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ABSTRACT

Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both
infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid
release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore,
the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study
aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity
of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive
rock burst dataset, which serves to train the LightGBM model. Two population-based metaheuristic algorithms are
used to optimize the hyperparameters of the LightGBM model. Finally, the sensitivity analysis is used to identify
the predominant factors that may incur the occurrence of rock bursts. The results show that the population-based
metaheuristic algorithms have a good ability to search out the optimal hyperparameters of the LightGBM model.
The developed LightGBM model yields promising performance in predicting the intensity of rock bursts, with
which accuracy on training and testing sets are 0.972 and 0.944, respectively. The sensitivity analysis discloses that
the risk of occurring rock burst is significantly sensitive to three factors: uniaxial compressive strength (σ c), stress
concentration factor (SCF), and elastic strain energy index (Wet). Moreover, this study clarifies the particular
impact of these three factors on the intensity of rock bursts through the partial dependence plot.
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1 Introduction

A rock burst is a sudden and violent failure of a rock mass that occurs in underground mines or
tunnels. This phenomenon can result in significant damage to the surrounding structures and pose
a serious risk to personnel working in these environments. Rock bursts can be characterized by the
abrupt release of energy stored within the rock, often leading to the ejection of rock fragments, ground
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shaking, and structural instability [1,2]. When large-ratio pre-state stress or bias force is stored in the
rock mass, a small trigger stress would propel the energy release of the plastic zone within the rock
mass, therefore incurring the rock burst [3,4]. Several factors play a crucial role in the formation of
rock bursts, including stress in the earth’s crust, the physical properties of the rock, the structure of the
rock mass, and the condition of groundwater. Understanding and predicting these events is essential
for ensuring the safety and success of underground engineering projects, making it a critical area of
study in geotechnical and mining engineering.

Traditional methods for predicting rock bursts rely on empirical observations, geological surveys,
and numerical modeling techniques, which often lack accuracy and fail to capture complex patterns
in the data [5]. The shortcomings of these methods are the reliance on simplifying assumptions and
the inability to capture complex interactions between various factors. For example, most empirical
approaches predominantly rely on a fundamental concept: the ratio of stress to strength. This concept
suggests that rock burst originates from compressive forces. Likewise, the criteria for determining
thresholds are ascertained through both analytical and statistical examination of the region where
the rock burst was observed, or via engineering expertise [6]. Numerical approaches commonly utilize
stress and energy parameters to forecast the rock burst behavior. They face numerous challenges such
as the complexity inherent in rock bursts, the obstacles in simulating the shift from continuous to
discontinuous behavior, and the constraints imposed by the small displacement rule [7].

In recent years, machine learning or artificial intelligence techniques have emerged as promising
tools for the rock burst prediction. Table 1 summarizes the studies using machine learning-based
approaches to predict rock burst intensities. For example, Xue et al. proposed an extreme learning
machine model for the prediction of the intensity of rock bursts [8]. They utilized a particle swarm
optimization algorithm to design the input weight matrix and hidden layer bias of the extreme learning
model. The results show that the model achieved a prediction accuracy of 0.889 on the testing set.
Liu et al. combined fuzzy sets, rough sets, and normal cloud theory to design a classification model
of rock burst level [9]. The fuzzy and rough sets are used to determine the weight value of the
evaluation index of rock bursts. Then, the normal cloud theory is used to create the cloud maps of
the evaluation index of rock bursts. Several experiments proved that the designed classification model
of rock burst level possessed promising practicability. Liu et al. introduced an ensemble tree model,
the histogram gradient boosting tree (HGBT), designed to accommodate incomplete datasets and
develop intelligent rock burst prediction models [10]. Leveraging 314 rock burst cases, the HGBT
model was optimized using the hunger game search (HGS) algorithm, achieving an impressive testing
accuracy of 0.889. Qiu et al. employed micro-seismic monitoring and an ensemble learning model
to improve short-term rock burst prediction [11]. Seven key micro-seismic parameters and 91 rock
burst events were collected from an in-situ tunnel project, Jinping Hydropower Station in China,
to develop the prediction model. The model’s performance was assessed using multiple metrics and
nonparametric statistical tests, demonstrating a test accuracy of 0.821, outperforming individual
base classifiers. Li et al. introduced an innovative approach for enhancing rock burst intensity
prediction [12]. They employed an extreme learning machine integrated with improved Harris Hawks
optimization for more precise predictions. The extreme learning machine (ELM) was trained on
136 sets of normalized rock burst case data. The resulting rock burst intensity prediction model is
implemented in the headrace tunnels of Jinping-II Hydropower Station, with a remarkable accuracy
of 0.941. Qiu et al. addressed the limitations of single machine learning algorithms by proposing a
fusion model for rock burst prediction, combining multiple machine learning algorithms with the D-S
evidence theory [13]. A comprehensive dataset containing 304 sets of rock burst cases served to train
the machine learning models. Five machine learning models were developed with the characteristic
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parameters and optimized using global optimization algorithms. A fusion model was then developed
based on D-S evidence theory, incorporating the five optimized machine learning algorithms as base
classifiers. When applied to rock burst prediction at Jiangbian Hydropower Station and Sanshan
Island Gold Mine in China, the fusion model achieved an accuracy of 0.927. Zhou et al. employed
a gradient-boosting machine (GBM) on 246 rock burst events to develop a prediction model [14].
The model yielded a prediction accuracy of 0.651 and further sensitivity analysis unveiled that the
elastic strain energy index (W et) was predominant to the rock burst prediction. Li et al. developed
a light gradient boosting (LightGBM) model for rock burst prediction [15]. 314 in-situ rock curst
cases were used to train the model. Through the performance verification, the developed LighGBM
model achieved a prediction accuracy of 0.853. Xu et al. designed a hybrid model, which integrated a
sparrow search algorithm (SSA) with a probabilistic neural network (PNN), to implement rock burst
prediction [16]. Then, they used a dimensionality reduction method to simplify the raw rock burst
dataset and fed the new dataset to the prediction model. The results show that the proposed SSA-
PNN model possessed a high prediction accuracy, which is 0.933. Liang et al. developed a LightGBM
model that was trained using microseismic data from the tunnels in Jinping-II hydropower [17]. The
data comprised 93 rock burst cases, which include six indicators. However, the light gradient boosting
model (LightGBM) did not obtain a high prediction accuracy (0.667) for this engineering project.
Kadkhodaei et al. addressed the prediction of rock burst potential in underground spaces by analyzing
a database of 335 case histories [18]. They employed gene expression programming (GEP) to develop
a deterministic model for rock burst prediction and evaluate the impact of parameter variability.
Sensitivity analysis highlights the elastic energy index as the most significant factor influencing the
potential of rock burst.

In summary, the above literature review provides a comprehensive overview of the development of
machine learning-based approaches for rock burst prediction in underground engineering. Specifically,
neural network-based and tree-based models are commonly employed in this field. The main limitation
of these models is their subpar performance in predicting rock burst intensities. Most models have
an accuracy below 0.90, and some even perform poorly, for example, [14] and [17]. Thus, to tackle
this issue, this study seeks to develop a hybrid LightGBM model for achieving high-accuracy predic-
tion of rock burst intensities. Furthermore, this study employs comprehensive model interpretation
techniques to unveil the predominant factors influencing rock burst prediction when utilizing the
established LightGBM model.

Table 1: Studies on the prediction of rock burst intensities

Reference Model Data Input parameters Accuracy

Xue et al. [8] PSO-ELM 344 σ θ , σ c, σ t, SCF , B1, W et 0.889
Liu et al. [9] NCT 16 kv, σ θ , σ c, σ t, SCF , B1, W et 0.938
Liu et al. [10] HGS-HGBT 314 σ θ , σ c, σ t, SCF , B1, W et 0.889
Qiu et al. [11] LFJaya-LightGBM 91 N, E, V, Nr, Er, Vr, T 0.821
Li et al. [12] HHO-ELM 136 SCF , B1, W et 0.941
Qiu et al. [13] SVM, BP, RBF, RF, ELM, D-S

evidence theory
304 σ θ , σ c, σ t, SCF , B1, W et 0.927

Zhou et al. [14] GBM 246 D, σ θ , σ c, σ t, SCF , B1, B2, W et 0.651
Li et al. [15] LightGBM 314 σ θ , σ c, σ t, SCF , B1, W et 0.853
Xu et al. [16] SSA-PNN 75 σ θ , σ c, σ t, SCF , B1, W et 0.933

(Continued)
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Table 1 (continued)

Reference Model Data Input parameters Accuracy

Liang et al. [17] LigthGBM 93 N, E, V, Nr, Er, Vr 0.667
Kadkhodaei et al. [18] GEP 335 SCF, B1, W et 0.860

Note: GBM: gradient-boosting machine, LightGBM: light gradient-boosting machine, SSA: sparrow search algorithm, PNN: probabilistic
neural network, RF: random forest, LFJaya: Lévy Flight-Jaya optimization, GEP: gene expression programming, ELM: extreme learning
machine, HHO: Harris Hawks optimization, HGBT: histogram gradient boosting tree, HGS: hunger game search, PSO: particle swarm
optimization, NCT: normal cloud theory, SVM: support vector machine, BP: back propagation neural network, RBF: radial basis function
neural network, RF: random forest, D-S evidence theory: Dempster-Shafer evidence theory.
D: depth, σ θ : maximum tangential stress, σ c: the uniaxial compressive strength, σ t: the tensile strength, SCF : stress concentration factor
(i.e., σ θ /σ c), B1: rock brittleness index (i.e., σ c/σ t), B2: rock brittleness index (i.e., (σ c - σ t)/(σ c + σ t)), W et: the elastic strain energy index,
kv: rock integrality coefficient, N: cumulative number of events, E: cumulative released energy, V: cumulative apparent volume, Nr: event
rate, Er: energy rate, Vr: apparent volume rate, T: incubation time.

2 Materials
2.1 Data Source

This study collected five sets of data collected from the published articles, which are 246 samples
from [19], 20 samples from [1], 12 samples from [20], 6 samples from [2], 7 samples from [21], 16
samples from [9], and 15 samples from [8]. Consequently, the entire dataset comprises 322 samples of
rock bursts, which is shown in Table 2. Overall, 52 samples are recording the ‘None’ intensity of rock
bursts, 99 samples recording the ‘Light’ intensity of rock bursts, 119 samples recording the ‘Moderate’
intensity of rock bursts, and 52 samples recording the ‘Strong’ intensity of rock bursts. The intensity
of the rock bursts can be defined as below [22]:

Table 2: Collected data from published articles

No. Number of cases Article

None Light Moderate Strong Total

1 43 78 81 44 246 Zhou et al. [19]
2 3 7 7 3 20 Xue et al. [1]
3 0 1 11 0 12 Pu et al. [20]
4 0 3 3 0 6 Jia et al. [2]
5 0 1 5 1 7 Wu et al. [21]
6 3 4 8 1 16 Lu et al. [9]
7 3 5 4 3 15 Xue et al. [8]
Sum. 52 99 119 52 322

• None: the least severe level of rock bursts, which is characterized by the absence of any significant
damage to the surrounding structures or personnel. The rock mass may experience some minor
cracking or deformation, but there is no widespread damage.

• Light: the second least severe level of rock bursts, which is characterized by minor damage to the
surrounding structures and personnel. The rock mass may experience some cracking or deformation,
but there is no widespread damage.
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• Moderate: the third level of rock burst intensity, which is characterized by moderate damage
to the surrounding structures and personnel. The rock mass may experience significant cracking or
deformation, and there may be some injuries to personnel.

• Strong: the fourth level of rock burst severity, which is characterized by extensive damage to
the surrounding structures and personnel. The rock mass may experience large-scale cracking and
deformation, and there may be multiple injuries or fatalities. Factors such as a very weak rock mass,
an extremely high-stress condition, or a very low presence of discontinuities may cause the strong
intensity of rock bursts.

The collected dataset comprises seven inputs and one output. The inputs include seven rock prop-
erties: maximum tangential stress (σ θ), uniaxial compressive strength (σ c), uniaxial tensile strength
(σ t), elastic strain energy index (W et), stress concentration factor (SCF), rock brittleness index (B1),
and rock brittleness index (B2). Here, according to the definitions in [22,23], SCF = σ θ /σ c, B1 = σ c/σ t

and B2 = (σ c – σ t)/(σ c + σ t). SCF quantifies the increase in stress around discontinuities within a
material; B1 measures the rock’s tendency to fracture under stress based on its uniaxial compressive
and tensile strengths; B2 evaluates brittleness based on the ratio of the difference between uniaxial
compressive strength and tensile strength to their sum.

Typically, rock properties are deemed as the critical factors affecting the intensity of rock
bursts in underground projects [19,22,24]. For example, rock properties determine the strength and
deformability of the rock mass. Stronger and more deformable rocks are less likely to rock burst.
Rock properties influence the stress distribution around the excavation. High stresses in the rock mass
increase the risk of rock bursts. Rock properties affect how the rock mass fails. Some rock types are
more prone to brittle failure, which is associated with rock bursts. Based on this, this study aims to
identify the intensity of rock bursts via the rock properties and analyze their particular impacts on
the rock burst. Table 3 summarizes statistical indices of these variables under four intensities of rock
burst.

Table 3: Statistical indices of input variables under different intensities of rock burst

Intensity label Variable Min. Max. Mean Standard deviation

None σ θ 2.6 77.69 25.52 16.22
σ c 20.0 241.0 99.37 45.62
σ t 0.4 14.9 5.75 3.54
Wet 0.81 7.8 2.7 1.85
SCF 0.1 1.05 0.30 0.25
B1 5.38 47.93 21.23 12.68
B2 0.69 1.0 0.88 0.07

Light σ θ 13.5 126.72 44.39 20.62
σ c 30.0 263.0 116.43 39.22
σ t 1.9 21.49 6.52 3.59
Wet 0.85 9.0 3.68 1.5
SCF 0.1 0.9 0.41 0.19
B1 2.52 69.69 21.76 10.04
B2 0.43 0.97 0.89 0.07

(Continued)
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Table 3 (continued)

Intensity label Variable Min. Max. Mean Standard deviation

Moderate σ θ 13.02 118.77 51.5 22.81
σ c 30.0 237.2 116.58 42.85
σ t 1.3 17.66 6.12 3.79
Wet 1.2 21.0 5.06 2.68
SCF 0.1 1.27 0.47 0.20
B1 0.15 80.0 25.2 16.27
B2 0.69 0.98 0.9 0.85

Strong σ θ 16.43 297.8 123.02 84.43
σ c 30.0 304.2 122.99 46.95
σ t 2.5 22.6 9.99 4.53
Wet 2.03 30.0 9.04 6.16
SCF 0.1 4.87 1.24 1.18
B1 5.53 32.2 14.1 6.0
B2 0.69 0.94 0.84 0.07

2.2 Data Pre-Processing
This study aims to build a machine learning-based classification model to predict the intensity of

rock bursts. Before training the classification model, a critical step is to implement data cleaning on
the raw dataset. Data cleaning is the process of identifying and correcting errors, inconsistencies, and
inaccuracies in data. It can significantly improve the performance and accuracy of the classification
model.

One powerful tool commonly employed in data cleaning is the boxplot, also known as a box-and-
whisker plot. This graphical representation offers a clear and intuitive way to visualize the distribution
of data points. A boxplot provides a summary of key statistical characteristics within a dataset,
including the median, quartiles, and potential outliers [25,26]. This study applied the boxplot to input
variables of the entire dataset, whatever the intensity of the rock burst. As a result, Fig. 1 illustrates the
potential outliers in each variable. For variable σ θ , values larger than 126 MPa are identified as outliers;
for variable σ c, values larger than 235 MPa are identified as outliers; for variable σ t, values larger than
18.0 MPa are identified as outliers; for variable SCF , values larger than 1.26 are identified as outliers;
for variable B1, values larger than 49.5 are identified as outliers; for variable B2, values smaller than
0.69 are identified as outliers; for variable W et, values larger than 10.5 are identified as outliers. To
ensure the accuracy and generalizability of the rock burst prediction model, data samples involving
outliers are excluded from the raw dataset even though they can occur in operational contexts. This
is because the machine learning-based prediction model is sensitive to extreme values (i.e., outliers) in
the dataset. Outliers can significantly skew the model’s learning process, leading to overfitting where
the model excessively learns from these anomalies instead of recognizing general patterns [27].

After removing all identified outliers from the raw dataset, we eventually obtained 268 data
samples for studying rock bursts. Fig. 2 shows the histogram of the cleaned dataset under four
intensities of the rock burst: None, Light, Moderate, and Strong. Intuitively, the cases of ‘Light’ and
‘Moderate’ rock bursts are in the vast majority, while the cases of ‘Strong’ rock burst are in the minority.
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Figure 1: Boxplot of numerical variables

Figure 2: Histogram of numerical variables under four intensities of rock burst

Before conducting machine learning, splitting the data into training and testing sets is a critical
step, which helps to prevent overfitting of the trained machine learning model. Hence, this study splits
the dataset into two parts: 80% (214 samples) used for training the classification model, and 20% (54
samples) used for evaluating the model’s performance. The training set serves as the foundation upon
which the classification model is constructed. The model uses the training data to understand patterns,
relationships, and underlying structures within the information. On the other hand, the testing set
plays a pivotal role in assessing the model’s performance and generalization capabilities. It serves as a
benchmark, allowing us to evaluate how well the model can make predictions on new, unseen data.

To visualize the distribution of the training and testing sets, Principal Component Analysis (PCA)
is employed herein. PCA is a powerful statistical technique used in dimensionality reduction [28,29]. It
helps uncover the underlying structure in a dataset by transforming the original variables into a new set
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of variables, called principal components. These principal components are linear combinations of the
original variables and are chosen in such a way that they capture the maximum variance in the data.
Fig. 3 displays the distributions of the training and testing sets under four intensities of rock burst.
Overall, the distribution between the training and testing sets is roughly similar. The training set has a
higher distribution of two principal components than the testing set, which indicates the training set
can embrace the scope of the testing set. This may anticipate that the classification model trained on
the training set would have a promising generalization ability on the testing set.

Figure 3: Comparison of data distributions between the training and testing sets via PCA

3 Methods
3.1 LightGBM

LightGBM (Light Gradient Boosting Machine) is a powerful and efficient gradient-boosting
framework that has gained widespread popularity in machine learning and data science [30]. It was
developed by Microsoft and is an open-source project. LightGBM is designed to address some of
the limitations of traditional gradient boosting methods and is particularly well-suited for large-
scale, high-dimensional datasets. LightGBM builds on the fundamental concepts of gradient boosting,
which is an ensemble learning technique. The cores of the LightGBM model include [31]:

• Decision trees: LightGBM uses decision trees as the base learners. These trees are constructed
sequentially to improve predictive accuracy.

• Gradient Boosting: Gradient boosting involves optimizing a loss function by adding decision
trees in a way that minimizes the error. LightGBM uses gradient-based optimization techniques for
this purpose.
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• Leaf-Wise Growth: LightGBM employs a leaf-wise tree growth strategy, which differs from
traditional level-wise growth. This approach often leads to faster convergence and better results.

• Histogram-Based Learning: LightGBM employs histogram-based techniques to speed up the
training process. It discretizes continuous features into bins, which reduces memory usage and
improves training speed.

• Exclusive Feature Bundling: LightGBM uses a technique called exclusive feature bundling to
reduce the dimensionality of the data. This can lead to faster training and better performance on
sparse datasets.

The LightGBM model has several remarkable advantages. For example, it has fast computational
speed and efficiency, making it suitable for large datasets and real-time applications. LightGBM can
achieve competitive or superior predictive accuracy compared with other tree-based machine learning
algorithms. It also supports parallel and distributed computing, further enhancing its scalability.
LightGBM achieves algorithmic control via several primary hyperparameters shown below [32]:

• n_estimators: the number of boosting iterations or trees to build in the LightGBM model. It
controls the overall complexity and capacity of the model.

• learning_rate: the step size at which the gradient boosting algorithm adapts during training. It
scales the contribution of each tree to the final prediction.

• max_depth: the maximum depth or level that an individual tree can reach during training. It
controls the complexity of each tree.

• num_leaves: the maximum number of leaves (terminal nodes) in each tree. It controls the
granularity of the tree structure.

• colsample_bytree: the fraction of features (columns) to be randomly selected for building each
tree. It can be effective in reducing overfitting and improving generalization.

• min_child_samples: the minimum number of data points required in a leaf node. It can control
the depth of the trees and help prevent them from becoming too deep, which can lead to overfitting.

These hyperparameters play critical roles in controlling the behavior of the LightGBM model.
Tuning them correctly is essential for achieving good model performance, and the optimal values can
vary depending on the specific dataset and problem.

3.2 Optimization Algorithm
3.2.1 Coati Optimization Algorithm

The Coati Optimization Algorithm (COA), proposed in 2023, is a new bio-inspired metaheuristic
algorithm that is inspired by the natural behaviors of coatis [33]. COA mimics two natural behaviors
of coatis, which are the strategies of hunting iguanas and escaping from predators. The mathematical
model of COA is introduced as follows:

1) Initialization process

In the COA framework, each coati constitutes a candidate solution to the problem under
consideration. The COA’s initialization phase entails a random positioning of the coatis within the
search space, a process elucidated by Eq. (1).

xi,j = lj + r · (
uj − lj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , M (1)
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where xi,j represents the candidate member/solution, lj is the lower bound, uj is the upper bound, r is a
random value between 0 and 1, M is the dimension of the target problem.

2) Exploration phase: strategy of hunting iguanas

The exploration phase is to update the coati population within the search space, predicated upon
the emulation of their foraging strategy employed when pursuing iguanas. Within the framework of
COA, the algorithm stipulates that the optimal position within the population corresponds to the
position of the iguana. Furthermore, it is postulated that an equitable division of coatis entails half
of the population rising from the tree, while the remaining half remains positioned on the ground,
anticipating the iguana’s eventual descent.

Eq. (2) simulates the mathematical process of the coatis rising from the tree:

X P1
i : xP1

i,j = xi,j + r · (
Iguanaj − I · xi,j

)
, for i = 1, 2, . . . ,

N
2

, and j = 1, 2, . . . , M (2)

where X P1
i denotes the new position of the ith coati, xP1

i,j denotes the jth dimension of the X P1
i , Iguanaj

represents the position of the iguana in the search space, I is an integer that is randomly selected from
{1, 2}, �·� represents the greatest integer function.

When the iguana falls down a random place on the ground, the coatis instantly move in the search
space (i.e., the ground). This mathematical process is characterized by Eqs. (3) and (4).

IguanaG : IguanaG
j = lj + r · (

uj + lj

)
, j = 1, 2, .., M (3)

X P1
i : xP1

i,j =
{

xi,j + r · (
IguanaG

j − I · xi,j

)
, FIguanaG < Fi,

xi,j + r · (
xi,j − IguanaG

j

)
, else,

for (4)

i =
⌊

N
2

⌋
+ 1,

⌊
N
2

⌋
+ 2, . . . , N and j = 1, 2, . . . , M

where IguanaG denotes the iguana on the ground, IguanaG
j is the jth dimension of the IguanaG, FIguanaG

denotes the objective function value of the IguanaG, Fi denotes the objective function value of the xP1
i,j .

3) Exploitation phase: strategy of escaping from predators

The exploitation phase is to update the natural behavior of the coatis when encountering their
predators and escaping from them. When a coati encounters the predator, it will move to a safe position
that is close to its current position. Eqs. (5) and (6) simulate such a mathematical process.

llocal
j = lj

t
, ulocal

j = uj

t
, where t = 1, 2, .., T (5)

X P2
i : xP2

i,j = xi,j + (1 − 2r) · (
llocal
j + r · (

ulocal
j − llocal

j

))
, i = 1, 2, . . . , N, j = 1, 2, . . . , M (6)

where X P2
i is the new position of the ith coati in the exploitation phase, xP2

i,j represents the jth dimension
of the X P2

i , llocal
j and ulocal

j are the local lower bound and local upper bound, respectively, t is the current
iteration.

3.2.2 Pelican Optimization Algorithm

The Pelican Optimization Algorithm (POA), proposed in 2023, is a population-based metaheuris-
tic optimization algorithm inspired by the hunting behavior of pelicans [34]. The algorithm works by
simulating the steps of pelicans hunting for fish: 1) pelicans fly in a flock and search for fish; 2) when



CMES, 2024, vol.140, no.1 239

a pelican spots a fish, it dives down to catch it; 3) if the pelican is successful, it returns to the flock with
the fish; 4) if the pelican is unsuccessful, it returns to flock empty-handed. The mathematical steps of
the algorithm are as follows:

1) Initialize a population of solutions randomly

In the POA, each population member represents a potential candidate solution. Initially, popula-
tion members are randomly created in the solution domain according to the lower and upper bounds
of a particular problem.

xi,j = lj + rand · (
uj − lj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , M (7)

where xi,j represents the candidate member/solution, lj is the lower bound, uj is the upper bound, rand
denotes a random value between 0 and 1, N is the number of candidate members, M is the dimension
of the target problem. After initializing the pelican population, POA began to mimic the hunting
behaviors of pelicans: moving towards prey and winging on the water surface.

2) Exploration phase: moving towards prey

During the initial phase of the POA, pelicans scout for prey by surveying the search space and
subsequently advancing toward it. Notably, the prey’s position within the search space is randomly
generated, further augmenting the algorithm’s exploration potential. Eq. (8) is used to characterize
the abovementioned pelican’s strategy in moving the place of prey, as well as updating the positions of
the pelicans in the search space.

xP1
i,j =

{
xi,j + rand · (

pj − I · xi,j

)
, Fp < Fi

xi,j + rand · (
xi,j − pj

)
, else

(8)

where xP1
i,j represents the candidate member in the first phase (exploration phase), I is a value that

randomly equals 1 or 2 as the iteration of POA, pj is the location of the prey, and Fp is the objective
function value of the prey. Regarding the parameter I , it enables more displacement for a pelican
member when it is equal to 2, which enhances the exploration ability of the POA.

3) Exploitation phase: winging on the water surface

During the POA’s second phase, pelicans unfurl their wings atop the water’s surface as they begin
amassing their captured prey in their specialized throat pouch. Notably, pelicans extend their wings
on the water’s surface solely when they are close to their prey. This ensures that the pelicans are only
able to catch the fish that are in the immediate vicinity, which increases the efficiency of the algorithm.

The aforementioned strategy of the pelican strategy in catching prey is mathematically simulated
in Eq. (9), which is used to model the movement of the pelicans’ wings and the fish and to update the
positions of the pelicans in the search space.

xP2
i,j = xi.j + R ·

(
1 − t

T

)
· (2 · rand − 1) · xi,j (9)

where xP2
i,j represents the candidate member in the first phase (exploitation phase), R is a constant that

equals 0.2, t is the current iteration, and T is the maximum iteration. Here, R ·
(

1 − t
T

)
represents

the radius that the candidate member locally searches. It benefits to enhance the exploitation ability
of the POA.



240 CMES, 2024, vol.140, no.1

Once all population members have been revised according to the outcomes of the first and
second phases, the algorithm identifies the best candidate solution for the objective function values.
Subsequently, the algorithm advances to the next iteration, where it reiterates the procedures outlined
in Eq. (8) through Eq. (9). This iterative process persists until the predefined stopping criterion is
satisfied.

3.3 Research Step
This study aims to optimize the hyperparameters of the LightGBM model via two metaheuristic-

based optimization algorithms—COA and POA. Fig. 4 presents the methodology of this study, which
includes two parts: the preliminary phase and the training phase.

Figure 4: Flowchart of the methodology of this study

The preliminary phase includes:

• Data preparation: This process commences with rigorous data curation, involving outlier
identification and removal, ensuring the robustness of the dataset. The data are then randomly divided
into training (80%) and testing sets (20%), a split designed to balance between model training and
testing, as detailed in Section 2.

• Setting hyperparameters of the LightGBM model: Key hyperparameters such as n_estimators,
learning_rate, max_depth, and num_leaves are set to predefined values (500, 0.1, 4, and 3, respectively)
based on preliminary tests that indicate optimal model performance at these levels. For hyperparam-
eters such as colsample_bytree and min_child_samples, adjustable within the ranges of (0.2, 0.8) and
(1, 20), respectively, their optimization is based on the COA and POA algorithms.
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• Defining optimization algorithms (COA and POA): COA and POA are selected for their
efficiency and user-friendly attributes. In this study, they are configured with just two parameters—
population size and the number of iterations—to streamline the optimization process while maintain-
ing algorithm effectiveness.

• Determining the objective function: The objective function, crucial for guiding the optimization
algorithms, is delineated in Eqs. (10) and (11). It encapsulates the minimization problem central to
this study. Five-fold cross-validation on the training set is integrated into the model training process
to underpin the LightGBM model’s generalizability. The test set remains unseen by the LightGBM
throughout the entire process. The term ‘Accuracy’ denotes the predictive accuracy of the LightGBM
model; y′ denotes the number of correct predictions; y denotes the number of the entire predictions.

Accuracy = y′

y
(10)

Objective function = 1 − 1
5

∑5

i=1
Accuracyi (11)

The training phase includes:

• Initializing optimization algorithms: The COA and POA are initialized with different population
sizes (20, 40, and 60) to explore the impact of this parameter on optimization efficacy. The number
of iterations for both algorithms is uniformly set to 100, balancing thorough exploration with
computational efficiency.

• Training the model: The model training involves iterative calculations and updates of the
objective function, alongside refining local and global optimal solutions. This dynamic approach
allowed for continuous improvement in the hyperparameter values throughout the optimization
process.

• Check-stopping criterion: The optimization is configured to terminate upon reaching the
maximum iteration count of 100. This criterion was chosen to ensure a thorough search of the
hyperparameter space without excessive computational demand.

• Extracting results: The best values for colsample_bytree and min_child_samples are extracted.
Additionally, objective function values, running times, and diversity metrics of the algorithms are
recorded, providing a comprehensive overview of the optimization process’ effectiveness and efficiency.

All the aforementioned models or algorithms are designed and implemented based on Python
programming.

4 Results and Discussion

This section aims to evaluate and select the best predictive model for estimating the intensity of the
rock burst. First, the modeling process is discussed in detail, including the training and evolution of
the algorithms: COA and POA. Then, the optimal hyperparameters of the LightGBM are determined.
Lastly, the predominant factors affecting the intensity of the rock burst are identified.

4.1 Analysis of the Optimization Process
As mentioned previously, two optimization algorithms (COA and POA) are used to determine the

optimal hyperparameters of the LightGBM model. For each algorithm, this study sets its population
size as 20, 40, and 60, aiming at encouraging more exploration of the search space by maintaining
diverse solutions. Fig. 5 shows the running time of two optimization algorithms with different
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population sizes. ‘POA-20’ spends the minimal running time, followed by ‘COA-20’. ‘COA-60’ spends
the maximal running time due to its large population size. Overall, a consensus is that the larger the
population size, the more time-consuming the calculation will be.

Figure 5: Running time of the model training

Fig. 6 shows the population diversity of two optimization algorithms with different population
sizes. Intuitively, as the optimization algorithm progresses through iterations, there is a noticeable
reduction in the diversity of the population. This decrease in diversity is often a sign that the algorithm
is converging toward a specific region of the solution space [35]. Overall, the populations of all trials
are becoming homogeneous and concentrating on a particular solution during the entire iteration. We
also find that COA has a higher diversity than POA for each population size when the iteration is after
60.

Figure 6: Evolution of the population diversity

Fig. 7 shows the exploitation and exploration rates of two optimization algorithms with different
population sizes. The exploitation rate represents the emphasis placed on refining and intensifying the
current solutions within the search space. High exploitation rates tend to lead the algorithm towards
local optima. The exploration rate indicates the degree to which the algorithm is willing to explore
new and unexplored regions of the search space. A high exploration rate implies that the algorithm is
more exploratory, actively searching diverse areas of the solution space [36]. Overall, all trials show
outstanding results in the evolution of the exploitation and exploration rates. This proves that the COA
and POA have excellent abilities to accomplish local and global searching.
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Figure 7: Evolution of the exploitation and exploration rates

Fig. 8 shows the iteration process of these two algorithms. We find that all models converged
to final values until the 40th iteration. The iterations of all trials exhibit the trend of a steep slope,
indicating that they fast converged to the final solution. Table 4 shows the obtained hyperparameters
of the LightGBM model optimized by various algorithms. Since ‘COA-60’ has the minimal objective
function value, it is thereby regarded as the optimal hyperparameter for the LightGBM model. The
LightGBM model will be built based on these two optimal hyperparameters. Fig. 9 presents the
position of each solution in the search space. We find that the hyperparameter min_child_samples
shows a more significant role in controlling the performance of the LightGBM model. This is because
the performance of the LightGBM has no apparent changes when the min_child_samples is equal to
17, even though the colsample_bytree changes between 0.2 and 0.35.

Figure 8: Iteration process of two optimization algorithms

Table 4: Hyperparameters captured by two optimization algorithms

Population ‘colsample_bytree’ ‘min_child_samples’ Objective function value

COA-20 0.31 17 0.3937
COA-40 0.25 17 0.3937

(Continued)
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Table 4 (continued)

Population ‘colsample_bytree’ ‘min_child_samples’ Objective function value

COA-60 0.30 17 0.3737
POA-20 0.35 17 0.3770
POA-40 0.23 17 0.3870
POA-60 0.22 17 0.3837

Figure 9: Solutions in the search space

4.2 Model Performance Evaluation
After obtaining the optimal hyperparameters of the LightGBM model, a crucial work is to

examine its accuracy and performance. This study utilizes several common metrics to evaluate the
model’s performance, which are accuracy, precision, recall, and F1 score [37]. The mathematical
models of these metrics are shown as follows:

Accuracy = y′

y
(12)

Precision = TP
TP + FP

(13)

Recall = TP
TP + FN

(14)

F1 = 2 × Precision × Recall
Precision + Recall

(15)

where true positives (TP) represent instances where the model correctly identifies a positive outcome,
false positives (FP) occur when the model incorrectly identifies a positive outcome that is not present,
true negatives (TN) represent instances where the model correctly identifies a negative outcome, and
false negatives (FN) occur when the system fails to detect a true positive outcome. These four metrics
play pivotal roles in evaluating the precision, recall, F1 score, and overall accuracy of classification
models.
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Tables 5 and 6 list the predictive performance of the LightGBM model on the training and testing
sets, respectively. We find that the LightGBM model has an overall accuracy of 0.972 and 0.944 on the
training and testing sets, respectively. Its performance on each subclass—the independent intensity of
rock burst—is also promising. Additionally, we also find that the LightGBM model can exhaustively
correctly predict the ‘None’ and ‘Strong’ intensities of rock burst on the testing set. This proves that
the built LightGBM model with good predictive ability consistently achieves a high level of accuracy
when tested on new, unseen data.

Table 5: Performance of the LightGBM model on the training set

Rock burst intensity Precision Recall F1 score Overall accuracy

None 0.976 1.000 0.988 0.972

Light 0.986 0.958 0.972
Moderate 0.962 0.962 0.962
Strong 0.958 1.000 0.979

Averaged 0.970 0.980 0.975

Table 6: Performance of the LightGBM model on the testing set

Rock burst intensity Precision Recall F1 score Overall accuracy

None 1.000 1.000 1.000 0.944

Light 0.909 0.952 0.930
Moderate 0.950 0.905 0.927
Strong 1.000 1.000 1.000

Averaged 0.965 0.964 0.964

To further assess the effectiveness of the LightGBM model, this study compared it with previously
published works. For example, Liang et al. used 93 microseismic data, which are related to short-term
rock bursts, to train a LightGBM model [17]. However, the prediction accuracy of their LightGBM
model is unsatisfactory, with an accuracy of only 0.667. Qiu et al. also used 91 microseismic data to
develop a hybrid LightGBM model that combined with the Lévy Flight-Jaya optimization algorithm
[11]. The prediction accuracy of their hybrid LightGBM model is 0.821. Another study, conducted by
Li et al. [15], used the rock properties data to train a LightGBM model to predict rock bursts, resulting
in an accuracy of 0.853.

Overall, the developed LightGBM models in previous works did not achieve a high accuracy in
rock burst prediction. In contrast, our study introduces a more accurate LightGBM model, achieving
training and testing accuracies of 0.972 and 0.944, respectively. Therefore, we conclude that our model
demonstrates superior performance and reliability in predicting rock bursts when compared to existing
models.

4.3 Model Verification
In this section, 12 sets of in-situ rock burst data, collected from two gold mines in China [38],

are used to verify the generalization ability of the developed LightGBM model. These data were
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obtained from rock mechanics tests and field investigations. Among them, 7 sets of data were taken
from Xincheng Gold Mine and 5 sets of data were taken from Sanshadao Gold Mine. Table 7 presents
the rock properties and corresponding rock burst intensities. Seven variables, which are σ θ , σ c, σ t,
Wet, SCF , B1, and B2, are deemed as inputs of the LightGBM model, so the predicted rock burst
intensities can be obtained accordingly. Fig. 10 illustrates the actual and predicted intensities of the
rock burst. Intuitively, the LightGBM model can successfully predict most rock burst intensities,
which demonstrates its good generalization ability on unseen data. It yields a prediction accuracy
of 0.857 on Xincheng Gold Mine and 1.000 on Sanshadao Gold Mine, while its overall accuracy is
0.917. Consequently, this finding implies that the developed LightGBM model would have a promising
perspective in the application in practical scenarios.

Figure 10: Actual and predicted intensities of rock burst

Table 7: 12 sets of in-situ rock burst samples

Engineering σ θ σ c σ t Wet SCF B1 B2 Rock burst
level

Xincheng
Gold Mine

87.60 139.07 10.63 5.56 0.63 13.08 0.86 Strong
108.31 149.99 11.97 6.88 0.72 12.53 0.85 Strong
89.46 155.45 12.05 3.98 0.58 12.90 0.86 Strong
100.00 137.52 13.73 5.27 0.73 10.01 0.82 Strong
107.25 182.67 12.11 5.48 0.59 15.08 0.88 Strong
107.87 140.38 12.06 8.50 0.77 11.64 0.84 Strong
109.57 174.34 12.07 7.69 0.63 14.44 0.87 Strong

Sanshadao
Gold Mine

94.64 160.94 9.74 4.94 0.59 16.52 0.89 Moderate
32.45 138.25 9.04 3.73 0.23 15.29 0.88 Light
23.13 146.29 19.60 6.45 0.16 7.46 0.76 None
34.12 154.28 13.98 4.61 0.22 11.04 0.83 Light
34.07 128.5 11.71 1.92 0.27 10.97 0.83 None

4.4 Model Interpretation
After successfully building the high-accuracy LightGBM model, it is crucial to interpret the model

to understand the predominant factors that influence the occurrence of the rock burst. Considering
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the property of the LightGBM model, the importance of an individual feature can be extracted by
counting the number of times that a feature is used in a model. In a nutshell, the more frequently
the feature is used to split trees, the greater its significance is demonstrated [30]. Fig. 11 presents the
importance of each feature/factor in predicting the intensity of the rock burst. Three predominant
factors, namely uniaxial compressive strength (σ c), stress concentration factor (SCF), and elastic strain
energy index (W et), have importance coefficients of 0.209, 0.192, and 0.176, respectively. The result of
this study is consistent with some published articles. For example, Zhou et al. developed a random
forest (RF) model to address the classification problem of the rock burst. The results indicate that W et

and SCF are the most sensitive factors affecting the occurrence of rock bursts [14]. Qiu et al. designed
a hybrid extreme gradient boosting (XGBoost) model to predict short-term rock burst damage. They
identify that SCF is one of the most significant factors contributing to rock burst prediction [39].
Wu et al. proposed a least squares support vector machine model to predict the probability of rock
bursts. They used the Sobol index to implement factor sensitivity analysis and found that W et is one
of the most sensitive factors for predicting rock burst levels [21].

Figure 11: Feature importance in predicting the intensity of rock burst

Considering the significance of the aforementioned factors, our subsequent objective is to
ascertain the distinct impact of these three factors in predicting the intensity of rock bursts. A partial
dependence plot (PDP) is used to accomplish this objective. PDP is a powerful tool in the field of
machine learning and predictive modeling, playing a crucial role in understanding and interpreting
complex predictive models. It provides a comprehensive visual representation of how a specific feature
or factor influences the predictions while keeping all other variables constant. Essentially, it allows
one to grasp the isolated impact of one or more features on the model’s output, helping uncover
relationships, patterns, and dependencies that might not be immediately apparent [40,41]. The steps
for drawing PDPs are outlined below:

1. Initially, the training set is prepared, and the established LightGBM model is fit on it.

2. Factors such as σ c, SCF , and W et are selected to generate PDPs because they were previously
identified as predominant factors affecting the rock burst prediction.

3. For each selected factor, we systematically varied its value across its range while keeping
all other factors constant. The LightGBM model then predicts the outcome of rock burst
intensities for each of these modified instances, which forms the basis for the PDPs.

4. The changes in the predicted outcome as a function of the varied factors are plotted, resulting
in the PDPs. These plots visually represent how the predicted outcome is affected by changes
in the factor’s values, while other factors are averaged out.
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Fig. 12 illustrates the impact of uniaxial compressive strength (σ c) in predicting the intensity of the
rock burst. The vertical axis represents the probability of a rock burst occurring at a certain intensity.
In a nutshell, the intensity with the highest probability will ultimately determine the predicted class—
None, Light, Moderate, or Strong. Based on this, we find that the factor σ c has a significant impact
on ‘None’ and ‘Light’ intensities of rock bursts, because of the high probabilities of these two classes.
When the value of σ c is greater than 20 MPa but less than 96 MPa, the rock is at light risk of rock. When
the value of σ c is greater than 96 MPa but less than 220 MPa, the rock is at no risk of rock bursts—for
the majority of cases. Additionally, we also find that there is no risk of occurring moderate and strong
intensities of rock bursts as the σ c increases from 20 to 220 MPa.

Figure 12: Impact of σ c in predicting the intensity of rock bursts

Overall, there is a strong correlation between σ c and rock burst potential. Rocks with lower
uniaxial compressive strength are more likely to experience rock bursts. This is because a lower σ c can
make the rock more susceptible to fracturing and ultimately increase the risk of a rock burst happening.

Fig. 13 illustrates the impact of the stress concentration factor (SCF) in predicting the intensity of
the rock bursts. The factor SCF has a significant impact on ‘None’, ‘Light’, and ‘Moderate’ intensities
of rock burst. When the value of SCF is greater than 0.10 but less than 0.12, the rock is at moderate
risk of rock burst; when the value of SCF is greater than 0.12 but less than 0.31, the rock is at
none risk of rock burst; when the value of SCF is greater than 0.31 but less than 0.40, the rock is
at light risk of rock burst; when the value of SCF is greater than 0.40 but less than 0.46, the rock is
at none risk of rock burst; when the value of SCF is greater than 0.46 but less than 0.71, the rock
is at light risk of rock burst; when the value of SCF is greater than 0.71 but less than 1.10, the rock is
at none risk of rock burst. Additionally, we also find that there is no risk of forming rock bursts with
strong intensity as the SCF changes from 0.10 to 1.10.

Overall, the relation between SCF and the risk of rock burst in this study is complex. SCF is a
dimensionless quantity that describes how much the stress at a particular point is concentrated relative
to the nominal stress. It is defined as the ratio of the maximum stress at a point to the nominal stress.
The above analysis unveils that a lower SCF may induce a moderate risk of rock burst, while a higher
SCF can eliminate the risk of rock burst, which is based on the data of this study.

Fig. 14 illustrates the impact of the elastic strain energy index (W et) in predicting the intensity of
rock burst. The factor W et has a significant impact on ‘None’, ‘Light’, and ‘Moderate’ intensities of
rock burst. When the value of W et is greater than 0.81 but less than 1.73, the rock is at moderate risk
of rock burst; when the value of W et is greater than 1.73 but less than 3.60, the rock is at none risk of
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rock burst; when the value of W et is greater than 3.60 but less than 10.0, the rock is at light risk of rock
burst. Additionally, we also find that there is no risk of occurring rock bursts with strong intensity as
the W et changes from 0.81 to 10.0.

Figure 13: Impact of SCF in predicting the intensity of rock bursts

Figure 14: Impact of W et in predicting the intensity of rock burst

Overall, the risk of a rock burst is sensitive to the change of W et as a lower or a higher W et can
induce the occurrence of a rock burst. The W et refers to the energy stored within a material when
it undergoes deformation under elastic conditions. In the context of rocks, it’s related to the energy
accumulated as a result of the deformation of rock masses due to stress, which can occur over a long
period. High W et values may indicate that the rock mass has undergone significant deformation, and
it could be at a higher risk of experiencing a rock burst.

5 Limitations and Outlook

Although this study develops a high-accuracy LightGBM model to predict the intensity of rock
bursts, some limitations should be highlighted here. The first one is that the used dataset only includes
a few factors of rock mechanical properties. Other factors such as the rock integrity coefficient and
geometric size of the excavation profile are also essential for identifying the intensity of the rock burst.
On the other hand, most rock burst cases in this study were collected from China, which may render
the established model prone to site-specific biases. Thus, incorporating additional rock burst scenarios,
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such as from regions like Poland, would enrich the diversity and representativeness of the current
dataset.

Moreover, the size of the dataset is limited, only 268 samples were used to build the LightGBM
model. Based on these, future research avenues can focus on collecting new data that comprises more
factors influencing the intensity of rock bursts. Likewise, some data augmentation techniques, such
as generative adversarial network [42,43], variational autoencoder [44,45], and diffusion probabilistic
model [46], can also be applied to increase the size of the raw dataset.

6 Conclusions

This study designs a tree-based LightGBM that is optimized by two population-based algorithms:
the coati optimization algorithm (COA) and the pelican optimization algorithm (POA). A dataset
including 268 rock burst scenarios is used to build the LightGBM model. 80% of the entire dataset is
used to train the LighGBM model, while the rest 20% is used to evaluate the model’s performance.
Lastly, the partial dependence plot (PDP) is used to identify the importance of factors in predicting
the intensity of rock bursts. The main conclusions can be drawn as follows:

(1) The optimization algorithms, i.e., COA and POA, evolve with excellent and ideal running time,
diversities, and exploitation and exploration rates. The ‘COA-60’ captured the optimal hyperparame-
ters of the LighGBM model, which are 0.3 and 17 for the colsample_bytree and min_child_samplesi,
respectively.

(2) The LightGBM model yielded good performance in predicting the intensity of rock bursts. Its
predictive accuracy on the training set is 0.972 and on the testing set is 0.944.

(3) The sensitivity analysis unveiled that the risk of rock burst is sensitive to three factors: uniaxial
compressive strength (σ c), stress concentration factor (SCF), and elastic strain energy index (W et).
Moreover, this study discussed the particular impact of each factor on the risk of rock bursts, which
helps identify the risk of rock bursts in real-world underground engineering.
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