for normalization to ensure the reward value remains within a reasonable range. The value of
the reward function approaches −1 as the jerk nears its maximum value and approaches 0 as the jerk
nears 0. It implies that when there’s a significant change in the object’s acceleration, the reward will be
a considerable negative value, thereby encouraging the algorithm to minimize changes in acceleration.

To ensure that the reward function could balance the three defined metrics, we referred to the
method proposed by Muzahid et al. [26] and assigned appropriate weights to each metric. We could
set varying weights depending on the specific requirements of different vehicles. In this work, we use
the following parameter settings as an example for the research: the weight for the efficiency reward
is 0.4; the weight for the safety reward is 0.4, and the weight for the stability reward is 0.2.

5 Experiments and Results Analysis
5.1 Driving Scenario and Parameter Settings

This work employs the joint simulation technology of the Carla simulator [27] and the SUMO
simulation platform [28] to provide a simulation environment of complex traffic roundabout scenarios,
and the joint simulation platform shows an evident advantage of reproducing the diversity and
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complexity of roundabout traffic. In this work, the primary task is to enable vehicles’ autonomous
driving and achieve a balance of efficiency, safety, and stability. Therefore, the selected scenario
simulates the roundabout traffic in the core urban area, featuring multi-lanes with a width of 3.5
meters, numerous intersection entry points, and a central circular traffic flow with a diameter of about
50 meters.

In the model training phase, we focused on the driving characteristics of AVs amidst varying
numbers of nAVs. We have incorporated the inherent unpredictability of nAVs, reflecting real-world
human driving behaviors such as sudden maneuvers and inconsistent speed patterns, to enhance the
realism of our simulations. By adjusting the number of nAVs in the simulation, we extensively trained
the vehicles in traffic flows ranging from sparse to dense, as shown in Fig. 4a. The purpose of this
setup is to allow the PE-DDPG to achieve optimal adaptability in diverse traffic environments, thereby
enhancing its robustness and adaptability in real-world scenarios.

Figure 4: Schematic diagram of the autonomous driving scenario

In the model validation phase, as shown in Fig. 4b, with a constant traffic flow density, we
conducted validation experiments targeting different AVs penetration rates. Specifically, the AVs
penetration rates are set to 30%, 50%, and 70%. This represents that, among all traffic participants, the
corresponding proportion of vehicles is controlled by the AVs, while the rest are simulated nAVs. This
validation aims to deeply assess the differences in system performance under different AVs penetration
rates and the interactive dynamics between it and the nAVs.

In addition to the aforementioned validation experiments, we have implemented an innovative
solution to address potential traffic gridlocks within roundabouts, a common challenge in such
scenarios. Our approach is centered around a dynamic path optimization mechanism specifically
designed for multi-lane roundabouts. In instances where a traffic deadlock is detected in one lane,
our system promptly activates a lane-changing protocol, enabling AVs to switch to less congested
lanes. This mechanism not only allows for immediate alleviation of unexpected gridlocks but also
ensures smoother traffic flow throughout the roundabout. This dynamic adaptability, tested under
various traffic densities and AV penetration rates, showcases the robustness of our model in effectively
managing real-world traffic complexities.

The experimental setup for our system primarily revolves around parameters such as discount
rates and learning rates for both the critic and actor components. These were adapted from Liang et al.
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[29–31] who provided foundational parameter configurations. The specific parameters employed in
our experiments are outlined in Table 2.

Table 2: Parameters used in the experiment

Notation Meaning Value

γ Discount rate 0.995
λ Polyak averaging weight 0.005
Nbuffer Agent buffer capacity 50000
NB Mini-batch size 64
ρ Initial sampling ratio 0.3
critic_lr Critic learning rate 0.0005
actor_lr Target network update coefficient 0.001
total_time_steps Total time steps 1000000
episode_sim_time Time per training round 1000
steps_per_episode Steps per round 1250
number_of _episodes Total training rounds 800

5.2 Evaluation Metrics
The comprehensiveness of evaluating autonomous driving strategy and their responsiveness in

traffic environments is crucial. For this reason, we selected a series to explore the performance of the
model in training and actual driving scenes. The evaluation indicators used in this work and their
importance are described below.

Firstly, we considered the reward comparison figure of the training process. In the context of
reinforcement learning, the reward function R(s, a) provides continuous feedback to the model in its
learning process. Here, s represents the state, and a denotes the action taken. The visualization of
cumulative rewards, which is calculated as

∑
t R(st, at), can reveal the learning trend of the algorithm

and provide insights into its convergence pattern.

To evaluate the precision of model control, we defined the “Error of Position” to assess the
matching accuracy between the planned path and the actual navigational trajectory.

Ep = |pexpected − pactual|, (14)

where pexpected and pactual represent the expected and actual positions. Furthermore, to assess the
vehicle’s traffic efficiency, we quantified the relative speed with the vehicle ahead, vrelative, specifically
calculated as:

vrelative = vego − vfront, (15)

where vego is the speed of the AV, and vfront is the speed of the vehicle in front. To further evaluate
driving quality and stability, we also examined the vehicle’s acceleration, aego. By directly collecting
and monitoring the changes in aego across different scenarios, we can assess its driving stability.
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Meanwhile, we further considered the vehicle’s Jerk data, which is the time derivative of accelera-
tion, specifically defined as:

J = d3Pactual
dt3

, (16)

by integrating and analyzing the Jerk patterns, which, as the time derivative of acceleration, provides
us with deeper insights into driving stability and smoothness.

In summary, these evaluation metrics offer a comprehensive perspective on the performance of
autonomous driving in various driving scenarios, enabling us to assess and analyze it from multiple
dimensions thoroughly.

5.3 Methods Studied
Recently, several models have been developed to tackle the inherent challenges in autonomous

driving. To thoroughly understand the efficacy of the PE-DDPG model, a comparative study was
undertaken against the state-of-the-art models.

1) DDPG (Deep Deterministic Policy Gradient) [32]: DDPG is an model based on the actor-critic
architecture.

2) TD3 (Twin Delayed Deep Deterministic Policy Gradient) [33]: TD3 is an improved version of
DDPG, and it introduces two Q-functions and policy delay updates to enhance the algorithm’s
stability.

3) DQN (Deep Q-Network) [34]: DQN combines Q-learning with deep neural networks.

4) Quantile Regression DQN (QR-DQN) [35]: PG-DQN is an advanced deep reinforcement
learning algorithm that enhances the standard DQN framework by incorporating a preference-
learning mechanism.

5) Perference-guided DQN (PG-DQN) [36]: QR-DQN is a deep reinforcement learning algorithm
that extends the traditional DQN by estimating the distribution of action values using quantile
regression.

6) Traditional ACC (Adaptive Cruise Control) [37]: This is a rule-based adaptive cruise control
method that mainly adjusts its speed by continuously monitoring the speed of the vehicle ahead
and the distance to it, aiming to maintain a safe distance.

7) Ballistic [38]: It is a physics-based prediction model that primarily predicts future positions
based on the vehicle’s current speed and acceleration.

8) SL2015 [39]: This is a model based on safety logic that considers various traffic situations and
driver behaviors.

These models are compared with the evaluation metrics delineated in the “Evaluation Metrics”
section to ascertain a performance benchmark for the proposed PE-DDPG model.

5.4 Performance Comparison
To comprehensively analyze the processing performance of the model, this work conducts

systematic comparisons and analyses from aspects such as model training convergence capability
comparison, comprehensive performance comparison, and traffic efficiency comparison.
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5.4.1 Models’ Convergence Capability

To evaluate the actual convergence capability of the model during training, we set the reward
functions of all benchmark models to be the same as that in this work and analyzed the changes in
reward values during their training process [40]. To ensure the robustness and reproducibility of our
results, we conducted experiments with different initial conditions by setting the random seeds to 1,
2, and 3, respectively. This approach allowed us to assess the impact of varying initializations on the
training dynamics and model performance. The experimental results are shown in Fig. 5.

Figure 5: Reward progression graph for convergence comparison

Analysis of the experimental outcomes reveals a distinct advantage for the PE-DDPG model
in terms of reward optimization. The model’s final convergence registers an average reward value
of around −5, which is a notable improvement over the best comparative model’s average reward,
which stabilizes near −10. Not only does PE-DDPG exhibit a more favorable reward profile, but it
also demonstrates a more rapid and stable convergence, achieving a consistent performance after 300
episodes. In contrast, while the other models exhibit a similar timeline for initial convergence, their
performance is characterized by significant volatility, with noticeable fluctuations persisting beyond
the 300-episode mark. This evidence suggests that PE-DDPG not only learns more efficiently but
also achieves a level of strategic stability that outperforms the alternatives in dynamic and uncertain
scenarios.

5.4.2 Comprehensive Performance

To evaluate the comprehensive performance of the PE-DDPG, this work compares the model’s
overall performance using indicators such as Error of Position, Velocity Delta, Velocity Acceleration,
jerk, and other indicators to show the key performance indicators in the model testing phase. The
experimental results are shown in Fig. 6.

PE-DDPG demonstrates quantifiable advancements over DDPG in several performance metrics,
as evidenced by our latest experimental analysis. In the ‘error of position’, PE-DDPG exhibits a more
rapid decline to a lower error rate, settling at about 0.1, compared to DDPG’s consistently higher error
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level at about 0.2–0.5 and floating up or down. This represents PE-DDPG getting status information
capability improvement, indicating more precise positional tracking.

Figure 6: Performance comparison between PE-DDPG and DDPG
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When comparing the ‘velocity delta’, the curve of PE-DDPG approaches the minimum faster
than DDPG. Specifically, PE-DDPG has a convergence speed of 40 steps compared to DDPG in this
regard, which means it has a more consistent speed distribution and improvement in maintaining the
target speed. For “velocity acceleration”, although there is not much difference in convergence values
between PE-DDPG and DDPG, the convergence speed is 20 steps faster.

Lastly, the ‘jerk’ metric, which assesses the smoothness of the driving experience, shows PE-DDPG
achieving a lower peak jerk value by suitable reward jerk function, and faster stabilization, reflecting
PE-DDPG’s smoother driving pattern. This is critical for passenger comfort and aligns with safety
standards, where PE-DDPG’s performance underscores its capability to deliver a smoother ride with
controlled accelerations and decelerations.

Collectively, these results highlight PE-DDPG’s capacity to not only understand complex driving
environments but also to execute control decisions that enhance the autonomous driving experience,
substantiating its real-world applicability.

5.4.3 Traffic Efficiency

To assess the traffic efficiency of the proposed PE-DDPG model, we analyzed the average speed
of traffic flow. This analysis was conducted at varying penetration rates of AVs. We then compared
the PE-DDPG model against both traditional reinforcement learning and non-reinforcement learning
algorithms were compared, such as DQN, DDPG, ACC, PR-DQN, Ballistic, and others. Specifically,
we selected different traffic flow densities, about 100, 200, and 300 vehicles/steps_per_episode, and
considered different AV penetration rates: 30%, 50%, and 70%. The specific results are shown in
Table 3.

Table 3: Average traffic flow speed (km/h) of autonomous driving algorithms at different AV
penetration rates when the traffic flow is 300 vehicles/steps_per_episode

Algorithm Penetration rate

30% 50% 70%

PE-DDPG 18.36 19.08 19.80
DDPG 16.56 17.64 18.00
TD3 17.64 18.00 18.72
DQN 15.48 16.56 17.28
QR-DQN 16.63 17.02 17.84
PG-DQN 16.37 16.73 17.88
ACC 15.84 16.20 16.20
Ballistic 15.12 15.12 15.84
SL2015 15.48 15.12 15.48

The data showcased in Table 3 provides a clear quantifiable comparison of autonomous driving
algorithms under varying autonomous vehicle (AV) penetration rates with a dense traffic flow
of 300 vehicles per episode. PE-DDPG outperforms other algorithms across all penetration rates,
achieving an average traffic flow speed of 18.36 km/h at 30% penetration, which is an improvement of
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approximately 10.9% over DDPG and 4.1% over TD3 at the same rate. At a 50% penetration rate, PE-
DDPG maintains its lead with an average speed of 19.08 km/h, marking an 8.2% increase compared to
DDPG and a 6% increase over TD3. This trend continues at a 70% penetration rate, where PE-DDPG
achieves the highest average speed of 19.80 km/h, 10% higher than DDPG and 5.8% more than TD3.

The results also indicate a general trend that most methods experience an increase in average
speed with higher AV penetration rates. For instance, DDPG’s average speed elevates from 16.56 to
18.00 km/h, and TD3 from 17.64 to 18.72 km/h as the penetration rates rise from 30% to 70%. This
pattern underscores the potential benefits of higher AV penetration in traffic flow, suggesting that
an increase in AV presence may contribute to improved overall traffic speed. To illustrate this more
vividly, we have visualized the average speed of all autonomous driving algorithms at a 70% penetration
rate for traffic flow densities of 100 vehicles/steps_per_episode, 200 vehicles/steps_per_episode, and
300 vehicles/steps_per_episode. As shown in Fig. 7, the average speed of all methods decreases with
the increase in traffic flow density. However, under any level of traffic flow density, PE-DDPG
outperforms all other methods with its more exceptional performance.

Figure 7: The performance comparison of PE-DDPG with different densities

In summary, the experimental results indicated that PE-DDPG not only excels in single-vehicle
navigation tasks but also significantly enhances the speed and efficiency of traffic flow in complex
traffic scenarios compared to other autonomous driving algorithms. This offers a promising direction
for future autonomous driving research, especially in high-penetration environments of autonomous
vehicles.

5.5 Discussion
In this work, Perception Enhanced Deep Deterministic Policy Gradient shows superior perfor-

mance for Autonomous Driving in Complex Scenarios. It is primarily due to the Enhanced VAE’s
incorporation of spatial attention mechanisms, which significantly improves its feature extraction
efficiency. Compared with directly using raw sensor data, the Enhanced VAE effectively reduces
the dimensionality of high-dimensional visual information while retaining key features, providing a
compact and informative input for the reinforcement learning algorithm.
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Further, the Intelligent Driving Decision Module offers a precise and smooth policy update
method for continuous action spaces, ensuring that vehicles can make continuous and accurate
decisions in complex environments. Combining the features extracted by the Enhanced VAE with the
vehicle’s dynamic information, this approach can comprehensively comprehend the environment and
make more appropriate driving decisions. In summary, PE-DDPG shows evident advantages in feature
extraction and policy optimization, and it could be employed to provide an efficient, robust method
for autonomous driving in complex scenarios.

In contrast to traditional autonomous driving methods that rely on static, rule-based approaches
and often struggle in dynamic, interaction-rich scenarios like multi-lane roundabouts, PE-DDPG
offers a significant improvement with its adaptive and responsive strategy. Unlike conventional
methods which fail to adjust to the complexities of real-world driving conditions, thereby limiting their
effectiveness, PE-DDPG, with its integration of spatial attention and deep reinforcement learning,
robustly navigates complex traffic scenarios. Additionally, its scalability to varied road networks and
potential for integration with other autonomous vehicle systems showcase the model’s versatility.
This adaptability extends from urban streets to highways, accommodating various traffic patterns
and densities, and paves the way for collaborative traffic management and enhanced transportation
systems through coordinated decision-making. Overall, PE-DDPG excels in feature extraction and
policy optimization, marking a considerable advancement in autonomous driving technologies and
providing an efficient, robust solution for the intricacies of autonomous driving in complex and diverse
environments.

6 Conclusion

In this work, We proposed PE-DDPG to improve the capability of autonomous vehicles in
complex traffic scenarios of roundabouts, which comprises a Perception Enhanced Feature Extraction
Module and an Intelligent Driving Decision Module with a novel reward function. The experimental
results show that PE-DDPG balances efficiency, safety, and stability and outperforms the state-of-the-
art models in complex traffic scenarios of roundabouts.

In future work, we aim to enhance our model’s scalability to various road networks and its
integration with other autonomous vehicle systems. While the current focus is on single roundabout
scenarios, future developments will involve adapting the model for a broader range of traffic environ-
ments, including multi-lane intersections and complex urban settings. Conducting extensive real-world
tests is also crucial for validating the model’s robustness and reliability in diverse and unpredictable
conditions. This will not only assess the model’s performance in real-life scenarios but also explore its
potential in collaborative autonomous driving systems, paving the way for more comprehensive and
adaptable autonomous driving solutions.
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