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ABSTRACT

The evaluation of disease severity through endoscopy is pivotal in managing patients with ulcerative colitis,
a condition with significant clinical implications. However, endoscopic assessment is susceptible to inherent
variations, both within and between observers, compromising the reliability of individual evaluations. This study
addresses this challenge by harnessing deep learning to develop a robust model capable of discerning discrete
levels of endoscopic disease severity. To initiate this endeavor, a multi-faceted approach is embarked upon. The
dataset is meticulously preprocessed, enhancing the quality and discriminative features of the images through
contrast limited adaptive histogram equalization (CLAHE). A diverse array of data augmentation techniques,
encompassing various geometric transformations, is leveraged to fortify the dataset’s diversity and facilitate effective
feature extraction. A fundamental aspect of the approach involves the strategic incorporation of transfer learning
principles, harnessing a modified ResNet-50 architecture. This augmentation, informed by domain expertise,
contributed significantly to enhancing the model’s classification performance. The outcome of this research
endeavor yielded a highly promising model, demonstrating an accuracy rate of 86.85%, coupled with a recall rate
of 82.11% and a precision rate of 89.23%.
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1 Introduction

An individual with Ulcerative Colitis (UC) requires ongoing medical treatment or surgical
intervention for the remainder of their life. Due to its unpredictable course and frequent shifts in
the severity of physical symptoms, UC significantly negatively influences patients’ quality of life [1].
Surprisingly, few studies have investigated how UC affects patients’ quality of life. Researchers in
Germany found a high emotional cost associated with UC in a study of patients [2]. A more recent
study with UC patients in Spain highlighted the need to apply a patient-centered approach to UC care,
taking psychological, emotional, and social difficulties into account [3].

In the context of UC, a substantial number of people experiencing moderate to severe illness
(84%) claimed that the illness detrimentally affected their mental health. Both those in remission
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(82%) and those with milder cases of UC (75%) indicated this. Despite some regional variations,
69% of patients in France and Germany and 57% in Finland felt that UC had a significant presence
in their lives. Additionally, almost two-thirds of the patients (67%) claimed to spend the majority
of their time in illness [4]. The phenomenon of image analysis has been the subject of substantial
research in previous studies [5–9], as it has been recognized as an efficient method for enhancing the
representation capabilities of Convolutional Neural Networks (CNNs) in multiple domains. CNNs
are also used for object recognition [10], detection of human movement [11], target detection [12], and
person identification [13].

There are four levels of UC, from normal health to serious illness, divided into 4 severity levels
(Mayo Endoscopic Subscore), ranging from Level-0 to Level-3. Levels 0 and 1 are regarded as normal,
while Levels 2 and 3 are regarded as moderate or severe illness, respectively. The ability to distinguish
between disorders of Levels 0, 1, 2, and 3 has only been assessed in a small number of studies to date
[14,15]. Clinical recurrence and colectomy rates are higher in Level-1 patients than in Level-0 ones,
according to recent research [14,15]. Compared to Level-2 patients, Level-3 patients had higher rates
of clinical recurrence, colectomy, and poorer response to steroids [16,17]. The ability to differentiate
between Level-0 disease and Level-1 disease or between Level-2 disease and Level-3 disease is essential.
Each separate level of UC provides important prognostic information.

In recent years, deep learning (DL) models have demonstrated remarkable capabilities in the
classification of medical images, as documented in several studies [18–22]. Medical image analysis
has been completely redesigned using DL, which produces outstanding results in image processing
tasks, including feature extraction, segmentation, and classification. However, when it comes to
the applications of DL for UC severity level classification in patients, the research landscape has
been relatively limited, with only a handful of studies showcasing promising outcomes. Notably, one
study [23] primarily focused on a binary classification approach, discerning between UC patients in
remission (defined as Levels 0 or 1) and those with severe disease (defined as Levels 2 or 3). Another
study [24] extended this binary classification by examining the differentiation between Levels 0/1 and
Levels 2/3, as well as Level 0 vs. Levels 1–3 UC.

CNNs have also achieved tremendous success in recent times [25–29]. Researchers have recently
employed CNNs in human action recognition [30,31], statistical models [32,33], and other medical
imaging domains [34–36]. A more comprehensive approach was taken by the authors of [37], who
successfully demonstrated the potential of DL in distinguishing between individual UC grades,
specifically Grades 1, 2, and 3, yielding promising results. With a CNN-based model, they achieved an
accuracy of 77.2%. Additionally, another study [38] significantly expanded the dataset, encompassing
one thousand four hundred eighty-four distinct endoscopic images obtained from 467 individuals,
each appropriately labeled with their respective UC Levels. In this case, the authors reported an
accuracy of 84%. While these findings are encouraging, it is evident that there remains room for
further enhancement in the accuracy of classification for the various UC levels. Addressing this need
for improved accuracy is essential for advancing the utility of deep learning in UC grading.

The process of endoscopic assessment is notably susceptible to inherent variations, both within
and between observers, compromising the reliability of individual evaluations. This study addresses
this challenge by harnessing the power of deep learning to develop a robust model capable of discerning
and distinguishing among discrete levels of endoscopic disease severity. Moreover, the lighting issue
in endoscopic images is resolved using the CLAHE method. This study utilizes a pre-trained deep
CNN, fine-tuned with modifications in layers, to classify grades of UC. Initially, a dataset is extracted,
and then data augmentation is applied to it, followed by passing the dataset to the modified deep
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CNN model to classify the UC grades. The proposed model demonstrates robustness in the form of
experimental results. The main contributions include improving the visualization of Ulcerative Colitis
images through contrast and brightness enhancement on individual channels like Red, Green, and Blue
using contrast-limited adaptive histogram equalization. Improved classification of Ulcerative Colitis
severity levels is also achieved using the transfer learning approach to fine-tune a pre-trained deep
neural network, yielding better results. The robustness of the model is demonstrated using multiple
performance measures such as Accuracy, Precision, Recall, and F-Measure.

The arrangement of the article is as follows: Section 1 explains dataset information, Section 2
shows the proposed methodology, Section 3 elucidates results, and Section 4 concludes the study.

2 Methodology

For the classification of UC levels, the dataset was initially divided into multiple train-to-test
ratios like 70/30, 80/20, and 60/40. The images were then divided into red, green, and blue channels,
and CLAHE was applied to each channel separately before combining them. This step increased the
contrast of the images, and data augmentation was applied to increase the total images in each class.
Subsequently, a transfer learning approach was applied to a pre-trained deep neural network to extract
features, followed by the application of a deep classifier for the classification of UC levels. The complete
methodology flow is shown in Fig. 1.

Figure 1: Methodology for multi-level classification of ulcerative colitis

2.1 Dataset
In the context of this study, a comprehensive collection of endoscopic images, publicly accessible

and obtained for research purposes, was utilized. This collection is characterized by its meticulous
curation, involving expert validation by medical professionals. Within this repository, a diverse array
of annotated photographs, each corresponding to a specific pathological grade, is found. These
grades are categorized into four distinct classes, spanning from Grade 0 to Grade 3, representing a
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spectrum of pathological findings. It is noteworthy that the dataset consists of a total of 850 images.
However, an inherent class distribution imbalance exists within this dataset. Despite this imbalance,
the dataset’s voluminous size makes it a compelling resource for machine learning and deep learning-
based categorization. This assertion is substantiated by a growing body of literature, as indicated by
reference [39]. To provide visual insight into the dataset, Fig. 2 offers a selection of photographs from
this collection, showcasing its richness and diversity.

Figure 2: Sample classes of dataset

Following dataset loading, images were separated into multiple training/testing ratios like
70%/30%, 80%/20%, and 60%/40%. The unwanted text written for doctors on the endoscopic images
was removed using an available filter. Fig. 3 shows the image before and after applying the filter, with
the written text on the image removed.

Figure 3: Images after removing superfluous text

2.2 Contrast Enhancement
After the initial step, CLAHE is applied to the images to increase their contrast. CLAHE has

demonstrated remarkable efficacy when applied to medical imagery [40–42]. This method’s underlying
principle is rooted in the division of an image into multiple, non-overlapping regions of nearly uniform
dimensions. For optimal statistical estimation, it is customary to partition the image into a grid
composed of 64 regions. This grid is established by dividing the image evenly in both the horizontal
and vertical directions, resulting in a total of eight subdivisions per side. The division of the image into
64 regions gives rise to three distinct classes of regions. The first category comprises the four corner
regions, forming the class of “Corner Regions” (CR). The second group encompasses the border
regions, referred to as the “Border Regions” (BR), comprising a total of 24 regions. These border
regions include all portions of the image periphery except for the corners. Lastly, the remaining regions,
which are neither in the corner nor border categories, collectively constitute the “Inner Regions” (IR)
class. This systematic categorization of regions into CR, BR, and IR classes allows for a refined and
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region-specific application of CLAHE, contributing to improved contrast enhancement in medical
images. Let the input image ImageInput and with size I × J. The CLAHE is applied using Eqs. (1) to (8).

JAvg = (JsX , JsY)/Ygray (1)

where JAvg specifies the average number of pixels and the number of gray levels are denoted by Ygray;
JsXandJsY is denoting pixels number in X , Y image dimensions. CLAHE can be calculated as follows:

Jcl = Jclip ∗ JAvg (2)

JAvg = J∑
clip

Jgray

(3)

Xr = X(Ir/Xnorm)i (4)

Xg = X(Ig/Xnorm)i (5)

Xb = X(Ib/Xnorm)i (6)

i = 1 − tanh(Xbright) (7)

where Xr, Xg, Xb are red, green, and blue pixel values after applying CLAHE; Ir, Ig, Ib are input image’s
red, green, and blue values; Xnorm is the normalized value having a range between 0 to 1; Jclip is the
clipped pixel value during the process of applying CLAHE; JAvg is the average pixels values; Jgray is the
value of gray levels.

Imageclahi = Xr + Xg + Xb (8)

In this methodological approach, the initial step involves computing histograms for each desig-
nated region within the image. Subsequently, a critical component of this process entails establishing a
clip limit for histogram truncation based on the desired extent of contrast expansion. Following this,
a fundamental objective is to redistribute each region’s histogram in a manner that ensures the height
of the histogram remains within the confines of the predetermined clip limit. This iterative process
culminates in the derivation of cumulative distribution functions (CDF), specifically CDF [40–42],
for the transformed, contrast-limited histograms, which are then instrumental in mapping gray scales
within the image. In the context of Contrast Limited Adaptive Histogram Equalization (CLAHE), the
pixel mapping procedure is intricate. It involves a linear amalgamation of outcomes from mappings
carried out on the four nearest neighboring regions. While the formulation of this method for regions
falling within the Inner Regions (IR) group is straightforward, it is imperative to underscore that the
approach necessitates nuanced consideration when applied to regions in the Corner Regions (CR)
and Border Regions (BR) categories. Specialized strategies are thus employed to address the unique
characteristics and spatial relationships inherent to CR and BR regions, ensuring that the CLAHE
technique operates optimally and effectively across the diverse regions of the image [43]. The step-by-
step process for CLAHE is shown in Algorithm 1.

Algorithm 1: Histogram Equalization Working
Input: ImageInput is the Original Image
Output: ImageOutput is Image Contrast-Limited-Adaptive-Histogram-Equalization (CLAHE)

1. Load the image to put into variable Im.
2. Call CLAHE function with clip-Limit = 3.0 and metric = 16×16.

(Continued)



1134 CMES, 2024, vol.140, no.1

Algorithm 1 (continued)
3. Save the result CLAHE into variable cl.
4. Display the resultant ImageCLAHE.

2.3 Dataset Augmentation
In pursuit of enhancing the robustness and generalization capabilities [44] of the model, the

dataset was extended through the implementation of a variety of geometric transformations. This
augmentation strategy serves the dual purpose of mitigating the risk of model overfitting while also
ensuring that similar images do not recur during the training process. The augmentation techniques
encompass rotational adjustments, horizontal translations (altering image width), zoom operations
(both in and out), shear transformations, rescaling, and vertical flips. As a result of this data
augmentation initiative, the dataset expanded significantly, now comprising a total of 2000 images.
Each pathological grade category is uniformly represented, with precisely 500 images attributed to
each grade. This augmentation strategy not only contributes to an enriched and diverse dataset but
also reinforces the model’s capacity to generalize effectively, thereby enhancing its performance during
subsequent classification tasks. The data augmentation applied is shown mathematically in Eq. (9).

Imageaug = Imageclahi ∗ Gtr (9)

where Gtr is described as geometric transformation applied to the CLAHE image, and Imageaug is
described as a final augmented image.

2.4 Features Extraction and Classification
Transfer learning (TL) stands as a pivotal paradigm in the domain of machine learning, denoting

a strategic approach for the transference of acquired model knowledge from one domain to another.
The essence of TL lies in its remarkable capability to obviate the necessity of retraining a model entirely
afresh when confronted with novel tasks [45]. This strategic advantage translates into significant time
and resource conservation, considering the substantial computational and human resources involved
in training machine learning models from the ground up, particularly when dealing with extensive
datasets that mandate precise and time-intensive labeling processes. In the framework of TL, the crux
of the technique revolves around the utilization of a pre-existing deep learning (DL) model, which has
previously undergone training, as the foundation for a new task. The methodological cornerstone lies
in fine-tuning this pre-trained model by exposing it to a distinct dataset that pertains to the novel task
at hand [45]. This fine-tuning process, while building upon the knowledge encoded in the pre-existing
model, is instrumental in tailoring the model’s parameters and features to specifically align with the
intricacies of the new problem domain.

The MobileNet-V2 CNN model is a pre-trained architecture particularly well-suited for classifi-
cation tasks. Notably, it offers a distinct advantage over its predecessor, MobileNet-V1, by addressing
the issue of gradient vanishing more effectively. This improvement can be attributed to MobileNet-
V2’s deployment of innovative design elements such as inverted-residual-blocks and linear-bottleneck-
frames. Consequently, MobileNet-V2 not only demonstrates superior performance but also exhibits
the capacity to facilitate faster training while maintaining a relatively lower parameter count. An
inherent characteristic of MobileNet-V2 is the incorporation of a 1 by 1 convolutional extension layer,
which plays a pivotal role in augmenting the channel dimensions of the tensor. For instance, when a
tensor with 24 channels enters this layer, the extension operation increases this count by a factor of
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6, yielding a new tensor with 144 channels. Subsequently, this 144-channel tensor undergoes depth-
wise convolution, whereby filters are applied to further enhance its feature representations. Following
this, the projection layer efficiently reduces the 144 filtered channels back to the original number, in
this case, 24. This intricate architecture underlines MobileNet-V2’s capacity for channel augmentation
and streamlined feature extraction. The network, referred to as ‘DagNetwork,’ is configured to accept
input data with dimensions of 224 by 224 by 3. Notably, this network encompasses a total of 163 links
and is comprised of 154 layers, embodying 3.4 million parameters. Within the network’s architecture,
the ReLU activation function is utilized. The final layer of the network is tailored to accommodate
1000 distinct classes [46], initially trained on the extensive ImageNet dataset. In preparation for the
model’s adaptability for feature extraction from endoscopic images, a dropout layer with a probability
value of 0.5 is introduced to facilitate fine-tuning. Furthermore, an additional fully connected layer is
appended atop the architecture, enabling the extraction of 1280 distinctive features. This multi-faceted
and adaptable design imparts MobileNet-V2 with a high degree of flexibility, rendering it an invaluable
asset in the realm of feature extraction from diverse datasets and image sources.

In the context of this training regimen, the Adam optimizer was judiciously selected, a choice
substantiated by its well-documented efficacy and accomplishments within the recent landscape of
DL advancements, as elucidated in references [47,48]. Notably, the Adam optimizer stands out for
its intrinsic capability to dynamically adapt the learning rate, thereby serving as a potent strategy for
the minimization of the objective function concerning model parameters. This dynamic adaptability is
achieved through the systematic update of model parameters in the direction opposite to the gradient
of the objective function. By doing so, the Adam optimizer effectively orchestrates the convergence of
the training process in the direction of optimal model performance while simultaneously curtailing
divergence along less relevant dimensions. This self-adaptive learning rate mechanism contributes
significantly to the expedited and efficient convergence of the neural network training process. In this
experimental setup, categorical-cross-entropy (CCE) was employed as the designated loss function
for the evaluation of the neural network’s performance. The choice of loss function is of paramount
importance during the fine-tuning of weight parameters, as it profoundly influences the model’s
convergence and overall suitability. The essence of the loss function is encapsulated in its role of
quantifying the discrepancies or penalties associated with disparities between the model’s output
and the desired output variable, as comprehensively expounded upon in reference [28]. Thus, the
meticulous selection of CCE underscores its pivotal role in guiding the training process toward optimal
model performance, aligning the neural network with the task objectives, and facilitating a robust and
informed approach to weight parameter refinement.

In this comprehensive research endeavor, the model training process, as elucidated in reference
[49], spanned a course of 300 epochs [50], each characterized by a consistent batch size of 30. The
determination of the number of steps per epoch was methodically executed by dividing the total
length of the training dataset by the aforementioned batch size [51]. This systematic approach ensured
meticulous orchestration of the training procedure, providing a structured framework for model
optimization [52] and convergence.

3 Experimental Results

The experimental setup for the study was conducted in a computing environment featuring a
CPU with 16 GB of RAM, a 10th Generation Core i-7 processor operating at 3.2 GHz, and an 8 GB
NVIDIA graphics card. The experiments leveraged the Python programming language, along with
the Keras library and associated Python libraries, ensuring a robust and versatile platform for the
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investigations. During the training phase, the model’s accuracy was observed to stabilize around the
260th epoch, maintaining consistency until the completion of 300 epochs. This behavior highlights
the network’s learning saturation and the convergence of the training process. When alternatives to
the Adam optimizer, such as Adagrad, stochastic gradient descent, and regular gradient descent,
were employed, training accuracy showed negligible improvement, even with an increased number of
epochs. Concurrently, validation accuracy registered a decline, emphasizing the optimizer’s crucial role
in shaping network performance and its impact on the model’s generalization capacity. Adjustments in
momentum and learning rates within the optimization process led to significant fluctuations in both
training and validation accuracy, illustrating the delicate balance between these hyperparameters and
the precision required for optimal model performance. Interestingly, variations in batch size did not
result in noticeable changes in accuracy, but they did affect the time required for training. Similarly,
modifications to the steps per epoch parameter influenced training duration, while accuracy remained
relatively stable, shedding light on the interplay between batch size, steps per epoch, and training
efficiency and highlighting the model’s accuracy resilience under these adjustments.

Initially, results were collected by training the model directly on input images without any
augmentation step, using various train-to-test ratios. Table 1 presents these results, with superior
performance achieved at a 70/30 ratio.

Table 1: Performance matrices on original input images

Train-to-test ratio Precision Recall Accuracy

80% training and 20% testing 72.47% 64.31% 68.82%
70% training and 30% testing 76.52% 70.14% 73.22%
60% training and 40% testing 70.03% 62.44% 64.32%

Subsequently, results were gathered from training models on contrast-enhanced images using
CLAHE without any data augmentation steps. Table 2 displays these results, indicating superior
performance again at a 70/30 ratio. A comparison with Table 1 reveals that CLAHE-enhanced images
outperform the original input images across all three ratios.

Table 2: Performance matrices on CLAHE-enhanced images

Train-to-test ratio Precision Recall Accuracy

80% training and 20% testing 76.74% 71.08% 74.63%
70% training and 30% testing 77.29% 72.33% 74.98%
60% training and 40% testing 72.66% 63.10% 65.09%

Finally, results were collected using the proposed methodology. Table 3 presents these findings,
with the best performance noted at a 70/30 ratio. A comparison with the previous two tables shows that
the proposed methodology outperformed both the original input images and the CLAHE-enhanced
results across all ratios.

The results indicate that the accuracy of the proposed model stands at 86.85%, with a precision
of 89.23% and a recall of 82.11%. This level of accuracy positions the model as a strong competitor
among state-of-the-art models.
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Table 3: Performance matrices based on the proposed methodology

Precision Recall Accuracy

80% training and 20% testing 83.15% 76.49% 77.98%
70% training and 30% testing 89.23% 82.11% 86.85%
60% training and 40% testing 87.49% 79.61% 83.38%

In an effort to comprehensively assess and compare the model’s performance at various stages
of the experimental pipeline, a rigorous analysis of the outcomes was conducted. This examination
revealed consistent enhancements in the results after applying each sequential step, including tech-
niques like contrast enhancement and data augmentation. An observed increase in the recall rate
testifies to the robustness of the proposed methodology. Additionally, a plot graph of the red, green,
and blue values for CLAHE-processed images was included to better visualize the results. Fig. 4 shows
the histogram of these values before applying CLAHE, and Fig. 5 displays the red, green, and blue
channel values on the images after the application of CLAHE.

Figure 4: Histogram of red, green, and blue values of the image before CLAHE (X-axis: Pixel values,
Y-axis: Frequency of each pixel)

This iterative process of performance evaluation involves the systematic integration of each indi-
vidual step, underscoring the incremental improvements in model efficacy. Furthermore, the noticeable
enhancement of the recall rate highlights the model’s ability to effectively capture and retrieve relevant
information, solidifying the methodology’s robustness and its utility in real-world applications. These
findings collectively emphasize the progressive refinement of the model’s performance and underscore
the significance of these research endeavors.

3.1 Ablation Study
An ablation study was conducted by tuning the model to multiple different hyper-parameters. The

results of these are presented in Table 4.
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Figure 5: Histogram of red, green, and blue values of the image after CLAHE (X-axis: Pixel values,
Y-axis: Frequency of each pixel)

Table 4: Performance of proposed framework based on various hyper-parameter

Optimizer Loss Precision Recall Accuracy

Stochastic gradient CCE 81.21% 74.63% 75.61%
Gradient descent CCE 80.97% 74.92% 75.82%
RMSprop CCE 81.62% 75.31% 76.99%
Adam Mean squared error 84.78% 80.19% 82.63%

4 Conclusion

This study introduces a discerning transfer learning strategy for classifying ulcerative colitis levels
using a deep CNN. The research workflow begins with the meticulous extraction of a dedicated
dataset, followed by a comprehensive preprocessing phase designed to accentuate the contrast and
enhance the visual quality of the dataset. Subsequently, the dataset undergoes an augmentation process
wherein multiple geometric transformations are applied to the images. This augmentation process
increases the diversity and variability of the dataset, thereby enhancing the model’s capacity for robust
feature extraction. The cornerstone of this classification approach rests on the use of a pre-trained
MobileNet-V2 model, which is then fine-tuned on this specifically curated dataset. The results of the
proposed model demonstrate a commendable accuracy of 86.85%, coupled with an impressive recall
rate of 82.11% and a precision rate of 89.23%. These performance metrics highlight the model’s efficacy
and potential for clinical application, marking the culmination of this rigorous research effort in the
field of medical image classification. The research has limitations, namely that the model has not been
tested on multiple datasets and the feature optimization step, which will be addressed in future work.
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