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ABSTRACT

The Rotary Inverted Pendulum (RIP) is a widely used underactuated mechanical system in various applications
such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge. Despite
the implementation of various control strategies to maintain equilibrium, optimally tuning control gains to
effectively mitigate uncertain nonlinearities in system dynamics remains elusive. Existing methods frequently rely
on extensive experimental data or the designer’s expertise, presenting a notable drawback. This paper proposes
a novel tracking control approach for RIP, utilizing a Linear Quadratic Regulator (LQR) in combination with a
reduced-order observer. Initially, the RIP system is mathematically modeled using the Newton-Euler-Lagrange
method. Subsequently, a composite controller is devised that integrates an LQR for generating nominal control
signals and a reduced-order observer for reconstructing unmeasured states. This approach enhances the controller’s
robustness by eliminating differential terms from the observer, thereby attenuating unknown disturbances. Thor-
ough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance
below 50 Hz and achieve precise tracking below 1.4 rad, validating the effectiveness of the proposed control scheme.
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1 Introduction

The Rotary Inverted Pendulum (RIP), also known as the Furuta Pendulum, has been extensively
studied by researchers since its introduction in 1992 [1,2]. The RIP system, characterized by high
instability, multivariate, nonlinear, and underactuated properties, is regarded as an ideal benchmark
system for the training and validation of new control strategies in the field of engineering control. The
study of dynamic modelling and equilibrium state control algorithms for the RIP systems is crucial in
advanced technological sectors, especially in aerospace industry. Moreover, the progress in this field has
found extensive application in daily life, as demonstrated by the steady-state control mechanisms used
in Segway [3], bipedal robots [4], and skyscrapers [5]. Furthermore, the control principle of cranes [6]
and offshore drilling platforms [7] share similarities with the model when the pendulum is suspended.
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In fact, these mechanical systems exemplify a category of attitude control challenges that essential
goal is to drive the arm in following a prescribed time-varying trajectory while keeping the pendulum
balanced near a stable upright position. To achieve this, numerous linear and nonlinear controller syn-
thesis methods have attracted significant interest and research attention. Among them, proportional-
integral-derivative (PID) control or its hybrid variants are frequently used controllers [8,9], due to its
simplistic structure, cost-effectiveness, and ease of implementation in hardware. Ideally, the perfor-
mance of controlled dynamical systems should be optimal. However, determining the optimal control
gain to efficiently suppress uncertain nonlinearities using the system dynamics model is challenging
when designing a PID controller. Moreover, the PID controller is designed for linear applications
without considering saturation nonlinearity, which may result in performance degradation or even
instability in certain instances. In recent years, it has been found that the peculiarities of fractional
calculus in mathematics provide an extension to the traditional PID method. Dwivedi et al. [10] was
the first to design and test a fractional-order PID (FOPID) controller on RIP, and the saturation
effect when the control input is saturated was mitigated by combining the FOPID controller with an
anti-windup technique [11]. Linear quadratic regulation (LQR) is another commonly used optimal
control method, which is based on minimizing a quadratic performance criterion that encapsulates
state and control input variations. In references [12–14], the LQR controller was utilized to stabilize the
attitude dynamics of RIP in an upright posture. Although LQR is optimal, it lacks robustness against
parametric uncertainties. Therefore, hybrid versions of LQR, which incorporate additional control
strategies, filters or observers, were employed to address this deficiency while ensuring robustness and
optimal performance. For instance, the linear quadratic gaussian (LQG) controller, which combines
a Kalman filter observer and LQR, was presented in [15,16]. Hybrid control, formulated in [17],
integrates backstepping and LQR. Additionally, in [18], the combination of passivity-based control
and LQR was analyzed, designed and implemented on RIP.

Recent advancements in artificial intelligence (AI) and evolutionary computational techniques,
collectively referred to as intelligent computational techniques, have introduced innovative solutions
for controlling RIP systems. AI has gained popularity in clustering random complex matrices [19]
and graphs [20]. There has been a recent surge in the development of an intelligent optimal control
approach that integrates the adaptive features of intelligent computation into traditional linear control
frameworks. Rather than manually tuning LQR, the state weighting matrices in [21,22] have been
dynamically adjusted based on secant hyperbolic functions (SHFs) or optimized using particle swarm
optimization (PSO) algorithms. Additionally, LQR controllers with fuzzy tuning have improved
robustness in practical applications [23]. Consequently, the retrofitted LQR has demonstrated superior
control outcomes. To fully exploit the benefits of intelligent algorithms and optimal control, some
researchers have focused on associating LQR with a neural network (NN) for improving system
response. In [24,25], LQR determines the stability of the IP system around arbitrary equilibrium points,
while the NN control improves transient performance when deviations occur from an intended point
and suppresses system bias.

In the aforementioned works, system models and state variables are pivotal in deriving optimal
control laws or strategies to achieve the desired response and performance. However, many physical
states of the system are either unmeasurable or extremely difficult to measure using sensors. Moreover,
sensors are susceptible to noise interference, resulting in the acquisition of inaccurate measurements.
A review of the existing literature shows that although a number of well-known control strategies,
including neural NN-based system identification [26,27], fuzzy control (FC) [13,23], sliding mode
control (SMC) [28], model-free control (MFC) [29], and hybrids of these, can mitigate the inherent
problems of model-based control, but each has its own limitations. For example, NN often requires
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extensive experimental datasets for effective training and testing; to ensure robustness, FC relies
on intricate qualitative logic rules derived from the relevant experience of the operator or designer;
while SMC accelerates system stabilization, but often leads to undesirable oscillation. Additionally, in
practical control engineering systems, the simplicity of control algorithms is highly desired along with
the achievement of control objectives.

Motivated by the aforementioned challenges and inspired by the observer-based control approach
detailed in references [30–33], this study focuses on the stabilizing and tracking control problems
for RIP systems using a reduced-order observer feedback within a LQR control framework. The
contributions of this study are outlined as follows:

(1) The RIP was analyzed and modeled using Newton-Euler and Lagrange equations. Addition-
ally, the controllability and observability of the system were determined, and the feedback gain matrix
was evaluated.

(2) A reduced-order observer was proposed to reconstruct the unmeasured system states and
showed excellent robustness to low-amplitude, high-frequency disturbances by eliminating the dif-
ferential term.

The remainder of this paper is organized as follows: Section 2 presents the mathematical model
and linearization of the RIP system. In Section 3, the design of the controller and reduced-order
observer is introduced. In Section 4, simulations and experiments are given, respectively. Finally, the
main conclusions are presented in Section 5.

2 Dynamic Model of RIP

The RIP system comprises an unactuated pendulum that freely rotates in a vertical plane,
perpendicular to the tip of a horizontally rotating arm driven by a direct current (DC) motor. The
system is characterized by two degrees of mechanical freedom and a single control input, as illustrated
in Fig. 1. Angle sensors are employed to detect the angle at which the pendulum deviates from
equilibrium. The rotary arm and a parallel Z-axis are depicted in Fig. 1, with the inertial earth-fixed
reference frame labelled as O-XYZ and the arm-fixed reference frame as O′-X ′Y ′Z′.

It is assumed that the pendulum is homogeneous. The rotary arm and pendulum have masses M1

and M2, respectively. To calculate a microelement of mass represented as dm2, situated at a distance l2

from point O′ on the pendulum, as follows:

dm2 = ρ2dl2 = M2

L2

dl2, (1)

where ρ2 represents the pendulum density, while dl2 refers to the microelement length. Fig. 2 provides
a visualization of the pendulum’s projection onto the XOY plane. From this, the coordinates of dm2 in
the O-XYZ frame can be determined as⎧⎪⎨
⎪⎩

X = L1 cos α − l2 sin β cos α,
Y = L1 sin α + l2 sin β cos α,
Z = l2 cos β.

(2)

From Eqs. (1) and (2), the kinetic energy ek of the microelement is given by

ek = 1
2

dm2v2
2 = M2

2L2

[(
dX
dt

)2

+
(

dY
dt

)2

+
(

dZ
dt

)2
]

dl2, (3)
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where v2 denotes the microelement’s velocity. While, the kinetic energy of the whole pendulum Ek2 can
be determined as

Ek2 =
∫ L2

0

ek dl2 = L2
1M2α̇

2

2
+ L2

1M2α̇
2(sin β)2

6
+ L2

2M2β̇
2

6
+ L1L2M2α̇β̇ cos β

2
. (4)

Figure 1: The RIP with reference frames Figure 2: The pendulum projection into the XOY
plane

The kinetic energy Ek1 of the rotary arm can be calculated using Koening’s theorem as follows:

Ek1 = J1ω
2
1

2
= M1L2

1α̇
2

6
. (5)

In this equation, J1 = 1
3

M1L2
1 represents the rotary arm’s moment of inertia about the fixed Z-axis.

Consequently, the kinetic energy of RIP is ascertained by Eqs. (4) and (5), that is

Ek = Ek1 + Ek2 = M1L2
1α̇

2

6
+ L2

1M2α̇
2

2
+ L2

1M2α̇
2(sin β)2

6
+ L2

2M2β̇
2

6
+ L1L2M2α̇β̇ cos β

2
. (6)

Define the plane X ′O′Y ′ as the reference plane. Around upright equilibrium, the potential energy
Ep of the pendulum is

Ep = M2gL2 cos β

2
. (7)

Equations describing rotary arm and pendulum motions with respect to DC motor voltage are
obtained by the Euler-Lagrange equation

∂2L
∂t∂ q̇i

− ∂L
∂qi

= Qi. (8)

The Lagrangian function, L, can be inferred from Eqs. (6) and (7), which can be represented as
L = Ek − Ep. In this case, the generalized coordinates are defined as qi = [α(t), β(t)]T. Qi represents
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the non-potential forces of generalization that are exerted on the system in relation to the generalized
coordinates, as follows:{

Q1 = τ − Brα̇,
Q2 = −Bpβ̇,

(9)

where Br is the viscous friction coefficient of the motor, and Bp is the viscous damping coefficient of
the pendulum [14,34]. The net output torque of the DC motor acting on the load is described by

τ = Kt

Rm

(Vm − Kmα̇). (10)

In which, Kt is torque constant. Rm is the motor armature resistance. Vm is the armature input
voltage. Km is the motor-back EMF constant. Substituting Eqs. (6), (7), (9) and (10) into Eq. (8), the
nonlinear dynamics model for the RIP system can be derived as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
L2

1M1

3
+ L2

1M2 + L2
1M2(sin β)2

3

]
α̈ +

(
KtKm

Rm

+ Br

)
α̇ + 2L2

1M2 sin β cos β

3
α̇β̇

+L1L2M2 cos β

2
β̈ − L1L1M2 sin β

2
β̇2 = KtVm

Rm

,

L1L2M2 cos β

2
α̈ − L2

1M2 cos β sin β

3
α2 + L2

2M2

3
β̈ + Bpβ̇ − M2gL2 sin β

2
= 0.

(11)

The state variables are defined as x = [x1 x2 x3 x4]T = [α β α̇ β̇]T. The upright equilibrium point
can be expressed as xf = [x1f x2f x3f x4f ]T = [θ 0 0 0]T, where θ ∈ [0, 2π ] represents the desired arm
angle. The system can be linearly approximated by resolving the Taylor expansion of Eq. (11) around
xf. Disregarding the higher-order infinitesimal terms, the state-space expression can be derived as

ẋ︷ ︸︸ ︷⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

A︷ ︸︸ ︷⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 a32 a33 a34

0 a42 a43 a44

⎤
⎥⎥⎦

x︷ ︸︸ ︷⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦+

B︷ ︸︸ ︷⎡
⎢⎢⎣

0
0

b31

b41

⎤
⎥⎥⎦Vm, (12)

y︷︸︸︷[
y1

y2

]
=

C︷ ︸︸ ︷[
1 0 0 0
0 1 0 0

]
x︷ ︸︸ ︷⎡

⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦+

D︷︸︸︷[
0
0

]
Vm, (13)

where A, B, C and D represent the linearized state-space matrices, and y represents the measured
output. Matrices A and B contain the following elements:
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a32 = −9M2g
L1 (4M1 + 3M2)

, a33 = −12 (KtKm + BrRm)

L2
1Rm (4M1 + 3M2)

, a34 = 18Bp

L1L2 (4M1 + 3M2)
,

a42 = 6g (M1 + 3M2)

L2 (4M1 + 3M2)
, a43 = 18 (KtKm + BrRm)

L1L2Rm (4M1 + 3M2)
, a44 = −12B2 (M1 + 3M2)

L2
2M2 (4M1 + 3M2)

,

b31 = 12Kt

L2
1Rm (4M1 + 3M2)

, b41 = −18Kt

RmL1L2 (4M1 + 3M2)
.

3 Controller and Reduced-Order Observer Design

The eigenvalues of matrix A clearly indicate that the RIP is an unstable system of type I, and xf is
an unstable equilibrium point. This implies that if the state variables x deviate from xf, the single input
multiple output (SIMO) system will not return to xf without external input. Therefore, to progressively
stabilize the system, it is necessary to design a suitable armature input voltage, i.e., Vm, which alters
the properties of xf.

3.1 LQR-Based Controller Design
As stated in Eqs. (12) and (13), let u(t) = Vm(t), the state-space equation can be rewritten as{

ẋ(t) = Ax(t) + Bu(t), (14)
y(t) = Cx(t) + Du(t). (15)

In a closed-loop control system, the system input u(t) is a function of the state variables. The
system can be considered controllable and observable if and only if both matrices C o and Ob have full
ranks, where

C o = [
B AB A2B A3B

]
, Ob = [

C CA CA2 CA3]T
.

Given the parameters listed in Table 1, matrices A, B and C can be calculated. Obviously,
both matrices have a rank of 4, indicating controllability and observability of the dynamical system
described by Eqs. (14) and (15).

Table 1: List of symbols and values used in RIP system modeling

Symbols Description Values Units

M1 Mass of rotary arm 0.095 kg
M2 Mass of pendulum 0.024 kg
L1 Length of rotary arm 0.085 m
L2 Length of pendulum 0.129 m
α Arm angle – rad
β Pendulum angle – rad
Br Viscous friction coefficient of the motor 0.0015 N·m·s/rad
Bp Viscous damping coefficient for the pendulum 0.0005 N·m·s/rad
Kt Motor torque constant 0.042 N·m/A
Km Motor back EMF constant 0.042 V·s/rad
Rm Armature resistance of motor 8.4 


(Continued)
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Table 1 (continued)

Symbols Description Values Units

Vm Motor armature voltage – V
g Gravitational acceleration 9.8 m/s2

For the Type I RIP system, its inherent underdriven characteristics dictate that x2f = x3f = x4f = 0
is the unique equilibrium point. Although the RIP system is controllable, and the state variables x2, x3

and x4 can reach the desired values, it does not necessarily imply that they can be stabilized at those
values. In fact, the pendulum remains unstable as long as x2, x3 or x4 are non-zero. Unlike the other
variables, x1 can be stabilized at any desired angle under the influence of the input signal u(t). To
achieve the target equilibrium point, we utilize the state feedback control scheme depicted in Fig. 3,
which can be expressed as

u(t) = k1(r − x1) − [
k2 k3 k4

]⎡⎣x2

x3

x4

⎤
⎦ = −Kx(t) + k1r(t), (16)

where K is the state feedback gain (SFG) matrix, k1 is the SFG of x1, r(t) is the reference input of x1,
i.e., the desired arm angle.

+
�

+�r k1 x = Ax + Bu·
x1
x2
x3
x4

u

k4

k3

k2

y = Cx x1

Figure 3: State feedback control scheme

The u(t) is designed to perform two functions: adjusting the arm’s equilibrium point and
asymptotically stabilising it. The system dynamics can be determined from Eqs. (16) and (14) as
ẋ(t) = (A − BK) x(t) + Bk1r(t). Assuming that the system output y = x1, when t → ∞, the RIP
is asymptotically stabilized by u(t), while y(∞) → r(∞) = r(t). Let e(t) = x(t) − x(∞), then we have
ė(t) = ẋ(t) − ẋ(∞), and error dynamics can be described as{

ė(t) = ẋ(t) − ẋ(∞) = (A − BK) e(t),
ue(t) = u(t) − u(∞) = −Ke(t).

(17)

The state matrix of closed-loop control systems can be expressed as Acl = (A − BK). The
comprehensive performance index (CPI) is an effective tool for analyzing and designing control
systems, providing a means to quantify the performance of the system. In general, the system that
attains an extreme (usually minimal) value of the CPI through system parameter adjustments is
deemed optimal. If the system’s CPI is denoted by J , the objective here is to find a suitable K that
minimizes J for any given initial condition e(0), while ensuring that all eigen roots of Acl possess
negative real parts. Eq. (18) is the expression of the LQR, which is a commonly used CPI for linear
control systems described by state variables.
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J =
∫ ∞

0

(
eTQe + uT

e Rue

)
dt =

∫ ∞

0

[
eT

(
Q + KTRK

)
e
]

dt, (18)

where Q and R are positive definite square weight matrices used to scale the relative contributions of
quadratic terms eTQe and uT

e Rue, respectively. Suppose that P is a matrix, which satisfies
(
eTPe

)′ =
−eT

(
Q + KTRK

)
e, with t → ∞, x(t) → x(∞) = xf, and e(t) → 0. The algebraic form of Eq. (18)

(i.e., the minimum of J) can be obtained as

J = −
∫ ∞

0

d
(
eTPe

)
dt

dt = −eTPe
∣∣∣∣∞

0

= e(0)TPe(0). (19)

Moreover, it is worthwhile to note that along with Eq. (17) we also have
(
eTPe

)′ = eT(
AT

clP + PAcl

)
e. In view of the above analysis, Eq. (19) is valid if pending matrix P can make

− (
Q + KTRK

) = (
AT

clP + PAcl

)
. (20)

The Riccati equation [14,22,24] can be solved to yield the matrix P. Then, this matrix can be
substituted into Eq. (20) to determine the gain matrix K , expressed as

K = R−1BTP. (21)

3.2 Reduced-Order Observer Design
Due to the installation environment or other factors, there might be a need for an observer

to estimate states that cannot be directly measured. In this project, a reduced-order observer is
constructed specifically to estimate states x3 and x4. By dividing x into a measurable xa and an
unmeasurable xb, Eqs. (12) and (13) can be rewritten as[

ẋa(t)
ẋb(t)

]
=

[
AaaAab

AbaAbb

] [
xa(t)
xb(t)

]
+

[
Ba

Bb

]
u(t), (22)

y(t) = [
I (2) 0(2)

] [xa(t)
xb(t)

]
, (23)

where I (2) represents a 2-dimensional identity matrix. Further expanded and organized to get⎧⎪⎨
⎪⎩

ẋb(t) = Abbxb(t) + Abaxa(t) + Bbu(t), (24)

Aabxb(t) = ẋa(t) − Aaaxa(t) − Bau(t), (25)

y(t) = xa(t). (26)

The unmeasurable states can be interpreted through Eqs. (24) and (25), which serve as the dynamic
differential equation and output equation, respectively. By utilizing the design methodology of the
Luenberger full-order state observer and using error feedback between the measured and estimated
output, a reduced-order observer for xb can be constructed as

˙̃xb = Abbx̃b + Abaxa + Bbu + L
(
Aabxb − Aabx̃b

)
= (Abb − LAab) x̃b + Abaxa + Bbu + L

(
ẋa − Aaaxa − Bau

)
, (27)

where L is the state observation gain matrix. It is essential to emphasize that xa must be differentiated
to yield xb. Considering the sensitivity of the differentiation session to noise, it is wise to eliminate ẋa.
Therefore, Eq. (27) can be rephrased as
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˙̃xb − Lẋa = (Abb − LAab) x̃b + (Aba − LAaa) xa + Bbu − LBau

= (Abb − LAab) x̃b + (Abb − LAab) Ly − (Abb − LAab) Ly + (Aba − LAaa) xa + Bbu − LBau

= (Abb − LAab)
(
x̃b − Ly

) + [(Abb − LAab) L + Aba − LAaa] y + (Bb − LBa) u. (28)

Define⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xb − Lxa = xb − Ly = η,
x̃b − Lxa = x̃b − Ly = η̃,
˙̃xb − Lẋa = ˙̃η,

x̃ =
[

xa

x̃b

]
=

[
y
x̃b

]
,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Â = Abb − LAab,
B̂ = ÂL + Aba − LAaa,
F̂ = Bb − LBa,

Ĉ =
[

0(2)

I (2)

]
, D̂ =

[
I (2)

L

]
.

(29)

The reduced-order observer can be derived by substituting Eq. (29) for Eq. (28)⎧⎪⎪⎨
⎪⎪⎩

˙̃η = Âη̃ + B̂y + F̂u, (30)

x̃b = η̃ + Ly, (31)

x̃ = Ĉ η̃ + D̂y, (32)

where the transformation relation from η̃ to x̃ is presented in Eq. (32). By virtue of

u = − [
K a K b

] [xa

x̃b

]
+ k1r = − [

K a K b

] [ ỹ
η̃ + Ly

]
+ k1r = −(K ay + K bη̃ + K bLy) + k1r, (33)

Eq. (30) can be further derived as

˙̃η = (Â − F̂K b)η̃ + (B̂ − F̂K a − F̂K bL)y + F̂k1r. (34)

Define the observation error eb = xb − x̃b, and subtract Eq. (27) from Eq. (24), we get

ėb = ẋb − ˙̃xb = (Abb − LAab) eb = Âeb. (35)

It should be emphasized that the assumption of eb → 0 implies the absence of model
error, an impossibility in practical applications. The gain matrix L depends on the eigen-equation
|λI − (Abb − LAab)| = 0, and the eigenvalue λ is not unique. In general, λ should be chosen such
that the observer exhibits the following characteristics: (a). it asymptotically stabilizes the observer,
as indicated by Eq. (34); (b). it maintains eb within an acceptable range; (c). it ensures the rapid
attenuation of eb is at least 2 to 5 times faster than that of xb. The substitution of Eq. (16) into Eq. (14)
yields the following:

ẋ = Ax − BKx̃ + Bk1r = Ax − BK
{[

xa

xb

]
−

[
0
eb

]}
+ Bk1r = (A − BK) x + BK beb + Bk1r. (36)

Combining Eqs. (35) and (36), we get[
ẋ(t)
ėb(t)

]
=

[
(A − BK) BK b

0 (Abb − LAab)

] [
x(t)
eb(t)

]
+

[
Bk1

0

]
r(t). (37)

By analyzing the dynamic properties of xb and eb by simulation, λ can be selected, and then L will
be obtained by pole placement method.
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4 Simulation and Validation

All the parameter symbols and values used in RIP system modeling are summarized in Table 1.

4.1 Simulation
Using the values given in Table 1, the system state equation is

ẋ︷ ︸︸ ︷⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

A︷ ︸︸ ︷⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 −55.0963 −6.2835 1.8159
0 168.4091 6.2104 −5.5506

⎤
⎥⎥⎦

x︷ ︸︸ ︷⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦+

B︷ ︸︸ ︷⎡
⎢⎢⎣

0
0

18.3728
−18.1591

⎤
⎥⎥⎦ u. (38)

LQR controller performance is dependent on the choice of weight matrices Q and R. Here Q
matrix is defined as Q = diag[q1, q2, q3, q4] where q1, q2, q3, q4 are the weight coefficients of state
variables x1 (arm angle), x2 (pendulum angle), x3 (arm velocity), x4 (pendulum velocity), respectively.
The weight of control input is considered as R, which is a scalar. Larger weight coefficients will give
the variables corresponding to them a greater weight in the CPI, thus giving them a faster convergence
rate. In the literature, many different approaches exist for the choice of weight matrix, e.g., Bryson’s
Rule. In this case, x1 and x2 are crucial, so q1 and q2 should be given a high weight. Conversely, q3 and q4

should be minimized because x3 and x4 are irrelevant. To test the effect of different weight matrices on
controller performance, four groups of experiments are conducted using the same initial conditions as
shown in Table 2, and the simulation results are shown in Fig. 4. Here, the area of the region formed
by the state curve and the coordinate axes is calculated by

∫ tf
t0

x2
1,2(t) dx, and the smaller the area, the

faster convergence of the variables.

Table 2: Testing the controller performance with different weight matrices

Initial state x(0) Test
no.

Weight matrix Integration of x1, x2 and u over the simulation
interval

Q R
∫ 3

0
x2

1dx
∫ 3

0
x2

2dx
∫ 3

0
u dx[

− π

20
π

40
0 0

]T

1 diag
[1, 1, 0.1, 0.1]

[1] 0.017 0.41 × 10−3 0.2006

2 diag
[100, 1, 0.1, 0.1]

0.0018 0.35 × 10−3 0.3376

3 diag
[1, 100, 0.1, 0.1]

0.0177 0.37 × 10−3 0.204

4 diag
[15, 1, 0.1 ,0.1]

0.004 0.40 × 10−3 0.2528

The results show that x2 has a smaller order of magnitude than x1 and u, so increasing q2 has
a limited effect on x2. As q2 grows,

∫ tf
t0

u(t) dx, i.e., system energy consumption, increases as well. It
is obvious that x1 is affected by q1, but in practical, a large q1 will cause the controller to be overly
sensitive to x1, resulting in vibration in the system. Considering the above reasons and after numerous
trials, the system performed satisfactorily with Q = diag[15, 1, 0.1, 0.1] and R = 1. Matrix K is solved
by the LQR method, as described in Subsection 3.1.
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K = [−3.8730, −49.9263, −2.0590, −3.630
]

.

At this point, the system is asymptotically stabilized for any given initial state. Combining the
controller Eq. (33), the reduced-order observer Eq. (30), and the transformation relation η̃ to x̃
Eq. (32), the control block diagram of the linear RIP system is shown in Fig. 5.
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Figure 4: Simulation results of test experiments
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Figure 5: Control block diagram of the linear RIP system

The system, as shown in Figs. 6 and 7, exhibits asymptotic stability under the influence of u(t)

for any initial state (in this case x(0) = [− π

20
π

45
0 0]T) and converges to an equilibrium point at xf =

[0 0 0 0]. Fig. 6 illustrates an increase in x1 over time, within the interval t ∈ [0, 0.32). Correspondingly,
Fig. 7 displays ẋ1, i.e., x3, which represents the rate of change of x1, and demonstrates ẋ1 > 0 within
the same time interval. However, when t ≥ 0.32, x1 decreases over time, so ẋ1 < 0. This negative rate
of change manifests itself as an undershoot in Fig. 7 for the corresponding time interval. A similar
relationship can be observed between x2 and ẋ2, i.e., x4.
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Eq. (37) can be used to determine the response curve for any given initial condition. In addition,
the convergence rate of eb as evident from Eq. (35) is influenced by the variation in L values, which
are derived from the selection of different λ. Figs. 8 and 9 demonstrate observation of xb = [x3 x4]T

and convergence of eb = [eb1 eb2]T, respectively, for the initial conditions of x(0) = [− π

20
π

45
1 1]T,

eb(0) = [1 1] with

λ = [−22 −24
]

, L =
[

18.8890 −10.9185
−3.1918 21.0601

]
.

Figure 8: The observation and error dynamic of
x3

Figure 9: The observation and error dynamic of
x4

The desired arm angle is defined as r(t) = π

4
[ε(t)−ε(t−10)]− π

3
ε(t−20)+ 5π

6
ε(t−30)−ε(t−40)

for t ∈ [0, 40], where ε(t) represents the unit step signal. Figs. 10 and 11 illustrate the tracking result
of α and the transition process of β as α varies, respectively. Analysis of these figures reveals that the
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forward overshooting of α is minimal. However, reverse overshooting occurs with 9.66% of the step
amplitude before each step. It is not difficult to understand, because the arm rotates while taking into
account the balance of the pendulum. Before the arm rotates, the pendulum must be diverted away
from equilibrium along the arm rotation, and the pendulum is brought back to equilibrium as the
arm rotates to the target position. Therefore, in order to divert the pendulum from the equilibrium
position, the arm must be first rotated in the reverse direction by a specific angle before it is rotated to
the desired position.

0 5 10 15 20 25 30 35 40
-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 10: The desired signal and position track-
ing
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Figure 11: Variation of β with α

4.2 Hardware Implementation and Validation
4.2.1 Experimental Setup

This method is validated with the Quanser QNET 2.0 RIP Board. Fig. 12 shows the system
connection and front-end panel, which serve as the user interface for displaying state variation and
controlling the application. The rotary arm is driven by a direct-drive 18 V brushed DC motor
housed in a solid aluminum frame. Real-time variations in α and β are measured via rotary encoders
commissioned at the motor’s shaft and pendulum’s pivot, respectively. The data samples are acquired
at 200 Hz using the NI ELVIS II(+) data acquisition system. Using the block diagram tool in LabVIEW
software, the customized control application is implemented as a visual instrument file, and the
mathematical objects are acquired from its function palette. Control signals are serially transmitted to
a Pulse-Width-Modulated (PWM) amplifier, which translates incoming signals into PWM commands
and drives the DC motor.

On this platform, two distinct experiments were conducted. The first experiment focused on
examining the balance and disturbance rejection capabilities of the system following the pendulum’s
swing up to the upright position. The second experiment concentrated on assessing the tracking control
performance.
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Figure 12: The system connection and front-end panel

4.2.2 Balance Control

The experimental parameters used are consistent with those employed in the numerical simulation.
Due to the manual erection and stabilization of the pendulum before each experiment, the initial
conditions for activating balance control are random. Consequently, the data recording starts from the
5th second, as shown in Figs. 13 to 16. The controller’s capability to withstand mechanical vibration
or process noise is evaluated by injecting sinusoidal and random signals of different frequencies
and low-amplitude. In Fig. 13, the disturbance d1(t) is set as a random signal of 0.5 amplitude and
10 Hz frequency. The disturbance in Fig. 14 is determined by d2(t) = 1.5 sin(2πt). The variables of α

and β with time are shown in Figs. 15 and 16 for increasing the frequencies of d1(t) and d2(t) to 50,
100 and 200 Hz, respectively. As a result, it can be seen that the proposed controller maintains the
RIP balance under low-amplitude disturbances. In addition, since differential terms are eliminated in
the observer design, the controller’s sensitivity to disturbances decreases as its frequency increases. In
several experiments, low-amplitude interference signals with frequencies greater than 50 Hz have no
significant impact on this controller.
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Figure 13: Disturbance d1(t) injection response
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Figure 14: Disturbance d2(t) injection response

4.2.3 Tracking Control

The desired arm angle in the tracking control experiment is set to r(t) = π

4
[ε(t − 5) − ε(t − 15)] −

π

3
ε(t−25)+ 4π

9
ε(t−35)−ε(t−45) for t ∈ [0, 40], where ε(t) is the unit step signal. The experimental

results of tracking control are depicted in Fig. 17. Different from the simulation, it was observed that

the step amplitude in the penultimate term is reduced from
5π

6
to

4π

9
, expect for the step time delay of

5 s. The larger arm step amplitude necessitates a greater reverse overshoot prior to initiating the step.
However, in this experiment, it was observed that the pendulum fails to return to equilibrium when the
arm’s step amplitude exceeds 1.4 rad. This corresponds to a reverse overshoot that is approximately
greater than 0.3 rad.
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Figure 15: d1(t): Different frequencies are injected
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Figure 16: d2(t): Different frequencies are injected
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Figure 17: The tracking control results

5 Conclusion

This paper presents a reduced-order observer technique to estimate unmeasurable state variables
and integrate these estimates into a full-state feedback controller for RIP. By combining estimation
with measurement, a state feedback controller for RIP is designed based on the LQR technique. The
conclusion is summarized as follows:

(1) Numerical simulations show that the theoretically established linear controller is able to
stabilize the system rapidly.

(2) The balance control experiment confirmed that the RIP can be balanced below 50 Hz and
tracked well below 1.4 rad.

In summary, the controller demonstrates proficient performance in balance stabilization and
trajectory tracking, showcasing robustness against low-amplitude, high-frequency disturbances. These
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outcomes suggest that the proposed framework effectively contributes to both RIP balancing and
tracking, offering novel theoretical insights and practical applications for industrial use.

While this study primarily addresses linear control theory, the precise control of mechanical
systems warrants further exploration in the realm of nonlinear control algorithms. Consequently,
future work will delve into nonlinear control algorithms for underactuated systems.
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