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ABSTRACT

Research on Chinese Sign Language (CSL) provides convenience and support for individuals with hearing
impairments to communicate and integrate into society. This article reviews the relevant literature on Chinese Sign
Language Recognition (CSLR) in the past 20 years. Hidden Markov Models (HMM), Support Vector Machines
(SVM), and Dynamic Time Warping (DTW) were found to be the most commonly employed technologies
among traditional identification methods. Benefiting from the rapid development of computer vision and artificial
intelligence technology, Convolutional Neural Networks (CNN), 3D-CNN, YOLO, Capsule Network (CapsNet)
and various deep neural networks have sprung up. Deep Neural Networks (DNNs) and their derived models are
integral to modern artificial intelligence recognition methods. In addition, technologies that were widely used in the
early days have also been integrated and applied to specific hybrid models and customized identification methods.
Sign language data collection includes acquiring data from data gloves, data sensors (such as Kinect, Leap Motion,
etc.), and high-definition photography. Meanwhile, facial expression recognition, complex background processing,
and 3D sign language recognition have also attracted research interests among scholars. Due to the uniqueness
and complexity of Chinese sign language, accuracy, robustness, real-time performance, and user independence are
significant challenges for future sign language recognition research. Additionally, suitable datasets and evaluation
criteria are also worth pursuing.

KEYWORDS
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1 Introduction

Chinese Sign Language is a particular expression that has its own characteristics, cultural
significance, and aesthetic value. On the one hand, this expression combines the pronunciation and
meaning of Chinese to teach and express. On the other hand, it expresses the meaning of Chinese in
the form of gestures, uses hand movements to publicize Chinese characteristics, and expresses cultural
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aesthetics. Although the meticulous characters of Chinese have influenced the development of Chinese
Sign Language, it still has its own characteristics and culture. It expresses the meaning of Chinese
through quick gestures, forming an interesting way of expression. Hand movements can replace the
writing of Chinese characters and are faster and more attention-grabbing. Though the expression of
sign language cannot completely replace Chinese characters, it provides an effective oral expression
in contemporary society and helps those who cannot read and write Chinese characters pass on their
cultural knowledge orally. In addition, Chinese Sign Language has its own cultural references and
aesthetics in the field of cognitive language, and it is widely employed in daily life. For example, in TV,
movies, songs, music, and dramas, Chinese sign language is frequently applied to enhance the literary
effect and increase the sense of art. In public places, it is sometimes seen that sign language helps deaf
people communicate.

As a minority language, Chinese Sign Language has a long history. At present, the number of
hearing-impaired people in China is close to 30 million, which is the largest number of disabled groups
in China. Sign language is the main modus of communication for the hearing impaired. Barrier-free
communication is a significant way for the majority of hearing-impaired people to break the island
of limited information and carry out equal social communication. The main requirement for realizing
barrier-free communication for the hearing-impaired is that the hearing person can understand the
sign language expression of the hearing-impaired person. It is against this background that more and
more scientists and scholars have begun to pay attention to Chinese Sign Language and study it and
its various recognition technologies. The classification of Chinese Sign Language Recognition can be
referred to as Fig. 1. In the past two decades, Chinese Sign Language Recognition technology has
made rapid progress. More and more researchers have been focusing their research on Chinese Sign
Language Recognition technology and developed technologies such as hand movement recognition,
tone recognition, dynamic recognition, semantic recognition, etc. Additionally, in recent years, Chinese
scholars have also begun to focus on intelligent speech synthesis and natural language processing
technology and developed a series of Chinese Sign Language Recognition systems to improve the
lives of the hearing-impaired. With the development of artificial intelligence technology, especially
the progress of computer vision and natural language processing research, it is possible to realize this
requirement. The study of sign language recognition and translation is a specific research task to realize
the above needs.

Figure 1: Classification of Chinese Sign Language Recognition
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2 Literature Review

Sign language recognition can be defined as the process of describing and interpreting sequences
of gestures using algorithms and technology to convert them into text or speech. The goal of sign
language recognition is to translate sign language videos into corresponding sign language annotations
automatically. Chinese Sign Language Recognition (CSLR) technology has gone through the process
of going from traditional methods to modern deep learning. Below, we will look back at this procedure
by conducting a literature review of the past 20 years.

In the first ten years, the focus of Chinese Sign Language Recognition was on sensor-based
applications and systems. The mainstream technologies used in traditional classification methods were
Hidden Markov Models (HMM) and Support Vector Machines (SVM). In comparison, the cost of
recognition at this stage is relatively high, while the accuracy of recognition is relatively low. In the
past ten years, there has been a proliferation of high-tech and new technologies for sign language
recognition. Some representative research papers are presented below.

Yang et al. [1] proposed a gesture recognition method based on gesture principal direction and
class-Hausdorff distance template matching. Firstly, the segmented gesture image was standardized,
and the main direction of the gesture in the standardized image was obtained. Then, a two-dimensional
gesture Cartesian coordinate system was established according to the main direction of the gesture to
extract spatial gesture features. Then, the spatial gesture coordinate point distribution feature method
was used to conduct preliminary recognition of gestures. Finally, the final gesture was recognized
by using the idea of class-Hausdorff distance template matching. The experimental results showed
that, under the condition of relatively stable illumination, the method could accurately realize gesture
recognition in real-time, and the overall recognition rate reached 95%; the recognition rate for gestures
with rotation could exceed 90%. A method for continuous sign language recognition based on the
second-order Hidden Markov Model (HMM2) was proposed by Mei et al. [2]. In this method, the
sliding window algorithm was used to divide the sign language video into multiple short sign language
videos, and the feature vectors of the short sign language video and the sign language vocabulary
video were obtained through a three-dimensional convolution model. By calculating the relevant
parameters of the second-order hidden Markov model, they employed the Viterbi algorithm to realize
the recognition of continuous sign language. Experiments proved that sign language recognition based
on the second-order hidden Markov model achieved a recognition accuracy rate of 88.6%, which was
higher than the traditional first-order hidden Markov model. Li et al. [3] combined the gray-level co-
occurrence matrix and other multi-features to recognize CSL. SVM with a linear kernel function was
employed for classification. The experiment was conducted on 30 groups of alphabet images of CSL
and achieved 93.09% average accuracy. Zhang et al. [4] proposed a novel system with the dynamic time
warping (DTW) algorithm for continuous sign language recognition. The system was evaluated with
180 sentences obtained from Kinect. The results indicated the effectiveness of the approach.

Yang et al. [5] proposed an attention-based continuous sign language recognition algorithm called
ACN (Attention-based 3D convolutional neural network), which could recognize continuous sign
language even in complex backgrounds. The algorithm used the background removal module to
preprocess sign language videos containing complex backgrounds. Then, it extracted spatiotemporal
fusion information using a 3D-ResNet that incorporates a spatial attention mechanism. Finally, a
Long Short-Term Memory (LSTM) network was integrated to perform sequence learning and obtain
recognition results. The algorithm achieved excellent performance on the CSL100 dataset. In the case
of different complex backgrounds, the algorithm showed good generalization performance, and the
spatiotemporal attention mechanism introduced by the model proved to be effective. Zhang et al. [6]
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integrated the algorithm in OpenCV to propose a gesture recognition system using YOLO V3, which
greatly improved the accuracy of recognition, ran fast, and was suitable for different scenarios.
Experimental results showed that the system’s gesture recognition accuracy was around 90%. It
could complete barrier-free communication with deaf-mute people, the production cost was low, and
the model was easy to transplant, which was suitable for popularization. Xie et al. [7] proposed a
new model architecture, PiSLTRc, which was a position-informed sign language transformer with
content-aware convolutions. Compared with the ordinary Transformer model, the model achieved
superior performance on three large-scale sign language benchmarks. Jiang et al. [8] proposed an
end-to-end continuous sign language recognition method based on Transformer, which achieved an
accuracy of 96.30% on the CSL data set. A multimodal fusion framework (SeeSign) was proposed by
Zhang et al. [9], in which multimodal features were input to a network based on Transformer. This
model obtained an accuracy of 93.17%, 81.66%, and 77.92% on isolated words, one-handed and two-
handed SL data sets, respectively.

3 Traditional SLR Modus and Approaches

Traditional sign language recognition can be roughly divided into the following four stages:
obtaining gesture samples, preprocessing images (including segmentation and detection), feature
extraction, and classification recognition. There are different approaches and technologies at each
stage, which constitute different sign language recognition models and systems.

3.1 Data Collection
In the early stage of sign language data collection, hand modeling devices such as data gloves

were employed to collect data. The hand shape, movement trajectory, and three-dimensional space
position of the sign language demonstrator describe the process of sign language movement change.
In the research of sign language recognition and translation based on visual features, the color image
of the sign language demonstrator is obtained by the camera and processed accordingly, which is used
as the input data for the simulation of sign language recognition. In addition, some other modal sign
language information is also concerned [10], such as a somatosensory camera, to obtain visual image
information, depth information, and skeleton information at the same time. In general, compared with
non-vision-based acquisition methods, vision-based acquisition methods have the advantages of low
cost, convenient acquisition, and low equipment dependence. Still, at the same time, they are more
challenging in feature processing and algorithm modeling.

Sign language data sets can be roughly divided into isolated word sign language data sets and
continuous sign language data sets. With the continuous development of sign language research
techniques, the need for large-scale, multilingual sign language data sets is also increasing. At present,
sign language research has involved the sign languages of Germany [11], China [12], the United States
[13], Poland [14], Arabia [15], Italy [16], South Korea [17], Argentina [18] and nearly 30 other countries.

The list of sign language datasets from major countries is shown in Table 1. Among them, the
USTC-CCSL dataset is currently the most widely used Chinese sign language dataset, which contains
about 25,000 labeled sign languages demonstrated by 50 sign language demonstrators. The data set
adopts a Kinect camera to collect data, which can provide RGB visual information, depth information,
and skeleton information.
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Table 1: List of sign language datasets

Dataset Country Number of
samples

Data characteristics Data type Availability

RWTH-PHOENIX-
Weather

Germany 45760 RGB Sentence Public

ChaLearn America 50000 RGB/Deep Word Partially
public

DGS Kinect 40 Germany 3000 Multiple points of
view

Isolated words

CSL China 25000 Deep/Skeleton/RGB Isolated Word/
Sentence

Public

SIGNUM Germany 33210 RGB Sentence Public
GSL 20 Greece 840 RGB Word
Boston ASLLVD America 9800 RGB Word Public
PSL Kinect 30 Poland 300 RGB/Deep Word Public
LSA64 Argentina 3200 RGB Word Public
DEVISGN-G China 432 RGB Word
DEVISGN-D 6000
DEVISGN-L 24000
CUNY ASL America RGB Sentence
Signs World Atlas Arab RGB Word Public
ASL Fingerspelling America 131000 RGB/Deep Word Public

3.2 Pre-Processing
In image segmentation and image recognition data processing, it is usually necessary to preprocess

the dataset image before training the model. The advantage of this is to avoid the influence of
solid interference factors, such as noise in the image, on the final training results, accuracy, and
processing time. Grayscale conversion, smooth filtering, normalization, noise reduction, and various
morphological transformations are commonly utilized in image preprocessing. In the study of sign
language recognition, the input image size is usually adjusted, the resolution is reduced, and the feature
regions are extracted before and after segmentation to reduce the computational load and improve the
computational efficiency.

3.3 Detection and Segmentation
Sign language detection aims to detect hand information in images and position information in

space. Segmentation is to divide the sign language image into regions of interest and other regions and
separate the regions of interest from the image. There are typically two types of segmentation methods,
namely context-dependent and context-independent. Context-sensitive segmentation considers the
spatial relationship between features, such as edge detection technology. Context-free does not
consider spatial relations but groups pixels based on global attributes. The rise of deep learning
brings new opportunities to sign language segmentation. After massive data training, the model
completes the corresponding sign language segmentation, making the segmentation more convenient
and having good application prospects in sign language segmentation. However, there are also some
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shortcomings. Some networks have complex hierarchical structures, slow segmentation speed, fuzzy
edge information, and edge detection accuracy needs to be improved.

3.4 Feature Extraction
It is called feature extraction to transform the interested part of the input data into a feature set.

After the hand segmentation and tracking, the feature information in the image needs to be extracted.
Features include not only temporal information but also spatial information. The features in dynamic
sign language recognition can be divided into local features, global features, and fusion features. Local
feature mainly extracts local feature points with obvious changes in image sequence, mainly including
corners, interest points, etc., to find corresponding points and regions in the image. Global features
extract features based on depth images, including texture, shape, etc., to obtain the representation
information of images. Fusion features mainly include global features and local features.

3.4.1 Gray Level Co-Occurrence Matrix

Repeated changes in grayscale distribution in spatial position form the texture. Therefore, there
must be some grayscale relationship between any two pixels in the image space, which is known
as grayscale spatial correlation. The gray level co-occurrence matrix (GLCM) is a method used to
describe texture by analyzing the spatial correlation characteristics of gray levels. This method was
first introduced by Haralick et al. [19] in 1973. The gray-level co-occurrence matrix processing of sign
language images is shown in Fig. 2.

Figure 2: Gray-level co-occurrence matrix processing of sign language images

3.4.2 Histogram of Oriented Gradients

Oriented gradient histogram (HOG) is a feature description method widely used in computer
vision and image processing [20]. Including object orientation, HOG is invariant for geometric and
photometric conversion. HOG is particularly suitable for human body detection in images. As shown
in Fig. 3, the main flow of HOG algorithm implementation was provided. Mahmud et al. [21]
employed HOG to feature extraction and utilized k-Nearest Neighbor (KNN) to classify American
sign language. This method provides superior accuracy (94.23%) to the compared approach (86%).

3.4.3 Wavelet Entropy

The energy distribution of wavelet packet coefficients can be employed to analyze the character-
istics of EMG (electromyogram) signals, combining information entropy to analyze their uncertainty
and complexity [22]. According to the EMG wavelet packet transform, the wavelet packet coeffi-
cient matrix can be extracted, and wavelet packet entropy can be calculated. Then, an eigenvector
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constructed with EMG signal wavelet packet entropy can be adopted to classify the hand actions.
Wavelet packet function has the characteristic of frequency domain localization, which can provide
the function’s orthogonality and each function’s orthogonality based on time axis translation. Wavelet
packet decomposition is a natural extension of wavelet transform. It can decompose the signal into
a subspace of equal bandwidth in a binary tree way. When the signal is decomposed into N layers,
the whole signal space is decomposed into 2N subspace. The signal of the n-TH subspace can be
reconstructed. In Fig. 4, a process of 2-level two-dimensional discrete wavelet transform was provided.

Figure 3: Main flow of HOG algorithm implementation

Figure 4: A process of 2-level two-dimension discrete wavelet transform
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The energy distribution probability is also called relative wavelet packet energy. It reflects the
distribution of the signal in various frequency bands. In information theory, entropy provides a
measure of the amount of information contained in various probability distributions.

Wavelet entropy (WE) can quantitatively measure the order and disorder of information dis-
tribution and reflect some useful information qualitatively. If the energy of the EMG signal is all
concentrated in a sub-band, then WE = 0 indicates that the EMG is ordered. On the other hand,
if the energy is randomly distributed among the sub-bands, WE is large, which is a sign of disorder.
Zhu et al. [23] proposed a WE-RBF method for Chinese fingerspelling identification and achieved an
overall accuracy of 88.76%.

3.4.4 Principal Component Analysis

Principal component analysis (PCA) is also known as the Karhunen-Loeve Transform, and its
transformation essence is a method to approximate a vector or image by using a low-dimensional
subspace [24]. This method usually uses the minimum mean square error criterion (MSE) to obtain the
optimal subspace. Its advantage is that it can effectively reduce the dimension of the original feature
vector on the basis of fully retaining useful information, so it has been widely used in the field of
biometric recognition technology [25]. Gweth et al. [26] combined PCA and neural network features
to construct an automatic SLR system. They improved the word error rate of the best-published results
on the SIGNUM database by more than 6%.

3.4.5 Other Feature Extraction Approaches

The following feature extraction methods are often mentioned. For instance, Scale Invariant
Feature Transform (SIFT) [27–29] can always be employed to extract the features of the sign language
image as the sign language visual vocabulary in the image. In addition, Hu moment invariant (HMI)
[30], Fourier descriptors (FD) [31,32], Speeded Up Robust Features (SURF) [33], and Latent Dirichlet
Allocation (LDA) [34], etc., also appear frequently in some papers.

3.5 Classification
For a long time in the past, researchers have been trying to achieve effective sign language

recognition through traditional machine learning methods, which integrate functional modules such
as “body detection, body tracking, feature extraction, classifier”. In theory, sign language recognition
uses data to train a model so that input information can be processed by detection, tracking, and
feature extraction modules to obtain features representing sign language differences, and then these
extracted features are connected to a classifier. In order to obtain specific features from the data to
explain the meaning of sign language, most research methods rely on manual definition and feature
selection. In terms of classifiers, the following models are commonly employed in machine learning
models.

3.5.1 Hidden Markov Model

The hidden Markov model can be regarded as a concrete example of a state space model in which
potential variables are discrete. However, if we look at a single time slice of the model, we see that it
corresponds to a mixed probability distribution, and the corresponding component density is p(r|z).
Therefore, it can also be expressed as a generalization of the mixed probability model, in which the
mixing coefficient of each observation is not selected independently but depends on the selection of the
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component of the previous observation. HMM is widely used in speech recognition, natural language
modeling, online handwriting recognition, and analysis of biological sequences [35].

As in the case of the standard mixed model, the potential variable is the discrete variable zn subject
to polynomial distribution, which describes the mixed component used to generate corresponding
observations n. As before, it is convenient to use the 1-of-K representation method. We now let the
probability distribution of zn depend on the previous potential variable zn−1 through the conditional
probability distribution p(zn, k = 1|zn−1, j = 1). Since the potential variable is a K-dimensional binary
variable, the conditional probability distribution corresponds to a table composed of numbers recorded
as A, and its elements are called transition probabilities. The element is Ajk, equaling to p(zn, k =
1|zn−1, j = 1). Because they are probability values, they satisfy 0 ≤ Ajk ≤ 1 and

∑
k Ajk = 1, so matrix

A has K(K−1) independent parameters. In this way, we can explicitly write the conditional probability
distribution as

p(zn−1|zn, A) =
∏k

k=1

∏k

j=1
A

zn−1, jznk
jk (1)

The initial potential node z1 is very special because it has no parent node, so its edge probability
distribution p(z1) is represented by a probability vector π, and the element is πk equal to p(z1k = 1),
that is

p(z1|π) =
∏k

k=1
π

z1k
k (2)

where
∑

k πk = 1.

A probability model can be determined by defining the conditional probability distribution
p(xn|Zn,∅) of the observation variable, where ∅ is the parameter set that controls the probability
distribution. These conditional probabilities are called emission probabilities. They can be Gaussian
distributions or conditional probability tables. For a given value of ∅, the probability distribution
p(xn|zn) is composed of a K-dimensional vector, corresponding to K possible states of the binary vector
zn. We can express the launch probability as

p(xn|Zn,∅) =
∏k

k=1
p(xn|∅k)Znk (3)

A strong property of the HMM is that it is invariant to local deformation (compression and
extension) on the time axis to some extent. In speech recognition problems, the deformation of the time
axis is related to the natural variation in the speed of speech. Hidden Markov models can adapt to this
deformation without exerting too much influence. A framework utilized by HMM was proposed by
Zhang et al. [36], fusing trajectories and hand shape features. The approach was evaluated effectively
on the self-building dataset. Gao et al. [37] proposed a CSLR system employing SOFM-HMM. In
comparison to the existing system, the performance indicated superiority, and the word recognition
rate reached 82.9% on the dataset containing 5113 samples.

3.5.2 Support Vector Machine

A support vector machine is proposed based on statistical learning theory and structural risk
minimization criteria. Under such a background, support vector machine technology has a strong
generalization and discrimination ability [38]. The focus is on finding the optimal classification
hyperplane for input data samples. The corresponding problem can be solved by using a quadratic
function that maximizes the classification interval of data samples. As shown in Fig. 5, based on two
types of linearly separable data, circles and diamonds are employed to represent each type of data,
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respectively. The margin represents the maximum classification interval between the classification
planes, and the data points on both sides of the classification line are the samples to be classified.
In this example, the equation of the basic classification surface is shown in the formula.

wTx + b = 0 (4)

Figure 5: An example of the optimal classification line

From the above, combined with effective constraints and the introduction of Lagrange multipliers,
the optimal classification discriminant function can be solved. The kernel function is often commonly
combined with the optimal classification discriminant surface to create a support vector machine
model. The corresponding general support vector machine classification function expression is shown
as follows:

f (x) = sgn
{∑k

i=1
a∗

i yiK (xi · x) + b∗
}

(5)

where a∗
i and b∗ are parameters that regulate the support vector machine to determine the optimal

classification plane.

Combined with HMM and SVM, a multilayer architecture classifier was proposed by Ye et al. [39],
which was considered effective for Chinese Sign Language Recognition with a large vocabulary.
Pu et al. [40] studied automatic sign language recognition and introduced SVM to classification. The
results show the approach is effective on the sign language dataset, including more than 500 words.

3.5.3 Dynamic Time Warping

Dynamic gesture recognition methods commonly employ the DTW algorithm and HMM. The
HMM algorithm requires a large amount of gesture data for template training. After multiple training
calculations, appropriate model parameters can be obtained. The DTW algorithm does not require
additional training and is simple, fast, and easy to implement [41].

DTW algorithm adopts point-by-point matching to calculate the cumulative distance and uses
dynamic programming to find the optimal path. As shown in Fig. 6, the DTW algorithm consists
of two main steps. One is to calculate the distance matrix between each point in the two sequences.
The second task is to find a path from the lower left corner to the upper right corner of the matrix,
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ensuring that the sum of the elements on the path is the smallest. Assuming the matrix is M, the
shortest path length from the lower left corner of the matrix (1, 1) to any point (i, j) is denoted as
Lmin(i, j). We can use a recursive algorithm to find the shortest path length. The recursion rules are
as follows: Lmin (i, j) = min {Lmin (i, j − 1) , Lmin (i − 1, j) , Lmin (i − 1, j − 1)} + M(i, j). Among them, the
initial conditions are as follows: Lmin (1, 1) = M(1, 1).

Figure 6: Calculation method of warp path distance

However, when using the DTW algorithm for matching calculations, the upper and lower
boundaries will be calculated every time the grid point being searched moves forward by one grid. The
amount of computation is still significant, especially when two matching sequences are long, leading
to more repetitive operations [42].

A novel system by Zhang et al. [4] was designed for continuous sign language recognition, adopting
the DTW algorithm. The experiments were conducted on 180 sentences and demonstrated effective
superiority.

3.5.4 Random Forest

The random forest (RF) strategy combines the Bagging ensemble, constructed by decision tree
learners, with selecting random attributes during the training process. This algorithm is relatively
simple, has low computational overhead, and performs well in many real-world tasks [43].

Random forest classification can be viewed as a complex of multiple decision tree classification
models. The basic idea is as follows: firstly, k samples are extracted from the original training set using
bootstrap sampling, and the sample size of each sample remains unchanged. Then, k decision tree
models are established to obtain k classification results. Finally, based on k classification results, each
record is voted on to determine its final classification. The schematic diagram is shown in Fig. 7.
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Figure 7: Schematic diagram of random forest classification

Simply put, Random Forest consists of multiple decision trees and is a comprehensive learning
model. When a new classification is initiated, specific attributes of the object are chosen as the
standard. All decision trees in RF will make their own decision, and then “vote” collectively. The
classification output of RF is determined by the decision tree with the highest number of votes.

Yuan et al. [44] employed sEMG and an RF algorithm to identify 30 alphabets, achieving an
average accuracy of 95.48%. Su et al. [45] utilized the RF algorithm to implement SLR systems based
on ACC-sEMG. The proposed approach obtained an average accuracy of 98.25% in classifying 121
CSL subwords.

3.5.5 Long Short-Term Memory

RNN has succeeded in speech recognition, machine translation, computer vision, and other fields.
One of its significant advantages is that it can process inputs of different lengths and effectively
extract temporal features between frames. As an improvement of RNN, it can be seen in Fig. 8 that
LSTM [46] adds a processor to judge whether the information is useful, so LSTM is widely used in
timing classification. LSTM can detect temporal changes in sign language and learn the corresponding
relationships between gesture changes, thereby enhancing the classification of sign language [47]. Some
sign language actions take a long time to recognize, so many researchers use the LSTM network to
predict the next sign language action.

Liu et al. [48] applied an LSTM-based SLR method to evaluate isolated CSL vocabularies.
Experiments indicated that the proposed approach was effective. Additionally, Yang et al. [49]
combined CNN with LSTM to recognize 40 daily vocabularies and achieved a high recognition
rate. Xiao et al. [50] proposed a multimodal fusion method (LSTM2-DHMM) to identify CSL. This
framework was evaluated on two CSL data sets and obtained effectiveness.

3.5.6 Other Classification Approaches

There are other taxonomies that are often mentioned, such as artificial neural networks (ANNs)
[51], Nave Bayes classifier (NBC) [52], Relevance Vector Machine (RVM) [53], etc.
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Figure 8: Basic structure of RNN and LSTM networks

4 Modern Sign Language Recognition Modes and Techniques

Artificial intelligence refers to the capability to simulate, extend, and enhance human intelligence
through intelligent systems. These systems can perform tasks that necessitate human intelligence, such
as learning, reasoning, perception, interaction, problem-solving, and understanding natural language.
Artificial intelligence encompasses various fields, including machine learning, deep learning, expert
systems, natural language processing, and computer vision. Artificial intelligence has its origins in
the 20th century. In 1943, McCullocah and others [54] proposed that propositional logic could be
used to explain neural events and the relationships between them, which is considered the origin
of artificial neural networks (ANN). However, due to the perceptron’s inability to solve nonlinear
problems, research on artificial neural networks subsequently declined. In 1982, the proposal of
recursive artificial neural networks reignited research interest, leading to the emergence of deep
learning in the public consciousness. Deep learning was proposed by Professor Geoffrey Hinton in
1985. However, the computing power at that time was extremely limited, making it very difficult to
execute deep learning. But starting from 2010 to 2012, deep learning began to gain popularity in
the field of artificial intelligence. At present, computing power, bandwidth, and storage space have
improved by millions of times, enabling the widespread realization of the concept of deep learning.
Today’s vast data and high-speed processing capabilities also empower our previous speech recognition
and image recognition algorithms to execute a large number of calculations in a very short time, leading
to improved results.
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Traditional methods for sign language recognition have offered some solutions, but as the
demands for sign language recognition increase, previous methods can no longer meet the new
requirements. Therefore, new technologies and methods have become new areas of focus.

1. The ultimate goal of sign language recognition is to achieve continuous recognition and
establish an efficient system for recognizing sign language. Video-based continuous sign
language recognition aims to transcribe sign language videos into a series of annotations.
Traditional methods of sign language recognition play a lackluster role. The CSLR model
based on deep learning consists of three components: a vision module, a sequence (context)
module, and an alignment module. It occupies a dominant position because of its superiority
over traditional methods.

2. There are specific criteria for evaluating the naturalness and authenticity of sign language
recognition and translation, including the presence of a “deaf flavor” and the incorporation
of emotional factors. By fusing multi-modal information and combining lips and facial
expressions, deep neural networks can support and help achieve this goal.

3. The development of artificial intelligence (AI) technology has led to the promotion and appli-
cation of AI sign language digital humans in specific sign language interpretation scenarios.
This represents an important advancement in modern intelligent sign language recognition
methods.

Therefore, the recognition method for Chinese Sign Language is transitioning from traditional
methods to modern AI-based approaches. Deep learning, transfer learning, and hybrid network
models based on deep neural networks offer new and improved solutions for sign language recognition.

4.1 Convolutional Neural Networks
A convolutional neural network (CNN) refers to a feed-forward neural network with a convo-

lutional computing function and a deep structure. Due to its superior feature extraction ability and
accurate classification ability of image information, it is considered to be the most representative deep
neural network for recognition and classification [55–58]. A typical convolutional neural network
consists of several layers, including an input, convolutional, pooling, fully connected, and output
layers. Fig. 9 shows a simple CNN graph. Among them, the convolution layer performs feature
extraction through convolution operations. The fully connected layer is equivalent to a “classifier”.

Figure 9: A simple CNN diagram

However, the performance of big data-driven deep learning models increases as the number
of samples increases. Therefore, this also places greater requirements on sample size and network
training. Simple CNN does not achieve better performance. Therefore, various optimization algo-
rithms have been incorporated into the convolutional neural network model, and the performance
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has been continuously improved. For example, batch normalization (BN) techniques can keep the
inputs of layers more evenly distributed. Dropout technology can refine the network, effectively reduce
overfitting, and achieve a certain degree of regularization. The ReLU function can accelerate the
convergence of stochastic gradient descent [59]. Data augmentation (DA) technology can effectively
expand the dataset and help alleviate overfitting [60].

CNN is typically utilized for processing array-like data. Its components include corresponding
parts in ANN and also feature pooling and flattening functions, which can reduce the dimensionality
of features extracted by CNN blocks. CNN and its variants are widely used in various types of Chinese
Sign Language Recognition, including fingerspelling recognition, isolated sign language recognition,
and continuous sign language recognition. In view of the important position of CNN in deep learning
networks, researchers have conducted a series of studies on CNN-based sign language recognition
since 2013. For example, literature [61] proposed a CNN network focusing on hand shape changes. It
feeds hand shape features into an end-to-end weakly supervised classification framework for accurate
recognition. This system is capable of real-time recognition of small-scale isolated word sign language
datasets. For another example, in the context of continuous sign language recognition, literature [62]
utilized an adaptive video sampling method to effectively preprocess the video to remove interference
from irrelevant backgrounds. After using CNN to extract the features of the video frame, the BLSTM
model is employed to learn the bidirectional dependency information of the sequence in order to model
the spatio-temporal sequence. Finally, the recognition result is obtained using the CTC algorithm.

4.2 3D-CNN
Although CNN has a robust feature extraction ability, it is limited to processing single-frame

image data. Sign language recognition also requires auxiliary methods to mine inter-frame correlation,
and the 3D convolutional neural network (3D-CNN) has emerged as a solution. 3D-CNN mainly
solves the correlation between pictures and adds a new dimension of information. Discriminative
features from both spatial and temporal dimensions can be captured by 3D-CNN [63–65].

The essence of 2D convolution is to extract local neighborhood features from the feature map
of the previous layer and obtain a 2D feature map by convolution in the spatial dimension. The
convolution process can be expressed as follows:

vxy
ij = tanh

(
bij +

∑
m

∑Pi−1

p=0

∑Qi−1

q=0
wpq

ijmv(x+p)(y+q)

(i−1)m

)
(6)

where vxy
ij indicates the value of pixel (x, y) of the jth feature map in layer i, and bij denotes the deviation

of the jth feature map in layer i, m denotes the number of feature maps in the i − 1 layer, Pi and Qi

indicate the spatial dimension size of 2D convolution kernel in the i layer, and wpq
ijm denotes the weight

of the convolution kernel connected by the mth feature map in the i − 1 layer.

In the video analysis problem of sign language, the motion information data to be acquired are
in multiple consecutive frames, so 2D convolution is expanded to 3D convolution, and features are
calculated from spatial and temporal dimensions.

Multiple continuous frames pass through the convolutional layer sequentially. Each feature map
is connected to multiple adjacent continuous frames in the previous layer in order to obtain specific
motion information [66], which can be expressed as:

vxyz
ij = tanh

(
bij +

∑
m

∑Pi−1

p=0

∑Qi−1

q=0

∑Ri−1

r=0
wpq

ijmv(x+p)(y+q)(z+r)
(i−1)m

)
(7)



16 CMES, 2024, vol.140, no.1

where vxyz
ij denotes the result of pixel (x, y, z) of the jth feature map in layer i, and bij indicates the

deviation of the jth feature map in layer i, m denotes the number of feature maps in the i − 1 layer,
Pi, Qi and Ri are the spatial dimension size of the 2D convolution kernel in the i layer, and wpq

ijm is the
weight of the convolution kernel connected by the mth feature map in the i − 1 layer. Compared with
2D convolution, 3D convolution adds the time dimension, and its frame structure is shown in Fig. 10.

Figure 10: 3D convolution and 2D convolution frame structures

The network structure of 3D-CNN mainly consists of the following:

i) 3D convolution layer: 3D convolution is implemented by convolving a 3D kernel into a temporal
cube formed by stacking multiple consecutive frames together. With this structure, the feature maps
are connected to the previous multiple consecutive frames, and motion information is captured.

Among them, the 3D convolution calculation formula is as follows:

Ixyt = f
(∑n

i=0

∑n

j=0

∑m

k=0
wijkv(x+i)(y+j)(t+k) + b

)
(8)

Among them, f (·) indicates the neural activation function, such as Tanh, Sigmoid, or Relu, etc.,
Ixyt denotes the feature map value, wijk denotes the (i, j, k)th value of the kernel connected to the previous
feature map, and m denotes the size of the 3D kernel along the time dimension, v(x+i)(y+j)(t+k) indicates
the input unit at position (x + i, y + j, t + k), and b is the deviation of the graph.

ii) The related technologies and calculation formulas used in the batch normalization, ReLU, and
pooling layers are the same as those used in two-dimensional CNN.

As early as the CVPR2015 conference, Molchanov et al. of the NVIDIA Research Institute
first proposed using 3D-CNN for dynamic gesture recognition [67]. A bidirectional sub-network is
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constructed using multi-scale data as the network input to extract spatio-temporal feature sets of
gestures. The model has achieved good recognition results in autonomous driving scenarios. 3D-
CNN and its combined model can be applied to isolated sign language recognition and continuous
sign language recognition in Chinese sign language. Pu et al. first employed 3D-CNN for Chinese
Sign Language Recognition in 2016 [40]. A sign language recognition algorithm based on a 3D-CNN
network based on multimodal data was proposed by Liang et al. [68]. They performed convolutional
fusion on various data and verified its effectiveness on a large-scale dataset.

4.3 YOLO
(You Only Look Once) YOLO is one of the well-known models in the field of computer vision.

Unlike other classification methods, this approach combines the task into a regression problem,
eliminating the need to separate the detection results into two categories (classification and regression).
Although the accuracy is slightly reduced, it detects much faster and is suitable for real-time object
detection [69,70].

The development of YOLO has gone through several stages, from YOLO V1 to YOLO V8. The
YOLO V1 algorithm divides each image into a grid system of size S ∗ S. Each grid identifies objects
by predicting the number of bounding boxes of objects within the grid. It scans the entire image using
a multi-scale sliding window to identify various objects in an image and determine their locations.
It is crucial to determine the optimal size and number of sliding windows, as varying the number of
candidates or including irrelevant candidates will yield different results. Among them, B bounding
boxes will be predicted for each grid. Including its own position, each bounding box also predicts a
confidence value, which represents the confidence level of the object contained within the predicted
box and the accuracy of the prediction for this box. The calculation formula is as follows:

Confidence = Pr(Object) ∗ IoUtruth
pred (9)

Finally, during testing, the class information predicted by each grid is multiplied by the confidence
information predicted by the bounding box, and the class-specific confidence score of each box is
obtained. The formula is as follows:

Pr (Classi|Object) ∗ Pr (Object) ∗ IoUtruth
pred = Pr(Classi) ∗ IoUtruth

pred (10)

Then, by setting a threshold, filtering out low-scoring boxes, and performing NMS processing
on the retained boxes, the final inspection result is obtained. In this way, YOLO is comparable to
traditional algorithms but much faster. The advantage of YOLO V1 is that it can detect objects in
real-time at high speed, understand generalized object representation, and the model is not overly
complex. A limitation of YOLO V1 is that the model is less effective when small objects appear in
clusters or groups.

Compared to YOLO V1, YOLO V2 has made various improvements in terms of speed, accuracy,
and the ability to detect a large number of objects. Softmax is used in the YOLO V2 architecture
to assign an objectivity score to each bounding box. BN (Batch Normalization) operations have
been added in V2. The BN layer performs standardization and normalization on the input from the
previous layer, scaling the input values. Additionally, higher-resolution inputs are utilized. All of these
improvements enhance accuracy.

In the new structure of predicting boundaries, YOLO V3 adds logistic regression to predict the
score of each bounding box. The Faster R-CNN method was also introduced, and only one bounding
box was given priority. These small improvements lead to big improvements.
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YOLO V4 achieves a superior and more efficient model by incorporating and integrating new
features. An important theme that YOLO V4 focuses on is real-time object detection using traditional
neural network models. These models only require traditional GPU training, making it possible to
train, test, and implement convincing object detection models.

YOLO V5 is a single-stage target detection algorithm that makes the following improvements
based on YOLO V4. The model training phase introduces Mosaic data augmentation and adaptive
anchor frame calculation. The baseline network incorporates ideas from other detection algorithms,
such as Focus and CSP structure. FPN and PAN structures are added between the “BackBone” and
the final “Head” output layer. The DIOU_nms of the prediction box screening and training loss
function are improved in the “Head” output layer. Therefore, YOLO V5 has apparent advantages,
namely, the framework structure is user-friendly, convenient for training data sets, and easy to put
into production; it integrates a large number of computer vision technologies, easy to configure the
environment, and has fast training speed; batch inference produces real-time results. Object recognition
speeds are impressive.

The model of YOLO V5 target detection studied by Li et al. [71] is in line with the life-scenes
and is well-suited for real-time applications. The YOLO method was mentioned in the isolated word
recognition of Chinese Sign Language. By fusing the attention mechanism, Zhang et al. [72] improved
the YOLO V5 model, recognizing over 40 daily CSL and achieving an mAP of 98.92%. The proposed
CSL detection model is easy to apply on mobile devices and valuable for communicating with the
hearing impaired.

4.4 CapsNet
Convolutional neural networks (CNN) have achieved great success in the field of image processing,

but they also have certain limitations. For instance, it ignores the relative positions between different
features and cannot identify poses, textures, and image changes. In addition, the pooling operation
in CNN makes the model spatially invariant, so the model is not equivariant. At the end of 2017,
Geoffrey Hinton et al. introduced capsule architecture in their “Dynamic Routing between Capsules”
paper. This is a new deep neural network model that is currently primarily used in the field of image
recognition. In deep learning, a capsule refers to a group of embedded neurons. A capsule network
(CapsNet) comprises capsules instead of neurons [73,74].

Artificial neurons output a single scalar quantity. Each convolution kernel in the CNN convo-
lutional layer copies the weight of the same kernel to the entire input image and outputs a two-
dimensional matrix. Each number in the matrix is the convolution of a part of the input image with the
convolution kernel. This two-dimensional matrix can be regarded as the output of the repeating feature
detector. The two-dimensional matrices of all convolution kernels are stacked together to obtain the
output of the convolution layer. CNN utilizes max pooling to achieve invariance, but max pooling
discards valuable information and lacks a relative spatial relationship with the encoded features.

Different from traditional neurons, the input and output of a Capsule are both vectors. The
vector length denotes the probability in traditional neurons, while the vector direction represents other
information, including position information. The Capsule network utilizes dynamic routing based
on an agreement to replace Max-Pooling in traditional CNN, which can also be understood as an
original routing mechanism. The capsule encodes the probability of feature detection as its output
vector length and the detected feature state as the vector direction. When the detected feature changes,
the probability remains the same, but its direction changes.

A comparison of capsules and neurons is presented in Table 2.
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Table 2: Comparison between Capsule and traditional neuron

Input Operation Output

Affine
transform

Weighting Sum Nonlinear activation

Capsule vector (ui) ûj|i = Wijui sj = ∑
i cijûj|i Vj =

∥∥sj

∥∥2

1 + ∥∥sj

∥∥2

sj∥∥sj

∥∥ vector
(
vj

)

Traditional
neuron

scalar (xi) – aj = ∑
i wixi + b hj = f

(
aj

)
vector

(
hj

)

The Capsule Network consists of six neural network layers, including a convolution layer, a
PrimaryCaps layer, a DigitCaps layer, the first fully connected layer, the second fully connected layer,
and the third fully connected layer. The first three layers are encoders, and the last three layers are
decoders. The structure of the capsule network is shown in Fig. 11.

Figure 11: The structure of the capsule network

CapsNet is a new concept in deep learning that produces good results compared to CNNs and
traditional neural networks. CNN classifiers are not robust against noisy data; however, CapsNets
are more resilient to such data and can also adapt to affine transformations of the input data. At the
same time, capsule networks have also been proven to reduce training time and minimize the number of
parameters. It can solve tasks such as machine translation, autonomous driving, handwritten character
and text recognition, target detection, and emotion detection, etc. CapsNet has been frequently
mentioned in the context of continuous sign language recognition. Suri et al. [75] developed a novel
IMU-CapsNet architecture for recognizing continuous Indian Sign Language. The method yielded an
accuracy of 94% and 92.50% for three routings and five routings, respectively, which achieved higher
Nash equilibrium.

4.5 Transformer
At present, BERT [76] and GPT [77] models have achieved great success. The Transformer [78]

structure has replaced RNN and CNN, which has become the standard configuration for current NLP
models. The internals of the Transformer are essentially an “Encoder-Decoder” structure. As shown
in Fig. 12, the entire network structure is entirely composed of the “Attention mechanism” and adopts
a 6-layer “Encoder-Decoder” structure. The encoder is responsible for mapping the natural language
sequence into a hidden layer. The decoder remaps the hidden layer into a natural language sequence,
allowing us to solve various problems, such as machine translation, summary generation, semantic
relationship extraction, sentiment analysis, etc.
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Figure 12: The overall structure of the Transformer

The workflow of the transformer is roughly described as follows:

Step 1: Obtain the representation vector X of each word of the input sentence. Where X is obtained
by adding the Embedding of the word and the Embedding of the word position.

Step 2: Pass the obtained word representation vector matrix into the Encoder. The encoding
information matrix C of all words in the sentence can be obtained through six Encoder blocks. The
word vector matrix is represented by X(n × d), n indicates the number of words in the sentence, and d
indicates the dimension of the vector. The matrix dimensions output by each Encoder block are exactly
the same as the input.

Step 3: Pass the encoding information matrix C output by the Encoder to the Decoder. The
Decoder will translate the next wordi+1 based on the currently translated wordk, (k = 1 ∼ i). Among
them, when translating to wordi+1, the words after wordi need to be covered by the Mask operation.

Compared with RNN, the Transformer can be trained in parallel better. However, it cannot utilize
the order information of words, so positional embedding needs to be added to the input. The relevant
calculation formula is as follows:

PE (Pos, 2k) = sin
(

pos

10000
2k
d

)
(11)

PE (Pos, 2k + 1) = cos
(

pos

10000
2k
d

)
(12)

where Pos denotes the absolute position of the word in the sentence, d indicates the dimension of the
word vector, and k denotes the sequence value of the dimension in the word vector.

The focus of Transformer is the self-attention structure. The result is shown in Fig. 13, in which
the matrices Q, K, V are obtained by linear transformation of the output. Then, the output of Self-
Attention can be calculated. The calculation formula is as follows:

Attention (Q, K, V) = softmax
(

qkT

√
dk

)
V (13)

where dk is the number of columns of the matrix, which is the dimension of the vector.

In the transformer, multiple Self-Attentions in Multi-Head Attention can capture the correlation
coefficient attention score in multiple dimensions between words [79]. The transformer and its
derived models can be utilized for isolated and continuous sign language recognition in Chinese Sign
Language. Du et al. [80] integrated a vision transformer and a temporal transformer to construct
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a self-attention framework, which was utilized to recognize word-level sign language. Experimental
results demonstrate its superiority on the WLASL dataset. Cui et al. [81] proposed a Spatial-Temporal
Transformer Network (STTN) for continuous sign language recognition (CSLR). The STTN was
evaluated on two datasets: CSL and PHOENIX-2014. The results indicated the superior effectiveness
of the CSLR task.

Figure 13: Self attention structure

4.6 Transfer Learning and Hybrid Network Model
Transfer learning refers to transferring the learned and trained model parameters to a new

model to help the new model train. Transfer learning is different from traditional machine learning.
Traditional machine learning builds different models for different learning tasks, whereas transfer
learning utilizes data from the source domain to transfer knowledge to the target domain to complete
model establishment. Since there are correlations between most data or tasks, the existing model
parameters can be shared with the new model in some way, which is known as knowledge transfer.
Transfer learning speeds up and optimizes the learning efficiency of the model without having to learn
from scratch [82,83].

Transfer learning is defined by a domain and a task, and its mathematical representation is as
follows. A domain D consists of feature space X and marginal probability distribution P(X), where
X = {x1, . . . , xn} ∈ X . Assume that the given domain D = {X , P(X)}, the task consists of two parts:
the label space Y and the target prediction function f : X → Y . The function f predicts the label f (x)

corresponding to x. Task T = {Y , f (x)} is learned from training data containing sample pairs {xi,yi},
where xi ∈ X , yi ∈ Y . Given the original domain DS and its task TS , the target domain DT and its task
TT , the following conditions are met: DS �= DT or TS �= TT . Transfer learning aims to learn the target
prediction function fT(·) in the DT domain by utilizing the knowledge of DS and TS [84].



22 CMES, 2024, vol.140, no.1

There are three types of transfer in transfer learning: instance-based transfer, feature-based trans-
fer, and shared parameter-based transfer [85]. Instance-based transfer learning focuses on selecting
examples useful for training in the target domain from the source domain. For instance, effective
weight distribution can be performed on labeled data instances from the source domain so that the
instance distribution in the source domain is close to the instance distribution in the target domain,
thereby establishing a reliable learning model with high classification accuracy in the target domain.
However, since the data distribution in both the source domain and the target domain are often
inconsistent, all labeled data instances in the source domain may not necessarily be useful to the target
domain. Feature-based transfer includes transfer learning based on feature selection and transfer
learning based on feature mapping. The former focuses on finding common feature representations
between the source domain and the target domain, and the latter focuses on mapping the data of the
source domain and the target domain from the original feature space to a new feature space. Since the
data distribution is the same in the source and target domain spaces, feature-based transfer can better
utilize existing labeled data samples for classification training and testing. Transfer learning, based
on shared parameters, investigates the common parameters or prior distributions between two spatial
models of source and target data.

As shown in Fig. 14, there are two strategies for applying transfer learning. One strategy is fine-
tuning, which involves using a pre-trained network on a base dataset and training all layers on the
target dataset. During pre-training, the model will likely be exposed to datasets similar to the task.
Fine-tuning can stimulate the knowledge acquired by the model during the pre-training process. The
other is to freeze and retrain, which involves freezing all layers except the last layer (the weights are
not updated) and training only the last layer. Transfer learning is not limited to deep learning, but
there are indeed many applications in deep learning. A novel CSLR approach that utilized transfer
learning based on AlexNet was designed in the paper [86], which combined the Adam optimizer and
provided four special configurations. The highest accuracy of 91.48% was yielded for the identification
of Chinese fingerspelling.

Figure 14: The strategy of transfer learning

The original intention of transfer learning is to transfer knowledge and representation between
two tasks or domains to improve performance. Deep transfer learning has become an important
method for effective knowledge transfer in recent years. Common network models include AlexNet,
VGG, GoogLeNet, ResNet, etc. What they have in common is that they all utilize deep neural networks
to accomplish transfer between tasks or domains.

Various advanced network models and technologies continue to emerge with the continuous
development of artificial intelligence and neural network technology. In most cases, a variety of
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mainstream technologies and advanced methods are often combined to achieve efficient network mod-
els. Integrating multiple technologies can compensate for the limitations of individual technologies
and enhance overall performance. The integration and innovation of these technologies and methods
make image recognition more practical and advanced. For instance, the CNN-based Chinese sign
language recognition in [59] and [60] achieved an average accuracy of 88.10% and 89.32%, respectively.
The accuracy of CSLR adopting only the LSTM method in [87] is 86.20%. The accuracy of sign
language recognition has been improved to 98.11% [88] and 98.40% [89] through the fusion of these
two technologies (CNN-LSTM). Additionally, some specialized networks, such as CGNet [90] and
GFNet [91], have been developed for image recognition and detection and have achieved effectiveness.
Therefore, the hybrid model offers new ideas and additional solutions for recognizing Chinese sign
language.

5 Analysis and Discussions

We reviewed the relevant literature on Chinese Sign Language Recognition (CSLR) in the past
20 years. It was found that HMM, SVM, and DTW are the most widely employed techniques among
traditional recognition methods. Deep neural networks (DNN) and their derived models are essential
to modern artificial intelligence recognition methods. Meanwhile, there are also hybrid models and
experimenter-defined identification methods.

5.1 Analysis of CSLR
Fig. 15 shows that the number of research papers on Chinese Sign Language Recognition has

exhibited a consistent upward trend. It was in a slow growth stage before 2012, and research papers on
sign language recognition have significantly increased since 2013. Especially since 2014, the publication
of literature has grown exponentially, primarily due to the rapid advancements in computer vision
and artificial intelligence technology. During the same period, Chinese Sign Language Recognition
transitioned from traditional research methods to new methods and technologies based on vision,
particularly deep neural networks. This trend has been confirmed more clearly since 2019.

Figure 15: Research trend of CSLR with major technologies
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As shown in Table 3, Chinese Sign Language Recognition technologies and methods can be
divided into two stages: sign language recognition based on traditional technology and sign language
recognition based on modern artificial intelligence technology. In the first stage (approximately from
2000 to 2011), HMM, SVM, and DTW were the mainstream technologies. Among them, HMM,
widely used in speech recognition and handwritten font recognition, has been introduced into the
field of sign language recognition. It is mainly used for time series modeling of sign language and
has achieved good results. During this period, research on sign language recognition mainly focused
on recognizing fingerspelling sign language and isolated static sign language (gesture). The datasets
were obtained from data gloves. In the second stage (approximately from 2012 to the present), CNN,
3D-CNN, YOLO, and various deep neural networks (such as ResNet, VGG-Nets, Faster R-CNN,
CapsNet, etc.) have sprung up. At this stage, research on sign language recognition mainly focuses
on large-scale sign language and real-time, continuous sign language recognition. The datasets are
obtained from data sensors with higher data collection quality, such as Kinect and Leap Motion,
as well as high-definition photography. At the same time, facial expression recognition, complex
background processing, and 3D sign language recognition have also attracted the research interest
of scholars. In addition, technologies such as HMM and SVM, widely utilized in the early stages,
have also been integrated and applied to some hybrid models. Overall, these two stages can be seen as
the transformation of sign language recognition from traditional technology to computer vision and
artificial intelligence and from a single to a hybrid model.

Table 3: Summary of Chinese Sign Language Recognition

Publication
year

Typical methods and
techniques

Characteristics Performance
evaluation/
Accuracy

Datasets/Sample size

2004 TMD-HMM + PCA [92] Vision-based sign language
recognition system

92.50% CSL words (439)

2004 SOFM-HMM + SRN [37] Chinese Sign Language
Recognition system

82.90% Sign vocabulary (5113)

2005 Boosted CHMM [93] Recognition of sign language
subwords

92.70% Custom sample (510)

2005 NBC [52] NBC Over 80% 10 gestures
2006 DTW-HMMs +

Re-sampling [94]
Expanding training set 85.35% Gestures (2435)

2006 DTW-HMMs + TMMs [95] Large-vocabulary continuous
sign language recognition

91.90% Test sentences (1500)

2008 SVM + Fourier
descriptor-Hu moments [31]

Vision-based multi-features
classifier

95.03% Chinese manual
alphabet (30)

2009 SVM + Co-Occurrence
Matrix [3]

Gray-level co-occurrence
matrix and other multi-features
fusion

93.09% Samples (5850)

2010 HMMs + ACC, sEMG [96] Portable Accelerometer and
EMG Sensors

95.78% CSL subwords (121)

2011 HMMs + ACC, sEMG [97] A framework for hand gesture
recognition

95.30% (ACC) CSL words (72)
96.30%
(EMG)

(Continued)
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Table 3 (continued)
Publication
year

Typical methods and
techniques

Characteristics Performance
evaluation/
Accuracy

Datasets/Sample size

2012 HMMs + ACC, sEMG [98] A sign-component-based
framework

96.50% Signs (120)
86.70% Sentences (200)

2012 NN + Hu moment Combining Hu moment
feature and NN classifier

98.00% High frequency words
(201)

2013 I2C-DTW Image-to-Class Dynamic
Warping

98.44% UESTC-DGL

2013 DICamShift + SLVW Depth image camShift 96.21% Chinese manual
alphabet (30)

2013 Kinect + SURF Speeded up robust features 97.70% Chinese manual
alphabet

2014 WDTW Windowed dynamic time
warping

85.00% Gesture

2014 SVM + SURF [99] Depth image information and
SURF-BoW

96.24% Sign language alphabet
letters (30)

2014 ELM + SPC + hand shape
[100]

3D Hand motion trajectories
and depth images

82.79% Instances (320)

2014 LC-KSVD + Hand
trajectories and HOG

RGB-D sensor with sparse
coding

92.36% Chinese sign words (34)

2015 Camshift + HMM Depth pre-segmentation
combined with Camshift
tracking

97.70% Number “0” to “9”

2015 MEMS Micro electro-mechanical
systems

87.30% Gesture

2015 fHMM Framing hidden markov model 97.50 ± 1.60% Chinese sign language
words (30)

2015 Light-HMMs + HOG,
RGB-D [101]

Key frame + Light-HMM 84.20% Signs (1000)

2015 Multi-SVM DTW + HOD
[4]

HOD + multi-SVM; DTW 85.20% Phrases (450)

2016 Hausdorff distance
template matching [1]

Hausdorff distance template
matching

95.00% Gestrure

2016 Hu + DTW Hu + DTW better
recognition
effect

Number “0” to “9”

2016 HMMs + HOG, PCA HOG + PCA, HMMs
framework

86.00% Sign words (500)

2016 SVM-VHMM + HOD,
RDF, HOG

SVM + VHMM + HOD 89.40% Signs (500)

2016 SVM + HOG [102] HOG + SVM based on Kinect 89.80% Words (72)
2016 RF + ACC, sEMG [45] Random forest; accelerometers

and surface electromyographic
sensors

98.25% CSL subwords (121)

2016 End-to-end LSTM [87] LSTM 86.20% Isolated Chinese sign
language vocabulary

2017 Statistical template
matching

Skin color segmentation;
statistical template matching

93.50% Gesture (11)

2017 Tree-structure + sEMG,
ACC, GYRO

sEMG + ACC + GYRO;
optimized tree-structure
framework

87.02% Chinese sign language
subwords (150)

(Continued)
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Table 3 (continued)
Publication
year

Typical methods and
techniques

Characteristics Performance
evaluation/
Accuracy

Datasets/Sample size

2017 CNN + hand shape
segmentation [103]

Convolutional neural network 99.00% vocabularies (40)

2018 SURF + HMM Rapid robust features and
hidden markov model

93.00% Gesture (8)

2018 CNN + SVM CNN + SVM 98.60% Jochen Triesch
2018 SVM + DNN [104] Gesture recognition and facial

expression recognition
90.70% Static sign language

2018 3D-CNNs [105] 3D CNN for dynamic sign
language recognition

89.20% Vocabularies (20)

2018 Keyframe-centered clips
(KCCs) [106]

Keyframe-centered clips 89.16%∼91.18% Chinese sign language
words (310)

2018 Attention-based 3D-CNNs
[107]

3D-CNN 88.70% 500 categories

2019 YOLO V3 YOLO V3, K-Means 94.00% Gesture (4)
2019 SAE-(HOG + LBP)-SVMs SAE-(HOG + LBP)-SVMs 96.67% JTD
2019 CNN + LSTM Convolutional neural

networks, long short-term
memory

99.26% Special video

2019 B3D ResNet [108] BLSTM-3D residual networks 86.90% Vocabularies (500)
2019 ANN [109] ANN 88.70% CSL gestures (15)
2019 3D-CNNs [110] Attention-Based 3D-CNNs for

large-vocabulary sign language
recognition

88.70% Categories CSL (500)

2019 6-layer CNN [59] CNN; fingerspelling 88.10 ± 1.48% Samples (1260)
2019 8-Layer CNN [60] CNN; fingerspelling 89.32 ± 1.07% Samples (1320)
2019 DBN [111] Deep belief net, sEMG, ACC,

GYRO
95.10% 150 CSL subwords

2020 CNN + BiLSTM [88] Convolutional neural network
and bidirectional long
short-term memory

98.11% Gesture (9)

2020 K-means + DTW [112] improved K-means clustering
pruning, DTW

90.00 ± 2.03% Gesture (128)

2020 HMI-RBF-SVM [30], HMI, RBF, SVM 86.47 ± 1.15% Chinese fingerspelling
2020 RF-sEMG [44] RF, sEMG 95.48% 30 alphabe
2021 HPSO-SVM Hybrid particle swarm

optimization, support vector
machine

96.78% Gesture (5)

2021 SSW Sliding window segmentation 83.90% Sentences (30)
2021 WE-RBF [23] WE, RBF 88.76% Chinese fingerspelling
2022 CNN [113] CNN 99.50% CSL
2022 HMM2 + Viterbi [2] Second-order hidden markov

model
88.60% Sign video

2022 YOLO V5 [72] YOLO V5 98.92%. 40 daily CSL
2022 3D-CNN [114] 3D-MobileNetv2 95.12% CSL-500
2023 ACN + 3D-ResNet +

LSTM
ACN, 3D-ResNet, LSTM effective CSL100

2023 Faster R-CNN Faster R-CNN 85.00% Gesture
2023 CNN + BLSTM [89] CNN, BLSTM, CTC 98.40% CSL
2023 YOLO V5 YOLO V5, labelimg 93.00% Sign language pinyin

(Continued)



CMES, 2024, vol.140, no.1 27

Table 3 (continued)
Publication
year

Typical methods and
techniques

Characteristics Performance
evaluation/
Accuracy

Datasets/Sample size

2023 Transfer learning sEMG, IMU 85.10% Sign language samples
(60000)

2023 BLSTM [115] Spatial-temporal graph
attention network

98.41% Chinese sign language
dataset

2023 Transformer [8] Transformer 96.30% CSL
2023 Transformer [9] Multimodal fusion framework

(SeeSign)
93.17% Isolated words

As shown in Fig. 16, Chinese Sign Language Recognition techniques and methods can be divided
into three broad categories: vision-based, non-visual, and hybrid modes. In 2017, Yang et al. [103]
proposed a vision-based sign language recognition method using a convolutional neural network and
hand segmentation to verify 40 sign language vocabulary words and achieved a high recognition rate
of 99.00%. In 2016, Su et al. [45] proposed a non-visual sign language recognition method based on
ACC and sEMG, using random forest for analysis. The recognition rate was 98.25%, and the effect
was also excellent. In 2018, Song et al. [104] used a hybrid model of SVM and DNN to recognize
gestures and facial expressions. The recognition rate achieved was approximately 90.70%. At the
same time, research on the frontier keywords of sign language recognition technology has found that
CNN has the highest emergence intensity, followed by deep learning and machine learning. Since
2019, many scholars have used CNN technology to research sign language recognition. As shown in
Fig. 17, sign language recognition technology is constantly updated and improved along with the rapid
development of computer vision and artificial intelligence technology.

Figure 16: Major methods of classification and feature extraction in CSLR
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Figure 17: Comparison of accuracy with major methods in CSLR

5.2 Discussions of CSLR
Analysis indicated that various technologies are suitable for recognizing sign language based on

different categories and characteristics. For instance, HMM and SVM are frequently employed to
recognize finger language. Because the content of finger language is limited and belongs to static image
recognition, the background environment is relatively controllable. Thus, the recognition accuracy is
high, almost exceeding 90%. Additionally, CNN, 3DCNN, RNN, variants (such as LSTM, GRU,
etc.), and Transformer models, are more suitable for continuous sign language recognition. Due
to the temporal dynamics and contextual information involved in continuous sign languages, the
relative recognition accuracy is lower and more challenging. At the same time, there is a growing
need for handling massive data sets and powerful algorithm loads. Isolated word recognition falls
between finger language recognition and continuous sign language recognition. Traditional and
modern intelligence methods are mentioned, and the recognition performance is relatively satisfactory.

When it comes to sign language datasets, each one has its own unique characteristics and purpose
for being created. In other words, the current compilation of resources for sign language data sets is
primarily tailored to specific research requirements and utilizes customized specifications. As a result,
they do not have relatively unified standards and cannot be easily generalized and promoted. They
are limited to specific local applications. Based on various sign language classification methods, the
dataset’s characteristics, advantages, and disadvantages also vary. The finger language dataset allows
for controlled data collection and can better accommodate factors such as background and lighting
effects. As the dataset size increases, the accuracy of identifying isolated word data sets decreases.
Continuous sign language recognition lacks large-scale and diverse data sets, which significantly
impacts the practical requirements for real-time and online recognition. In addition, the continuous
sign language dataset also needs to consider sentence segmentation and grammar, and include relevant
supplementary information. It is evident that the recognition accuracy, data set size, creation cost, and
cost-effectiveness corresponding to each data set are different. Therefore, the absence of appropriate
corpora and datasets impedes further in-depth exploration of sign language research.
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Sign language data collection can be categorized into two methods: contact and non-contact.
Contact equipment was previously used for gesture recognition, with typical examples including data
gloves [116–118], myoelectric signal armbands, inertial measurement units (IMU) [119], WiFi [120],
radar, smartphones, Leap Motion controllers [121], and Kinect [122,123], etc. The equipment can
directly detect the spatial information of the human hand and each joint and process it into input
data. In contactless collection, the camera is the primary tool for acquiring input data and is used to
capture sign language images and videos. The non-contact method has a low acquisition cost, minimal
device dependence, and convenient acquisition. However, extracting features from video streams and
keyframes may result in additional computational overhead. At the same time, the accuracy of vision-
based recognition may decrease due to factors such as skin color, angle, and light. These problems
typically require the use of high-performance computers.

Therefore, some suggestions and strategies for addressing CSLR challenges are as follows:

(1) Establish high-quality data sets and provide evaluation criteria. Most Chinese Sign Language
data sets are too small, have insufficient samples, lack standardization, and cannot be
generalized or compared horizontally. Additionally, they have a high proportion of exper-
imental studies, which makes them unsuitable for application and promotion. Therefore,
expanding the sample size, establishing a standardized and appropriate dataset in relevant
fields, and addressing the challenges related to the shortage of evaluation resources and
database standards is necessary.

(2) Develop efficient and accurate recognition systems by integrating multiple modalities and
leveraging multi-perspective technologies. It is necessary to address the challenges of real-time
processing, robustness, high accuracy, and user independence in sign language recognition.
Address the issue of decreasing recognition accuracy as the dataset expands. In addition,
a real-time system should be developed to properly handle changes in hand shapes against
complex backgrounds and address the challenges of background interference, lighting, angle,
and standardization of operations affecting sign language behavior. Meanwhile, in order to
improve the accuracy of interpretations, it is necessary to incorporate sign language recog-
nition that supplements the fusion of continuous sign language features with coordination
information from lips and facial expressions. This will establish a comprehensive recognition
model that includes main features as well as auxiliary information. Unfortunately, current sign
language recognition primarily focuses on gestures, with very little research on collaborative
recognition of facial expressions. In the future, researchers could attempt to incorporate the
key aspects of micro-expression recognition into continuous sign language recognition as a
supplementary aid.

(3) Try to utilize advanced models and algorithms. Algorithms and models are updated iteratively
and rapidly, so staying current and exploring improved identification methods and models is
essential. At the same time, attention should be given to the conflicting issues of balancing
model accuracy and computational load. Address the challenge of handling large-scale and
diverse data sets necessary for large models. Address the real-time and online requirements
for recognizing sign language. The challenges of recognizing complex continuous sign lan-
guage include interrupted sentence segmentation, grammar application, and supplementary
auxiliary information.

(4) Furthermore, specific content and directional cues associated with sign language recognition
require careful attention and study. For example, reinforcement learning and autonomous
decision-making. Multimodal intelligence, which involves combining multiple modes of
perception such as vision, hearing, and language, enables machines to have a more



30 CMES, 2024, vol.140, no.1

comprehensive understanding and interaction capabilities. Personalized, customized services.
Human-machine collaborative work, etc.

In addition, we also compared Chinese Sign Language Recognition with sign language recognition
in other countries. Typical representatives include American Sign Language, Indian Sign Language,
and Arabic Sign Language. As shown in Table 4, the comparison results indicate that a wider
range of recognition technologies and methods have been introduced in other countries. Mainstream
technologies such as SVM and CNN are mentioned and applied. Taking CNN as an example,
Kasapbaşi et al. [124] proposed a CNN-based human-computer interface for American Sign Language
recognition, which achieved high accuracy and demonstrated excellent prediction in tested datasets.
Musthafa et al. [125] developed an innovative gesture-based sign language recognition system that can
automatically detect sign language and recognize various complex gestures and actions. The model
applies CNN and image processing methods to determine fingertip positions in static images and
convert them to text, which can identify photos of signers taken in real time. Alani et al. [126] addressed
the ArSL-CNN model to train a variety of Arabic sign languages and achieved an overall accuracy of
97.29%.

Table 4: Comparison of other sign language recognition

Types of sign language Year Methods or approaches Accuracy

American Sign Language 2015 [127] DTW 92.40%
American Sign Language 2016 [128] Charge-transfer touch sensors 92.00%
American Sign Language 2016 [29] SVM, SIFT, Hu-moments and FD, PCA

and LDA, Skin color (YCbCr) with GMM
94.00%

American Sign Language 2019 [129] ANN-SVM Higher accuracy
American Sign Language 2019 [130] Residual neural network 99.40%
American Sign Language 2022 [131] Deep learning approach 98.69%
American Sign Language 2022 [124] CNN 99.38%
American Sign Language 2023 [132] Assistive data glove-neural network 98.00%
Indian Sign Language 2015 [133] EFD and ANN 95.10%
Indian Sign Language 2016 [134] SVM 97.50%
Indian Sign Language 2018 [135] ROI-CNN 99.56%
Indian Sign Language 2019 [136] CNN, wearable IMUs 94.20%
Indian Sign Language 2020 [137] CNN 99.72%
Indian Sign Language 2022 [125] CNN Accurately
Indian Sign Language 2023 [138] Multi-stream 3D CNN 92.80%
Arabic Sign Language 2014 [139] Nave bayes classifier (NBC)–Leap motion

controller (LMC)
98.30%

Arabic Sign Language 2015 [140] Modified k-nearest neighbor (MKNN) 98.90%
Arabic Sign Language 2015 [27] SIFT, LDA and SVM-kNN 99.00%
Arabic Sign Language 2019 [141] HOG, HMM 99.33%
Arabic Sign Language 2019 [142] A Pair of LMCs with GMM based

classification
92.00%

Arabic Sign Language 2020 [143] VGG16 and ResNet152 99.00%
Arabic Sign Language 2020 [144] Deep convolutional neural network 97.60%

(Continued)
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Table 4 (continued)

Types of sign language Year Methods or approaches Accuracy

Arabic Sign Language 2021 [145] Faster R-CNN 93.00%
Arabic Sign Language 2021 [126] CNN 97.29%

Some of the same technologies and methods are earlier than domestic research. The expression
in Chinese sign language contains the complex connotations of Chinese, involving many aspects such
as semantics, grammar, sentence pattern, and ambiguity, unlike the expressions in the English series,
which are concise and clear. Therefore, the Chinese Sign Language Recognition is relatively difficult.
Meanwhile, most domestic hotspot research draws on the trends and experiences of foreign countries,
so it is slightly behind in time.

6 Conclusion

This paper provides a comprehensive review and summary of the methods and technologies used
for recognizing Chinese Sign Language over the past 20 years. Around 2014 was a pivotal moment
when Chinese Sign Language Recognition methods transitioned from traditional methods to modern
AI-based approaches. In the early research, the mainstream technologies were HMM, SVM, and DTW.
With the rapid development of modern artificial intelligence technology, various recognition methods
based on deep neural networks play an increasingly important role. It is undergoing changes from
traditional methods to modern methods based on artificial intelligence. Meanwhile, architectures are
transitioning from single models to mixed models. Besides, suitable datasets and evaluation criteria
are worth pursuing. Currently, most Chinese sign language datasets are too small and non-standard.
Meanwhile, the proportion of experiments is high, and the promotion of applications is insufficient.
All of these aspects need improvement. Furthermore, based on the integration of multiple modalities
and the intersection of multi-perspective technologies, there is an urgent need to develop systems with
efficient and accurate recognition.

As a whole, the Chinese Sign Language Recognition model has achieved favorable overall
evaluation indicators. However, it still has a gap compared with advanced sign language recognition
models. In particular, due to the uniqueness and complexity of the CSL and the sign language dataset,
there are still some issues worthy of further research:

1. The fusion of continuous sign language features.

2. The coordination of lips and facial expressions involved in some gestures.

3. Applications and enabling technologies that can be available to the general public [146].

4. To reduce influencing factors such as background interference, lighting, angles, and non-
standardized operations.

5. The challenges of high precision, robustness, real-time performance, and user independence.

In the future, the continuous development of new technologies and the cross-integration of
scientific fields will catalyze the progress of Chinese Sign Language Recognition. Hybrid network
models, recurrent neural networks, deep learning, and artificial intelligence technologies will further
promote theoretical research and algorithm innovation related to sign language recognition, and sign
language recognition will achieve more remarkable development.
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