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ABSTRACT

The global population has been and will continue to be severely impacted by the COVID-19 epidemic. The primary
objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other
fatal conditions such as cancer, heart disease, and diabetes. Here, using ordinary differential equations (ODEs),
two mathematical models are developed to explain the association between COVID-19 and cancer and between
COVID-19 and diabetes and heart disease. After that, we highlight the stability assessments that can be applied
to these models. Sensitivity analysis is used to examine how changes in certain factors impact different aspects of
disease. The sensitivity analysis showed that many people are still nervous about seeing a doctor due to COVID-19,
which could result in a dramatic increase in the diagnosis of various ailments in the years to come. The correlation
between diabetes and cardiovascular illness is also illustrated graphically. The effects of smoking and obesity are
also found to be significant in disease compartments. Model fitting is also provided for interpreting the relationship
between real data and the results of this work. Diabetic people, in particular, need to monitor their health conditions
closely and practice heart health maintenance. People with heart diseases should undergo regular checks so that
they can protect themselves from diabetes and take some precautions including suitable diets. The main purpose
of this study is to emphasize the importance of regular checks, to warn people about the effects of COVID-19
(including avoiding healthcare centers and doctors because of the spread of infectious diseases) and to indicate the
importance of family history of cancer, heart diseases and diabetes. The provision of the recommendations requires
an increase in public consciousness.
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1 Introduction

Epidemiology is a field of study that analyzes the causes of illness and health by addressing the
facts of a population [1]. Studies in this area have been mostly interested in infectious diseases until the
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twentieth century. Recently, other than transmitted diseases by infection, diseases like cardiac heart
diseases, diabetes, and stroke that can induce deaths worldwide have become a significant concern in
the health sciences [1].

A new field derived from the interaction between epidemiology and genetics over many years has
emerged, named genetic epidemiology. This new area concentrates on the connection between genetic
and environmental parameters during disease in a human population. Genetic epidemiology provides
benefits for comprehending the interaction between genetic roots and major chronic disorders like
coronary heart disease, cancer, and diabetes [2].

Cardiovascular disorders (CVDs) belong to the category of disorders involving blood veins
and the heart. There are a variety of cardiovascular disorders (CVDs), including coronary heart,
cerebrovascular, peripheral arterial, rheumatic heart, congenital heart, pulmonary embolism and deep
vein thrombosis [3].

Coronary heart disease (CHD) is a disorder of the blood veins providing for the heart muscle
[4]. CHD is a worldwide major chronic disease, and tobacco use, high cholesterol, an unhealthy diet,
alcohol use, and physical inactivity dramatically increase the risk of CHD. Additionally, one significant
risk of CHD is having a family history, especially a male family member under the age of 55 or a female
family member under the age of 65 with CHD. Approximately 17.9 million people passed away due
to CVDs in 2019. CVD is one of the leading causes of deaths globally, making up 32% of deaths
worldwide. Additionally, stroke and heart attacks cause 85% of deaths worldwide [5].

Cancer is another disorder that includes a wide group of diseases. It describes unpreventable
abnormal or damaged cell growth almost anywhere in human parts or organs. Cancer does not
differentiate between age, gender, family background, or other categories. However, cancer statistics
enable us to recognize the similarities and differences between categories identified with sex, age, ethnic
groups, etc. The mathematical model proposed in [6] provides a picture of cancer rates over time by
collecting information statistically. Cancer is classified in the first place by its founding in the human
body, like lung cancer, colon cancer, skin cancer, breast cancer, and prostate cancer. It can also be
classified by cell types like soft tissues, such as muscles, nerves, blood vessels, or deep skin [7,8].

According to the basic cancer facts, there are plenty of factors that raise the risk of having cancer.
High tobacco use, high alcohol use, and being overweight are some of these factors. These factors are
alterable within the realm of possibility. On the other hand, other risk factors are not modifiable, like
inherited genetic mutations [8]. Globally, roughly 10 million people passed away in 2020 from cancer
[9]. In other words, one in six deaths in 2020 was caused by cancer. The most common cancers are breast
cancer, with 2.26 million cases; lung cancer, with 2.21 million cases; and colon and rectum cancer, with
1.93 million cases. Prostate cancer and skin (non-melanoma) cancer are next in line [10]. In 2022, the
estimated number of new cases and deaths was 1.9 million and 609,360 in the U.S. Moreover, cancer
is the second-leading cause of death in USA [11].

Diabetes mellitus, simply called diabetes, is a disease caused by insufficient insulin production by
the pancreas. It leads to uncontrolled amounts of glucose or sugar in the human body [12]. The most
well-known categories are type 1 diabetes (5%) and type 2 diabetes (95%) in the obese community.
There are other categories of diabetes, such as diabetes LADA, diabetes MODY, and gestational
diabetes, which are rare and occur in the mutation of a single gene [13]. Statistically, around 442 million
people have diabetes worldwide, while 1.5 million people’s deaths are caused by diabetes every year [14].

Mathematical models allow us to foresee the future outcomes of an epidemic or health issues.
Besides this, they might be used as interpretive tools for the clarification of basic principles of



CMES, 2024, vol.140, no.1 487

transmission or extension [15,16]. Kermack and McKendrick increased the level of mathematical
epidemiology by proposing a new model concerning the spread of contagious diseases in 1927 [1]. The
first mathematical modeling of contagious diseases, by Daniel Bernoulli, was structured to determine
the impact of smallpox inoculation on the population. Due to the description of complicated mutual
interaction between human (or animal) hosts’ environment and biology, modern contagious disease
epidemiology mostly depends on mathematical models [17].

In recent years, the most well-known contagious disease has been the Coronavirus disease
(COVID-19), caused by the SARS-CoV-2 virus. COVID-19 is transmitted by liquid particles from
the mouth or nose of an infected person. It is categorized as a pandemic disease since it affects many
countries within international boundaries [18,19]. At the beginning of the pandemic, there was a large
concern about its contagiousness and fatality since the structure of the disease was unknown. However,
with the vaccination and some restrictions, the fatality of the disease was taken under control. Hence,
almost every restriction has been lifted.

In recent years, many articles have been published in mathematical modeling that analyze COVID-
19. Article [20] studied COVID-19’s epidemic development using a mathematical model in China. It
proposes an SEIR (a varied Susceptible, Exposed, Infectious, Recovered) model [21]. Research by
[22,23] and [24] studied the effect of vaccination on COVID-19 while [25] focused on both vaccination
and mobility. Mathematical models that include fractional orders are widely applied to COVID-19
in different regions with many different approaches [26–30]. The work by [31] discussed the change
in health behavior during the COVID-19 lockdown in the United Kingdom by applying descriptive
statistics. The methods of another field, machine learning, are applied in the paper [32] to examine the
transfusion of the best convalescent plasma for critical COVID-19 patients. The paper [33] deliberated
on artificial intelligence techniques concerning the detection and classification of medical images of
COVID-19. Also, in [34], artificial intelligence was applied to a fractional model dealing with COVID-
19. In the papers [35–37], the authors proposed fractional models for transmitting COVID-19 and Zika
viruses. More papers regarding COVID-19 and infectious diseases with mathematical models can be
found in [38–41].

Mathematical modeling plays a remarkable role in infectious (epidemic/pandemic) diseases and
chronic diseases. In the health sciences, mathematical models can be applied to identify the dynamics
and aspects of diseases such as cancer, coronary heart disease (CHD), and diabetes. In [42], the
proposed mathematical models provide approaches for a better understanding of the parameters of
chronic disorders.

This paper aims to present the effect of COVID-19 on other significant diseases, specifically
cancer, heart disease, and diabetes. This study aims to warn people and increase their awareness so
that the necessity of doctor and hospital visits in the upcoming years can be reduced. The presented
study has a significant role in health sciences by being one of the strong and rare models that discuss
the effect of the COVID-19 pandemic from different and serious perspectives. On that note, two
mathematical models are proposed: one for the relationship between cancer and COVID-19 and one
for the relationship between heart disease, diabetes, and COVID-19. This study aims to demonstrate
how doctor controls are important for the future of human beings and how COVID-19 will negatively
affect these doctor visits. In this regard, two mathematical models are constructed. In Sections 2–4,
models are given with the necessary existence theorems and proofs. Section 5 includes the sensitivity
analysis and its results as numerical simulations. The results and discussion, conclusions, and future
recommendations sections are explained in Sections 6–8, respectively.
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2 Materials and Methods

In this study, compartmental mathematical models are constructed. For the analysis of models,
invariance, basic reproduction numbers, and equilibrium point properties are obtained and proved.
Furthermore, for the effectiveness of parameters, sensitivity analysis is applied. All the data used in
this paper for both models are gathered from the references [4,43–46].

3 Construction and Analysis of the First Model

In this section, the first model of the paper is proposed, and the entity of the solution is
demonstrated. The model is constructed with the help of ordinary differential equations (ODEs) to
obtain the change in compartments at time t. Then, an analysis of the model is given.

3.1 Mathematical Model Formulation
The whole population, N, is divided into 2 compartments: susceptible individuals (S) and cancer

diagnosed individuals (C). That is, N(t) = S(t) + C(t), at time t. Positive and negative signs in the
equations of the below system (1) indicate the flow between compartments. In the model, π represents
the recruitment rate; f1 represents the transmission rate due to hereditary/family history; o represents
the rate of obese individuals with cancer; b represents the rate of smokers with cancer; γ represents
the recovery rate of cancer patients; μ represents the natural death rate and η represents the cancer-
caused death rates. In the study, parameter c (the negative effect of COVID-19), defines the rate of
cancer individuals who wave doctor checks aside because of lockdowns or COVID-19 scares. As a
result, individuals cannot be diagnosed earlier with cancer. The flow between compartments of the
model is illustrated in Fig. 1 as a flow diagram. The model is constructed by using a system of ODEs
as follows:

dS
dt

= π − f1CS − (o + b) S − μS + γ C + cC,

dC
dt

= f1CS + (o + b) S − μC − ηC − γ C − cC (1)

Figure 1: The flow diagram of the model (1)

In Tables 1 and 2, descriptions of variables and parameters are explained, respectively.

Table 1: Descriptions of variables

Variables Descriptions

S Susceptible individuals
C Cancer patients
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Table 2: Descriptions of parameters

Parameters Descriptions

π Recruitment rate
f1 Transmission rate of hereditary
o Rate of obese individuals with cancer
b Rate of smokers with cancer
γ Recovery rate
c Negative effect of COVID-19
η Disease-caused death rate
μ Natural death rate

Theorem 1. Let (S, C) be the solution of the constructed system with the initial conditions S ≥ 0 and
C ≥ 0. Then, the following set

� = {
(S, C) ∈ R2

+ : S + C ≤ π
}

is invariant and positive. Moreover, all of the solutions in R2
+ stay in Λ with respect to the constructed

system.

Proof of Theorem 1. By adding all of the terms that are on the right side of the proposed system,

dN
dt

= π − μ (S + C) − ηC

is obtained. From the equality, it can be seen that
dN
dt

≤ π always holds. Applying integration with

respect to t to both sides yields

N (t) et ≤ πet + k,

for some arbitrary constant k. After applying Rota and Birkhoff to the above differential inequality,
as t tends to infinity, ∞, 0 ≤ N ≤ π hold. As a result, the solutions of the system enter the region
�. Hence, the model is feasible in terms of biology, which is enough to consider the dynamics on the
model in �.

3.2 Equilibrium Points
For the constructed model, two equilibrium points, disease-free and endemic equilibrium points,

are evaluated. At the disease-free equilibrium point, denoted by E0,1, the disease is expected to die out.
In other words, for the presented model, E0,1 is the point where cancer does not exist in the population.
The endemic equilibrium point, E∗,1, is defined as the point where the disease is maintained with no
need for external inputs [47].

E0,1 of this model is unique and is obtained as

E0,1 = (
S0,1, C0,1

) =
(

π

o + b + μ
, 0

)
.
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It is obvious that E0,1 attracts the region so that

E0,1 = {(
S0,1, C0,1

) ∈ R+
2 : C = 0

}
.

The endemic equilibrium point, denoted by E∗,1, consists of S∗,1 and C∗,1. That is

E∗,1 = (
S∗,1, C∗,1

)
,

where S1 is the solution of

A
(
S∗,1

)2 + BS∗,1 + F = 0,

for

A = f1 [(o + b) (1 + γ + c) − (o + b + μ)] ,

B = (μ + η + γ + c) [(o + b) (1 − γ − c) + μ] − f1π ,

F = − (μ + η + γ + c) π ,

and

C∗,1 = (o + b) S∗,1

μ + η + γ + c − f1S∗,1

.

On the other hand, a real solution of the quadratic equation that depends on S∗,1 exists only if the
coefficient A is positive. That is, if

(o + b) (1 + γ + c) − (o + b + μ) > 0,

(o + b) (1 + γ + c) > (o + b + μ),

γ + c >
μ

o + b
.

This inequality always holds since the value of the natural death rate is very small.

Theorem 2. Disease Free Equilibrium, E0,1, is globally asymptotically stable whenever γ + c > f1.

Proof of Theorem 2. Consider the Lyapunov function

V (S, C) = S − S0,1 − S0,1ln
(

S
S0,1

)
+ C.

The above function is always positive and at the point E0,1, it is equal to 0. So, for the stability, it
is enough to show that V̇ is a definite negative [48,49].

V̇ = Ṡ − S0,1

Ṡ
S

+ Ċ

= π − (f1C + o + b + μ) S + (γ + c) C

− S0,1

S
[π − (f1C + o + b + μ) S + (γ + c) C] + (f1C + o + b) S

− (μ + η + γ + c) C.
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Since π = S0,1(o + b + μ),

π − (f1C + o + b + μ) S + (γ + c) C − S0,1

S
[π − (f1C + o + b + μ) S + (γ + c) C] + (f1C + o + b) S

− (μ + η + γ + c) C = π

(
2 − S0,1

S

)
+ (f1 − γ − c)

C
S

S0,1.

It is clear that 2− S0,1

S
< 0. Hence, for the condition V̇ < 0, f1 −γ −c < 0 should hold. Therefore,

E0,1 is globally asymptotically stable if γ + c > f1.

Theorem 3. Endemic Equilibrium, E∗,1, is globally asymptotically stable.

Proof of Theorem 3. For the proof of the above theorem, the following Lyapunov function is
constructed:

W (S, C) = S∗,1g
(

S
S∗,1

)
+ C∗,1g

(
C

C∗,1

)
,

where g (x) = x − 1 − ln x. The function W is positive, and W
(
S∗,1, C∗,1

) = 0. So, it is enough to show
that Ẇ < 0 [48,49].

Ẇ = Ṡ − S∗,1

Ṡ
S

+ Ċ − C∗,1

Ċ
C

= π − f1CS − (o + b) S − μS + γ C + cC

− S∗,1

S
[π − f1CS − (o + b) S − μS + γ C + cC] + f1CS + (o + b) S

− (μ + η + γ + c) C − C∗,1

C
[f1CS + (o + b) S − (μ + η + γ + c) C]

=π

(
1 − S∗,1

S

)
− μS − (μ + η) C < 0,

Thus, E∗,1 is globally asymptotically stable.

3.3 Parameter Fitting Using Real Clinical Data
In mathematical epidemiology, deterministic models of diseases rely significantly on data fitting to

verify that their predictions are in line with observed data. The capacity to predict the spread of disease
is enhanced since it simplifies the estimation of model parameters like transmission and recovery rates.
By contrasting the model with the data, researchers can learn more about illness trends, treatment
outcomes, and discrepancies and undertake what-if analyses. If policymakers had more faith in the
model’s projections, they could make more educated choices. Improving future model development is
another benefit of expanding the scientific knowledge base.

The least squares method has been extensively used in a wide variety of fields, from epidemiology
to finance, to estimate parameters in mathematical models. When developing a deterministic model for
infectious diseases, we first start with a set of differential equations that describe the dynamics of the
disease. These equations may contain imprecise values for parameters like the rate of transmission or
the rate of recovery. Model predictions produced with arbitrary settings for these parameters will not
match the observed data. Finding these parameters’ values that yield predictions as close to the data
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as possible is the goal. To strike this equilibrium, the least squares approach minimizes the squared
differences (also known as “residuals”) between the observed and expected values. Once the parameter
values have been obtained, the squared deviations between the model’s predictions and the data can be
easily calculated. Finding parameter values that minimize this sum is desirable since it indicates that
the model’s predictions are close to the data. The model’s parameters are considered to be “fit” to the
data once this constraint minimization is complete. With these modified parameters, the model should
more faithfully capture the dynamics of the infectious disease’s transmission and impact as observed
in the real world.

In epidemiology, fitting parameters to models using the ODE system in (1) demonstrates an
innovative strategy. Some of the complexity of pandemic spread may be better understood with
the use of deterministic models, such as those that use ordinary derivatives. However, such models
cannot make accurate predictions in the real world without trustworthy parameter-fitting methods
and high-quality data. For this purpose, we aspire to select authentic cancer patient clinical data,
such as COVID-19 daily confirmed cases from March 13 to April 01, 2023, as made available on the
Worldometer website [50]. Some of the model’s most crucial parameters are derived from the fitted
data, while others are taken from the cited analysis in the available literature. Fig. 2 displays the results
of a comparison between real clinical data and model (1) simulations, including residuals in Fig. 3 and
the corresponding box-plot in Fig. 4. Fig. 2 shows that the curve of the simulated data agrees well with
the actual clinical data, and the scatter in the associated residuals, as shown in Fig. 3. Lends credence
to this conclusion. A similar claim is valid for the box-plot in Fig. 4. The following initial conditions
are used during the simulations:

S (0) = 88780, C (0) = 491.

Figure 2: The comparison of simulations of model (1) with the real clinical data

Figure 3: Different types of residuals for the curve fitting of the model (1)
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Figure 4: The comparison of the box-plots for the real clinical data and the observed (predicted) data
from simulations of the model (1)

The fitted parameters are obtained as follows:

f _1 = 1.7576e − 04, b = 3.4756e − 02, o = 2.6415e − 01, c = 5.9183e + 01, and η = 5.6503.

The rest of the parameters are taken to be fixed and given to be μ = 1
75.6 ∗ 365

, π = 36.855 ∗ μ,

and γ = 0.1. It may be noted that the fitted R-squared value is 0.9987, showing a greater degree
of confidence in the estimated fitted parameters. With the above parameters, the least-squares curve
fitting of the model is shown below, and it has a high degree of agreement with the real clinical data.

It may further be seen that the statistical measures (minimum, first, second, and third quartile
(Q1, Q2, Q3), arithmetic mean, maximum, and standard deviation) computed in Table 3 are also in
very good agreement with each other. This enhances the validation and verification of the model (1)
since the standard deviation of magnitude 82.1, obtained under the simulations of the model (1), is
close enough to the standard deviation based on the real clinical data as shown in the last column of
Table 3.

Table 3: Descriptive summary of statistical measures for the model (1)

Summary Min. Q1 Q2 Q3 Mean Max SD

Real 2.65 ∗
10∧(2)

2.87 ∗
10∧(2)

3.43 ∗
10∧(2)

4.18 ∗
10∧(2)

3.74 ∗
10∧(2)

4.94 ∗
10∧(2)

8.33 ∗
10∧(1)

Observed 2.58 ∗
10∧(2)

2.97 ∗
10∧(2)

3.57 ∗
10∧(2)

4.35 ∗
10∧(2)

3.74 ∗
10∧(2)

5.15 ∗
10∧(2)

8.21 ∗
10∧(1)

4 Construction and Analysis of the Second Model

In this section, the model is proposed with proof of the existence of the solution. Afterwards,
analyses of equilibrium points are given.
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4.1 Mathematical Model Formulation
The population, which is stated by N, is separated into three compartments: susceptible individ-

uals (S), individuals who have heart disease (H), and diabetes-diagnosed individuals (D). That is,
N (t) = S (t)+ H (t)+ D(t), at time t. As in model (1), the positive and negative signs in the equations
of the below system (2) indicate the flow between compartments. In the model, � represents the
recruitment rate; f1 and f2 represent the transmission rate due to hereditary/family history; o represents
the rate of obese individuals with cancer; b represents the rate of smokers with cancer; γ1 and γ2

represent the recovery rate of heart-diseases patients and diabetes patients, respectively; μ represents
the natural death rate; η1 and η2 represent the heart diseases-caused and diabetes-caused death rates,
respectively. a is the transmission rate from the compartment H to the compartment D and e is the
transmission rate from the compartment D to the compartment H. In this study, parameters c1 and
c2 (negative effect of COVID-19) define the rates of heart and diabetes patients, respectively, who did
not attend doctor visits due to lockdown or fear of COVID-19. As a result, individuals cannot be
diagnosed earlier. The flow between the compartments of the model is illustrated in Fig. 5 in a flow
diagram. The model is built by using a system of ODEs as follows:

dS
dt

= � − (b + o) S − f1HS − f2DS + (c1 + γ1) H + (c2 + γ2) D − μS,

dH
dt

= (b + k1o) S + f1HS − (c1 + γ1 + μ + η1 + a) H + eD, (2)

dD
dt

= (1 − k1) oS + f2DS − (c2 + γ2 + μ + η2 + e) D + aH.

Figure 5: The flow diagram of the model (2)

An explanation of the variables and parameters is given in Tables 4 and 5.

Theorem 4. Assume that (S, H, D) is the solution of the constructed system above with the initial
conditions S ≥ 0, H ≥ 0, and D ≥ 0. Then, the following set

π = {
(S, H, D) ∈ R3

+ : S + H + D ≤ Λ
}

is positive, invariant, and the solutions in R3
+ stay in π with respect to the constructed system.
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Table 4: Descriptions of variables

Variables Descriptions

S Susceptible individuals
H Heart disease patients
D Diabetes patients

Table 5: Descriptions of parameters

Parameters Descriptions

Λ Recruitment rate
b Rate of smokers who are heart patients
k1o Rate of obese individuals who are heart patients
(1 − k1) o Rate of obese individuals who have diabetes
fi, i = 1, 2 Transmission rate of hereditary
ci, i = 1, 2 Negative effect of COVID-19
γi, i = 1, 2 Survival rate of diseases
μ Natural death rate
η1 Heart-disease-caused death rates
η2 Diabetes-caused death rates
a Transmission rate from H to D
e Transmission rate from D to H

Proof of Theorem 4. The addition of all of the terms that are on the right side of the system gives

dN
dt

= � − μ (S + H + D) − η1H − η2D.

From the above equality, it is obvious that
dN
dt

≤ �. Integrating both sides with respect to t yields

N (t) et ≤ �et + m,

for some constant m. Applying Rota and Birkhoff to the above differential inequality, it is obtained
that as t tends to infinity, 0 ≤ N ≤ � holds. As a result, the solutions of the system enter the region
π . Therefore, it is certain that the model is feasible by means of biology and it is enough to consider
the dynamics of the model in π .

4.2 Equilibrium Points
In the proposed model, there are two equilibrium points: the disease-free equilibrium point,

denoted by
(
E0,2

)
, and the endemic equilibrium point, denoted by

(
E∗,2

)
. E0,2 of this model is obtained

as

E0,2 = (
S0,2, H0,2, D0,2

) =
(

�

o + b + μ
, 0, 0

)
.
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Here, E0,2 attracts the region so that

E0,2 = {(
S0,2, H0,2, D0,2

) ∈ R+
3 : H = D = 0

}
.

The endemic equilibrium point, denoted by E∗,2, consists of S∗,2 and C∗,2. That is,

E∗,2 = (
S∗,2, C∗,2, D∗,2

)
,

where S∗,2 is the solution of

A
(
S∗,2

)4 + B
(
S∗,2

)3 + E
(
S∗,2

)2 + FS∗,2 + G = 0,

for

A = (b + k1o) f 2
2 + f1f 2

2 (1 − k1o − b + o + μ) ,

B = f1 f2 [�f2 + (c2 + γ2) (k1 − 1) o + (o + μ − k1o) (c2 + γ2 + μ + η2 + e)]

+ f2 {f2 (b + k1o) (−a − c1 − γ1) + [(c1 + γ1 + μ + η1 + a) f2

+(c2 + γ2 + μ + η2 + e)f1] (b + μ + k1o) − o} (μ + η + γ + c)

× [(o + b) (1 − γ − c) + μ] − f1π ,

E = �f2 [−f1 (c1 + γ1 + μ + η1 + a) f2 + (c2 + γ2 + μ + η2 + e) f1]

+ f2 (c1 + γ1 − k1o − b − μ) [(c1 + γ1 + μ + η1 + a) (c2 + γ2 + μ + η2 + e) − ea]

+ f2 (b + k1o) [(c1 + γ1) (c2 + γ2 + μ + η2 + e) + a (c2 + γ2)]

+ [(c2 + γ2 + μ + η2 + e) (b + k1o) + eo (1 − k1)] [(c2 + γ2 + μ + η2 + e) f1 − af2]

+ o (1 − k1) (c2 + γ2) [(c1 + γ1 + μ + η1 + a) f2 + (c2 + γ2 + μ + η2 + e) f1] ,

F = [(c1 + γ1 + μ + η1 + a) f2

+ (c2 + γ2 + μ + η2 + e) f1] [(c1 + γ1 + μ + η1 + a) (c2 + γ2 + μ + η2 + e) − ea] (b + o + μ − c1 − γ1)

+ � {(c2 + γ2 + μ + η2 + e) [(c1 + γ1 + μ + η1 + a) f2

+ (c2 + γ2 + μ + η2 + e) f1]

+f2 [(c1 + γ1 + μ + η1 + a) (c2 + γ2 + μ + η2 + e) − ea]}
− (c2 + γ2) {o (1 − k1) [(c1 + γ1 + μ + η1 + a) (c2 + γ2 + μ + η2 + e) − ea]

+a [(c2 + γ2 + μ + η2 + e) (b + k1o) + eo (1 − k1)]} ,

G = −� (c2 + γ2 + μ + η2 + e) [(c1 + γ1 + μ + η1 + a) (c2 + γ2 + μ + η2 + e) − ea]

and so

S∗,2 = � (c2 + γ2 + μ + η2 + e) ((c1 + γ1 + μ + η1 + a) (c2 + γ2 + μ + η2 + e) − ea) ,

H∗,2 =
[
(b + k1o)

(
c2 + γ2 + μ + η2 + e − f2S∗,2

) + (1 − k1) eo
]

S∗,2(
c1 + γ1 + μ + η1 + a − f1S∗,2

) (
c2 + γ2 + μ + η2 + e − f2S∗,2

) − ea
,
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D∗,2 = (1 − k1) oS∗,2

c2 + γ2 + μ + η2 + e − f2S∗,2

+
[
(b + k1o)

(
c2 + γ2 + μ + η2 + e − f2S∗,2

) + (1 − k1) eo
]

aS∗,2(
c2 + γ2 + μ + η2 + e − f2S∗,2

) [(
c1 + γ1 + μ + η1 + a − f1S∗,2

) (
c2 + γ2 + μ + η2 + e − f2S∗,2

) − ea
] .

Theorem 5. Disease Free Equilibrium, E0,2, is globally asymptotically stable whenever f1 < c1 + γ1

and f2 < c2 + γ2.

Proof of Theorem 5. Consider the below Lyapunov function

T (S, H, D) = S
(

S
S0,2

− 1 − ln
(

S
S0,2

))
+ H + D.

Here, the constructed function T is always positive and equal to zero at E0,2. So, it will be enough
to show that Ṫ < 0 holds [48,49].

Ṫ = S0,2

(
Ṡ

S0,2

− Ṡ
S0,2

S0,2

S

)
+ Ḣ + Ḋ

=� − �
S0,2

S
+ bS0,2 + oS0,2 + f1HS0,2 + f2DS0,2 − c1HS0,2

S
− c2DS0,2

S

− γ1HS0,2

S
− γ2DS0,2

S
+ μS0,2 − μ (S + H + D) − η1H − η2D

=�

(
1 − S0,2

S

)
+

(
f1 − c1

S
− γ1

S

)
HS0,2 +

(
f2 − c2

S
− γ2

S

)
DS0,2 − μ (S + H + D)

− η1H − η2D,

since � = S0(o + b + μ). It is obvious that 2 − S0

S
< 0. For the rest, if

f1 − c1

S
− γ1

S
< 0,

f1 <
c1

S
+ γ1

S
< c1 + γ1.

Similarly, if

f2 − c2

S
− γ2

S
< 0,

f2 <
c2

S
+ γ2

S
< c2 + γ2.

Hence, E0,2 is globally asymptotically stable if f1 < c1 + γ1 and f2 < c2 + γ2.

Theorem 6. Endemic Equilibrium Point, E∗,2, is globally asymptotically stable if
D∗,2

D
− H∗,2

H
< 0.
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Proof of Theorem 6. Consider the below Lyapunov function

X (S, H, D) = S∗,2

(
S

S∗,2

− 1 − ln
(

S
S∗,2

))
+ H∗,2

(
H

H∗,2

− 1 − ln
(

H
H∗,2

))

+ D∗,2

(
D

D∗,2

− 1 − ln
(

D
D∗,2

))
.

The constructed function X is positive for each value and equal to 0 at E∗,2. It is enough to show
that Ẋ < 0 is true [48,49].

Ẋ = Ṡ − S∗,2

S
Ṡ + Ḣ − H∗,2

H
Ḣ + Ḋ − D∗,2

D
Ḋ

= � − μS − �S∗,2

S
+ (b + o) S∗,2 + f1HS∗,2 + f2DS∗,2 − (c1 + γ1)

HS∗,2

S

− (c2 + γ2)
DS∗,2

S
+ μS∗,2 − (μ + η1) H − bS

H
H∗,2 − k1oS

H
H∗,2 − f1H∗,2S

+ (c1 + γ1) H∗,2 + (μ + η1) H∗,2 + aH∗,2 − eD
H

H∗,2 − (μ + η2) D − oS
D

D∗,2

+ k1oS
D

D∗,2 − f2SD∗,2 + (c2 + γ2) D∗,2 + (μ + η2) D∗,2 − aH
D

D∗,2 + eD∗,2

=�

(
1 − S∗,2

S

)
+ bS∗,2

(
2 − S

S∗,2

H∗,2

H

)
+ oS∗,2

(
2 − S

S∗,2

D∗,2

D

)

+ k1o
(

2 − H∗,2

H
− D∗,2

D

)
+ f1S∗,2H∗,2

(
1 − H

H∗,2

− S
S∗,2

)

+ f′S∗,2D∗,2

(
1 − D

D∗,2

− S
S∗,2

)
+ (eD + aH)

(
D∗,2

D
− H∗,2

H

)

< (eD + aH)

(
D∗,2

D
− H∗,2

H

)
.

So, Ẋ is negative only if(
D∗,2

D
− H∗,2

H

)
< 0.

According to the statistics proposed in [47] and [51], there are more diabetic patients than heart
patients in the world. Hence, for the stability of the endemic equilibrium point, this situation should

be reversed and
D∗,2

D
<

H∗,2

H
.

5 Sensitivity Analysis and Numerical Simulations

Sensitivity analysis is a method that can be applied to the parameters of any mathematical model
to identify the effect of the parameters on the compartments. This analysis aims to demonstrate how a
small change in parameters can affect whether a disease exists or dies out [43]. In this section, sensitivity
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analysis of the parameters is given separately for both models. Data for the parameters are taken from
the references [43–46,52]. All the computations have been accomplished by MatLab.

5.1 Sensitivity Analysis of the First Model
In this part, a sensitivity analysis is implemented to the parameters of the first model.

Figs. 6 and 7 show the expected pattern for cancer patients when the b and o values are increased,
respectively. In both cases, increases in the parameters will cause an increase in the C compartment.
Hence, an increase in the cancer patients is expected in the case of an increase in obesity (o) and
smoking (b).

Figure 6: Sensitivity analysis of parameter b in compartment C

Figure 7: Sensitivity analysis of parameter o in compartment C
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Figs. 8 and 9 present the effect of parameter c when it is increased and decreased, respectively.
Both of the figures emphasize the negative effect of COVID-19 pandemic on the diagnosis of cancer.

Figure 8: Sensitivity analysis of parameter c in compartment C when it is increased

Figure 9: Sensitivity analysis of parameter c in compartment C when it is decreased

5.2 Sensitivity Analysis of the Second Model
In this part, a sensitivity analysis is implemented to the parameters of the second model.

In Figs. 10 and 11, the effects of the parameters b and o on compartment H are given, respectively.
Increases in both smoking and obesity will lead to an increase in compartment H, as can be seen from
the figures.
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Figure 10: Sensitivity analysis of parameter b in compartment H

Figure 11: Sensitivity analysis of parameter o in compartment H

Fig. 12 represents what is expected to happen in compartment H when the percentage of
hereditary/family history, f1, increases. Figs. 13 and 14 show the compartment capacity in the case of
increases and decreases in parameter c1. Both of the figures emphasize the negative effect of COVID-19
pandemic on the diagnosis of heart-diseases.
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Figure 12: Sensitivity analysis of parameter f1 in compartment H

Figure 13: Sensitivity analysis of parameter c1 in compartment H when it is increased

Fig. 15 demonstrates the pattern of heart-diseased individuals in the case of an increase in diabetes.
This is the effect of diabetes on heart-diseases.

The effect of the obesity parameter, o, on compartment D is presented in Fig. 16, while Fig. 17
shows the effect of the hereditary/family history parameter, f2, on the same compartment.

Figs. 18 and 19 are revealed in order to show the significance of the COVID-19 parameter, c2,
on compartment D. Both of the figures emphasize the negative effect of COVID-19 pandemic on the
diagnosis of diabetes.
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Figure 14: Sensitivity analysis of parameter c1 in compartment H when it is decreased

Figure 15: Sensitivity analysis of parameter e in compartment H

Fig. 20 demonstrates the pattern of diabetes patients in the case of an increase in patients with
heart-diseases. This is the effect of heart-diseases on diabetes.

6 Results and Discussion

The main purpose of this study was to demonstrate how COVID-19 will affect the future of
chronic diseases such as cancer, heart disease, and diabetes. In this regard, two mathematical models
were proposed and proved with the required theorems. The first model consists of cancer-diagnosed
and susceptible individuals, while in the second model, heart disease patients, diabetic patients,
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and susceptible individuals are included. The reason for the two separate models is the unrelated
connection of cancer with heart disease and diabetes.

Figure 16: Sensitivity analysis of parameter o in compartment D

Figure 17: Sensitivity analysis of parameter f2 in compartment D

In the analysis of the first model, disease-free equilibrium, E0,1, and endemic equilibrium, E∗,1,
points are found with their existence proofs. Moreover, the globally asymptotically stability property
of both points is proved under some conditions. This suggests that there can be a population without
cancer disease at point E0,1 and an endemic situation at point E∗,1.
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Figure 18: Sensitivity analysis of parameter c2 in compartment D when it is increased

Figure 19: Sensitivity analysis of parameter c2 in compartment D when it is decreased

In the same manner, the analysis of the second model demonstrated two existing equilibrium
points for this model: the disease-free equilibrium point, E0,2, and the endemic equilibrium point,
E∗,2. Both points are globally asymptotically stable with necessary conditions, which means that it
is possible for the diseases to occur in both environments.
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Figure 20: Sensitivity analysis of parameter a in compartment D when it is decreased

In Section 5, a sensitivity analysis was applied to the parameters of both models. This analysis
aimed to specify the effects of the parameters on compartments C, H, and D. Figs. 6 and 7 demonstrate
the result of an increase in smoking and obesity, respectively. Increases in both parameters will lead to
an increase in the cancer compartment. However, even with a slight difference, the effect of smoking
is bigger than the effect of obesity in compartment C. Similar results were also found and emphasized
in papers [53–56]. In this model, the figure that shows the effect of hereditary transmission, f1, is not
given since the model did not present a meaningful result in this case. This result may be due to the
population studied in this paper. Since compartment C includes many cancer patients (not a specific
cancer type), the effect could not be seen. Many studies in the literature specify the relationship between
specific cancer types and hereditary/family history [57,58].

Fig. 8 shows the expectation when the effect of parameter c is increased. As expected, increases in
people’s fear of seeing doctors will lead to a huge decrease in the diagnosis of cancer. Fig. 9 presents
the situation of the cancer compartment a with a decreased c value. In this case, an increase is assumed
again. However, this increase is much smaller than the increase in Fig. 8. Both Figs. 8 and 9 are
a warning to the world about the COVID-19 pandemic. This problem can be solved by increasing
people’s awareness and encouraging them not to postpone their doctor visits.

Figs. 10 and 11 display the effects of smoking and obesity on heart disease patients. According to
the figures, an increase in both parameters will cause a rise in the H compartment. In papers [59]
and [60], it is also emphasized that smoking and obesity have a negative effect on heart diseases.
Hereditary factors play an important role in heart diseases, which is proposed in Fig. 12. The impact
of family history/hereditary factors on heart diseases is analyzed in papers [61] and [62]. Nevertheless,
the most significant parameter for heart disease is COVID-19, c1. It is obvious that c1 is a very efficient
parameter for the future patterns of heart disease. Both increases and decreases in this parameter cause
a fall in the compartment H, which emphasizes the importance of awareness about doctor visits and
COVID-19.

In [63], the authors dealt with the transmission of COVID-19 and the importance of preventive
measures and lockdowns. On the other hand, reference [64] focused on discussing the complications
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of COVID-19 disease in diabetes-diagnosed individuals. This study mostly focuses on the effect of
the COVID-19 lockdown on cancer, heart-related diseases, and diabetes-diagnosed individuals to
determine what is expected to happen for these diseases in the future because of this lockdown.

Figs. 16 and 17 demonstrate the pattern of diabetes patients when obesity and hereditary rates are
increased, respectively. In a recent study [65], the impact of both obesity and smoking were analyzed.
Authors of [65] also emphasized the importance of obesity and smoking in diabetes patients. Although
the increase in the parameters causes a rise in the pattern of the D compartment, the effect of hereditary,
f2, is greater. The effect of COVID-19 is meaningful in the D compartment as well. In Fig. 18, an
increase in parameter c2 causes a fall in compartment D because of undiagnosed patients. However,
for compartment D, even with a slight fall in parameter c2, diagnosis for those with diabetes will be
higher (Fig. 19). Figs. 15 and 20 are a warning that accentuates the relationship between diabetes and
heart diseases.

7 Conclusions

As a result of the figures from the models, it is concluded that obesity is an effective parameter
for the studied diseases and an increase in it will affect patients negatively. Smoking affects cancer and
heart disease patients badly in the case of utilization. Heredity is a significant parameter for patients
with diabetes and heart disease. Hence, people with a family history of these diseases should ensure that
they attend their doctor visits. In addition, there is a strong relationship that cannot be ignored between
diabetes and heart disease patients. As maintained in Figs. 15 and 20, people who are diagnosed with
diabetes should be more careful and conscious about heart diseases.

On the other hand, both of the models indicated that the most dangerous parameter for the disease
is c, (a negative effect of COVID-19), which is a result of the COVID-19 pandemic. In conclusion, the
results showed that being aware of COVID-19 and its results may lead to a substantial decrease in
deaths due to cancer, heart disease, and diabetes. That, combined with frequent doctor visits, could
lead to the earlier diagnosis and treatment of these diseases.

This paper is prepared to emphasize the impact of COVID-19 on other serious diseases. The main
purpose is to show that more epidemics and even pandemics may occur in the future in the case of
insufficient control strategies. The study revealed that one of the reasons for this is to avoid doctor visits
and regular checks because of the infectiousness of COVID-19. The presented study has a significant
role in health sciences by being one of the strong models that discuss the effect of COVID-19 pandemic
with different and serious perspectives.

8 Future Recommendations

The results of the sensitivity analysis should be utilized by healthcare systems and policymakers
to develop control strategies to achieve better public health. Because obesity is linked to numerous
health problems, tackling the issue is of the utmost significance. Public campaigns highlighting the
dangers of obesity for one’s health should be launched immediately. In addition, funding smoking
cessation programs is essential because of the harm that smoking causes to people with cancer and
cardiovascular diseases. These campaigns may include anything from a public information campaign
to the distribution of free or low-cost cessation aid and community resources. Genetic counselling
can be extremely helpful for people who have a history of diabetes or cardiovascular disease in
their families. Individuals can learn more about the hazards they face and receive direction on
how to mitigate those dangers during these sessions. Furthermore, given the well-documented link
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between diabetes and cardiovascular disease, timely health checks are crucial. Patient results can
be vastly improved by combining these checks with a holistic healthcare approach incorporating
multidisciplinary teams. Cancer, heart disease, and diabetes are only some of the diseases whose rates
and consequences have been significantly affected by the COVID-19 pandemic and its aftermath.
Therefore, efforts to inform the public about the long-term consequences of the virus’s spread are
crucial. The transmission of the virus and the ensuing health consequences can be reduced by ensuring
universal vaccination and the use of preventative measures. At the same time, there is a critical need
for more in-depth studies to understand the entire extent of the virus’s potential health effects. This
knowledge is essential for the development of future public health treatments with greater precision.
Individuals can be better prepared for disease treatment and prevention with the use of an integrated
patient education framework that includes information on disease risks, symptom awareness, and the
benefits of early diagnosis. Disease transmission that relies on memory qualities may also be better
described by mathematical modeling with fractional derivatives [66–69], which is expected to increase
degrees of freedom in the choice of order of the derivative. Finally, in order to effectively address the
highlighted health risks and issues, it is essential to promote collaborations across health organizations,
government bodies (Nongovernmental organizations), N.G.O.s, and other stakeholders.
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