
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.048016

ARTICLE

Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology
Optimization Method Based on Stress Constraint

Zibin Mao1, Qinghai Zhao1,2,* and Liang Zhang1

1College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China
2National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao University,
Qingdao, 266071, China

*Corresponding Author: Qinghai Zhao. Email: zqhbit@163.com

Received: 25 November 2023 Accepted: 11 January 2024 Published: 16 April 2024

ABSTRACT

This paper proposes a multi-material topology optimization method based on the hybrid reliability of the
probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of
mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to
describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered
solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of
all elements are integrated into a global stress measurement that approximates the maximum stress using the
normalized p-norm function. Furthermore, the sequential optimization and reliability assessment (SORA) is
applied to transform the original uncertainty optimization problem into an equivalent deterministic topology
optimization (DTO) problem. Stochastic response surface and sparse grid technique are combined with SORA
to get accurate information on the most probable failure point (MPP). In each cycle, the equivalent topology
optimization formula is updated according to the MPP information obtained in the previous cycle. The adjoint
variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method
(MMA) is used to update design variables. Finally, the validity and feasibility of the method are verified by the
numerical example of L-shape beam design, T-shape structure design, steering knuckle, and 3D T-shaped beam.
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1 Introduction

In practical engineering disciplines, like machinery, automotive, and aerospace, among others.
Uncertainty factors, such as loadings, materials, and dimensional errors, are highly prevalent. These
uncertain pieces of information inevitably lead to fluctuations in structural performance and even
failures [1,2]. Therefore, reliability-based topology optimization (RBTO) is particularly crucial in
structural design.
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In structural topology optimization design, stress-constrained topology optimization poses sig-
nificant challenges. During the solving process, there are singular problems, localized stress character-
istics, and highly nonlinear stress constraints that need to be addressed [3–6]. Effective methods are
required to solve problems. Xu et al. [7] proposed a design method for maximizing the geometrically
nonlinear continuum stiffness with stress constraint. The method effectively reduces singularity
issues by utilizing the discrete variable-based Bi-directional Evolutionary Structural Optimization
(BESO) method. Lee et al. [8] proposed a method for lightweight design with maximum stress
constraint, based on p-norm regularization, was proposed. The method improves the P-norm and
addresses its limitations. Wu and Tseng [9] modified differential evolution (DE) and proposed a
new stress-based binary decomposition mechanism, which is more efficient in structural topology
optimization. Deaton et al. [10] optimized thermoelastic structures with stress constraints. However,
the aforementioned studies on stress-constrained are primarily focused on deterministic topology
optimization (DTO). Silva et al. [11] compared three topology optimization methods considering stress
constraint under uncertain loads and provided the similarities and differences between the different
methods. This provides some insights into the direction of stress-constrained optimization.

In general, structural topology optimization is mostly carried out under the condition of deter-
ministic factors, but there are many uncertainties in practical engineering, which mainly include
stochastic uncertainty and epistemic uncertainty [12–14]. The former is objective and usually takes
a probabilistic approach [15]. The latter is primarily attributed to subjective constraints or insufficient
information obtained through non-probabilistic methods. To solve the influence of uncertain factors
on structural failure, RBTO is applied to structural optimization design. Kharmanda et al. [16]
introduced reliability constraints into the topology optimization model. Wang et al. [17] proposed a
framework based on non-probabilistic RBTO. Meng et al. [18] proposed an RBTO method based on
fuzzy and probabilistic theories and an efficient single-loop optimization method, which decomposed
multi-group optimization problems into deterministic optimization problems. Xia et al. [19] proposed a
sequential strategy for RBTO. Wang et al. [20] applied RBTO to the optimization of fail-safe structures
using moving morphable bars for the structural fail-safe design. However, the above-mentioned
studies mostly focus on single materials. Multi-material structures have wide application potential
in automotive, aerospace, and other engineering fields. The application of multiple materials often
allows for the full utilization of different material properties, while also enabling better cost control
and achieving lightweight designs [21,22].

To better meet the demands of structural applications, the applications of multiple materials are
developing day by day. Xu et al. [23] proposed a dynamic response RBTO method based on the BESO
approach and validated the effectiveness of his method. Zhao et al. [24] considered the influences
of factors such as incomplete measurements, inaccurate information, and limited knowledge, and
developed a reliability-constrained multi-material topology optimization method. Doan et al. [25]
proposed a method to meet structural stiffness requirements. Chen et al. [26] proposed a topological
formulation for thermos-elastic structures with combined effects of mechanical loads and thermal
loads under transient conditions. The formulation incorporated stress constraints and provided clear
topological structures for multi-material combinations at different temperatures. Cheng et al. [27]
proposed a multi-material topology optimization method based on non-probabilistic reliability and
verified its effectiveness, but only for the cognitive epistemic uncertainty, the influences of stochastic
uncertainty and epistemic uncertainty on structural design are not considered at the same time.

A probability-ellipsoidal hybrid RBTO multi-material topological optimization method with
stress constraints is proposed to solve the structural failure problem caused by stochastic uncertainty
and epistemic uncertainty of mechanical loads in multi-material structural design. Combine the
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probabilistic model with the non-probabilistic ellipsoid model. Sequential optimization and reliability
assessment (SORA) is combined with the stochastic response surface method and sparse grid tech-
nique to obtain accurate probable failure point (MPP) and search for reliable structural design. The
rest of the paper is structured as follows: Section 2 establishes the ordered solid isotropic material
with penalization (ordered-SIMP) multi-material interpolation model. Section 3 describes the multi-
material topology optimization (MMTO) problem. Section 4 establishes the model of MMTO based
on stress constraints. Section 5 introduces the probabilistic model and the non-probabilistic ellipsoid
model. A probability-ellipsoid hybrid reliability multi-material topology optimization mathematical
model with stress constraints is established. Stochastic response surface and sparse grid technology are
introduced. Section 6 presents sensitivity analysis and filtration. Section 7 expounds SORA strategy
method. In Section 8, the proposed method is compared with DTO through numerical examples.
Section 9 presents the conclusion and prospect.

2 Multi-Material Interpolation Model

For the MMTO with stress constraint, it is essential to make a discretization of the design region
and implement a normalization approach to address material density and modulus of elasticity. The
mathematical model is expressed as follows:{

ρNe
j = ρj/ρmax

ENe
j = Ej/Emax

(1)

where ρ j
Ne and Ej

Ne are the density of material j and elastic modulus, respectively. ρ j and Ej are the
actual density and elastic modulus, respectively. ρmax and Emax are the maximum density and elastic
modulus.

According to ordered-SIMP [28], the mathematical model is as follows:

Ee
i
(ρe) = AE

i
ρe

pi + BE
i i ∈ [I,II] (2)

where Ee
i denotes the elastic modulus of multi-material interpolation, PI and PII are the elastic modulus

interpolation factor and the stress penalty factor, respectively, AE
i and BE

i are the proportionality
coefficient and translation coefficient, respectively, can be expressed as follows:

AE
i = Ej

Ne + Ej+1
Ne(

ρj
Ne
)pi − (ρj+1

Ne
)pi

(3)

BE
i = Ej

Ne − AE
i
(
ρj

Ne
)pi (4)

where E j+1
Ne is the elastic modulus of j+1 after interpolation, and Ne is expressed as a total number of

elements. The three-material interpolation model is shown in Fig. 1. The discrete MMTO problem is
transformed into an optimization problem with continuous variable values between [0,1].
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Figure 1: Multi-material interpolation model based on ordered-SIMP

3 Description of Multi-Material Topology Optimization Problem

In the structural design, the multi-material structure uses different materials to adapt to the
performance requirements of different locations, breaking through the limitations of a single-material
structure. It has higher overall and local performance. To give full play to the performance advantages
of multi-material structures, MMTO is used to obtain structures with optimal performance that meet
the design requirements [29]. The development of additive manufacturing also enables the MMTO.
This paper seeks an optimal multi-material structure design under stress constraint and volume
minimization. The multi-material structure design is shown in Fig. 2.

Figure 2: Description of the design domain for multi-material elastic structure

For the elastic structure under the structure field, the total equilibrium equation is:

K (ρ) U (ρ) = Fm (5)

where K (ρ), U (ρ) and Fm are respective global stiffness matrix, node displacement vector and node-
independent external mechanical load vector, respectively.
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K (ρ) consists of the element stiffness matrix, as follows:

K (ρ) =
Ne∑
e=1

Ke (6)

The element stiffness matrix is expressed as follows:

K e =
∫

�e

BT
e DeBehd�e (7)

where Be is the element strain displacement matrix, h is the planar element thickness, De is the elastic
matrix of the element material, it is expressed as follows:

De = EI
eE0D0 = (AI

E

(
ρe

)pI + BI
E

)
E0D0 (8)

where D0 is the elastic matrix of solid material, and E0 is the initial modulus of elasticity. A two-
dimensional problem is expressed as follows:

D0 = 1
1 − μ

⎡⎢⎣1 μ 0
μ 1 0

0 0
1 − μ

2

⎤⎥⎦ (9)

where μ is the Poisson’s rate.

4 Deterministic Topology Optimization Formulation
4.1 Mathematical Model of Deterministic Topology Optimization

For the DTO of elastic structures, stress constraint is taken into account [30]. The minimization
of volume is taken as the objective function. The mathematical model of DTO is expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

find ρ

min V(ρ) =
Ne∑
e=1

ρeve

s.t. K(ρ)U(ρ) = Fm

σ VM
e ≤ σs (e = 1, 2, · · · , Ne)

0 < ρmin ≤ ρe ≤ 1 (e = 1, 2, · · · , Ne)

(10)

where V (ρ) is objective function volume, ve is the volume of the element, σ e
VM is von Mises stress for

each element, and σ s is the material yield stress limit.

4.2 Global P-Norm Stress Measure
The phenomenon of singular optimal solution exists in stress constraint, computation surge

caused by a considerable amount of localized stress limitations, and the profoundly non-linear nature
of stress constraint [31,32]. Therefore, it is necessary to use different power indexes to punish stress.
The element stress penalty scheme is expressed as follows:

σ e (ρ) = (AE
II
(
ρ j

Ne
)pII + BE

II
)
σ e0 (11)

where σ e (ρ) is element stress after interpolation, σ e0 is initial element stress, it is expressed as follows:

σ e0 = E0D0B0U e (12)
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For two-dimensional problems,

σ e0 = [σex, σey, τexy

]
(13)

where σ ex and σ ey are the stress components in the x and y directions of element e, respectively, and
τ exy is the shear stress components on the xy planes of element e.

Based on the equivalent stress expression, von Mises stress is expressed as follows:

σ VM
e = √σ T

e Mσ e (14)

where σ e
VM is the element von Mises stress. According to the fourth strength theory, the matrix of

coefficient M is expressed as follows:

M =
⎡⎣ 1 −0.5 0

−0.5 1 0
0 0 3

⎤⎦ (15)

To reduce the burden of local stress calculation, the aggregation p-norm function is expressed as:

σ PN =
(

Ne∑
e=1

(
σ VM

e

σs

)p
) 1

p

(16)

where p is the stress norm parameter, σ PN is the integrated global stress, it is equal to max (σ e
VM/σ s).

However, increasing the value of p enhances the nonlinearity of the condensation function, which
can result in oscillations during the optimization solution process [33]. To overcome the defect of p,
the constraint equation of the correction coefficient is introduced, expressed as:

σ
PN = cpσ

PN ≤ 1 (17)

where the correction factor can be expressed as:

cp = max
(
σ VM

e

)
σs · σ PN

(18)

5 Probabilistic-Ellipsoid Hybrid Reliability Topology Optimization with Stress Constraint
5.1 Description of Variables of Probability-Ellipsoid Hybrid Reliability Model

In practical engineering, there are uncertain variables, such as the geometric size of the structure,
and the randomness of material properties and loads. Some uncertainties can be characterized by
probability, but some need to be treated as bounded uncertainties due to the lack of sufficient sample
data [34]. In this case, random variables and uncertain but bounded variables can be combined to
solve similarly complex uncertainty problems [35]. Probability theory and ellipsoid model are used to
describe the random variation of X = (X 1, X 2, . . . , X n) T and uncertain variables of Y = (Y 1, Y 2, . . . ,
Y n)T.

X ∼ {fX (Xi)} i = 1, 2, · · · , n (19)

EY0 ,A =
{

Y
∣∣∣(Y − Y0

)T
A
(
Y − Y0

) ≤ 1,Y ∈ Rn
}

(20)

where f X (X i) is the probability density function of random variable X, EY
o, A expresses n-dimensional

ellipsoidal uncertainty field, Y0 is the center of the ellipsoid, A is the characteristic matrix, Y =
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(Y 1,Y 2, . . . ,Y n)T is the central point vector of an ellipsoidal set of uncertain variables, Rn is n-
dimensional space.

Fig. 3 shows a two-dimensional ellipsoid model. To determine such an ellipse, it is necessary to
know the central coordinates of the ellipse, the length of the two half-spindles, and the Angle θ (0
≤ θ ≤ π /2) between the Y 1 axis and the first axis. By combining a matrix with geometric quantity,
numerical characteristics such as mean value, variance, and covariance of ellipsoid variables can
represent geometric quantity [36,37]. According to the two-dimensional ellipsoid model diagram, the
ellipsoid is projected on the Y i (i = 1, 2) axis as a bounded line segment, its interval can be denoted
as Y i

I = [Y i
1, Y i

2]. The mean Y i
a, radius Y i

R, and variance Y i
R of the ellipsoidal variables Y i can be

defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y a
i = Y 1

i + Y 2
i

2
i = 1, 2

Y R
i = Y 2

i − Y 1
i

2
i = 1, 2

D (Yi) = (Y r
i

) =
(

Y 2
i − Y 1

i

2

)2

i = 1, 2

(21)

Figure 3: Two-dimensional ellipsoid model

Through the above elliptic numerical features, the covariance matrix C of an n-dimensional
ellipsoid is expressed as follows:

C =

⎛⎜⎜⎝
D (Y1) Cov (Y1, Y2) · · · Cov (Y1, Yn)

D (Y2) · · · Cov (Y2, Yn)
. . .

...
Sym. D (Yn)

⎞⎟⎟⎠ (22)

where the covariance is expressed as follows:

Cov (Y1, Y2) = (r2
1 − r2

2

)
sin θ cos θ (23)
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The characteristic matrix of elliptic model A is expressed as follows:

A = C−1 (24)

When constructing an elliptical model with sample data, there are infinitely many ellipses that
satisfy the condition of including all sample data Y (r) (r = 1, 2, . . . , s). When high-quality samples
accurately reflect the boundaries of the parameters, among the countless ellipses that satisfy the
condition, we select the one with the smallest volume. Therefore, the construction of the elliptical
model can be transformed into an optimization problem, expressed as:⎧⎨⎩

min
A, Y 0

∏n

i=1 ri (A)

s.t.
(
Ỹ (r) − Ỹ 0

)T
A
(
Ỹ (r) − Ỹ 0

) ≤ 1 (r = 1, 2, · · · , s)
(25)

Although the ellipsoidal model is well established, it should be normalized into a spherical model
before uncertainty quantification. The uncertainty principle of bounded uncertain parameter Y =
(Y 1, Y 2, ..., Y n)T can be expressed:

Ui = Yi − Y 0
i

Y w
i

i = 1, 2, · · · , n (26)

The equivalent ellipsoidal model obtained in U-space is expressed as follows:

E0,� = {U|UTAUU ≤ 1, U ∈ Rn
}

(27)

where AU is the characteristic matrix of the equivalent ellipsoidal modal model in U-space. Performing
Cholesky decomposition on the characteristic matrix AU, expressed as:{

PTAUP = �

PTP = I (28)

where Λ is the eigenvalue matrix of AU, I is an identity matrix and P is an orthogonal matrix.

Introduce a normalized vector ξ . The equivalent ellipsoid model can be transformed into the unit
sphere model Eξ , expressed as:

Eξ = {ξ |ξ T
ξ ≤ 1, ξ ∈ Rn

}
(29)

As shown in Fig. 4, the ellipsoidal model is transformed into the spherical model.

Figure 4: Ellipsoid standardized process
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Through transformation, the variable relationship between the standard ξ space and the Y space
can be expressed as follows:

ξ = �
1
2 PTU (30)

Further transformation, Y can be expressed as follows:

Y = diag
(
Y W
) (

PT
)−1
(
�

1
2

)−1

ξ + Y0 (31)

where diag (Y w) is an n-dimensional diagonal matrix with its diagonal elements.

5.2 Mathematical Model of Probability-Ellipsoid Reliability Topology Optimization
Considering both probability and non-probability cases in uncertainty, a probabilistic - ellipsoid

hybrid reliability topology optimization mathematical model was established, expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

find ρ

min V(ρ) =
Ne∑
e=1

ρeve

s.t. Pr [G (ρ, X, Y) ≤ 0] = Pf ≤ P∗
f

Pf = ∫
G≤0

fX,Y (X, Y) d(Xi ,Yj)

0 < ρmin ≤ ρe ≤ 1(e = 1, 2, · · · , Ne)

(32)

where V (ρ) is objective function volume, ve is the volume of elements, X and Y are vectors of random
variables and vectors of ellipsoid variables, respectively, G is the limiting state function, Pr is the symbol
of probability, Pf is the symbol for the probability of failure, Pf

∗ is allowable failure probability.

5.3 The Index of Hybrid Reliability
In probability and ellipsoid hybrid reliability analysis, the limit state function G is expressed by

the structural carrying capacity as follows:

G (ρ, X, Y) = R − S = σs − σ VM
e (ρ, X, Y) (33)

where R and S are the structural resistance and the load variable [38]. Considering that uncertainty
variables may result in von Mises stress exceeding the material’s yield strength limit at certain locations
in the structure, leading to the possibility of failure. Therefore, the term R denotes the yield strength
of the material σ s, and S denotes σ e

VM. The failure or critical region is denoted as: G (ρ, X, Y) = 0,
failure state and safety state are denoted as: G (ρ, X, Y) < 0 and G (ρ, X, Y) > 0. As shown in Fig. 5,
u1 and u2 are standard normal random variables, ξ 1 and ξ 2 are standard variables.

The first-order reliability method (FORM) is an approximate analytical method [39,40]. It can be
employed to convert the calculation of failure probabilities into the determination of mixed reliability
indices βm, which is the minimum distance from the initial position to the G with the most probable
point (MPP) being searched. Due to its simplicity and efficiency, FORM has found wide application
in reliability analysis research. By utilizing the FORM, it is possible to transform the constraint of
failure probabilities into the constraint of mixed reliability indices, expressed as:⎧⎨⎩

βm = −�−1
(
Pf

)
β∗

m = −�−1
(
P∗

f

)
Pf ≤ P∗

f ⇒ βm ≥ β∗
m

(34)

where β∗
m is the target reliability index.
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Figure 5: Geometric description of the hybrid reliability metric

Random variable X can be converted into a standardized normal random variable u through the
normalization method. For uncertain variables Y, for which it is not easy to get distribution infor-
mation. Therefore, the aforementioned ellipsoidal standardization method can be used to transform
them into a standard ξ variable, expressed as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u = X − μX

σX

ξ = Λ
1
2 PT

(
Y − Y0

)
β∗

m = ‖u‖ + ‖ξ‖
(35)

where μX and σ X donate the mean and the standard deviation associated with X.

5.4 Search for the Most Probable Failure Point
In reliability-based topology optimization design, when conducting reliability analysis, it is

necessary to use the stochastic response surface method to approximate the construction of the
objective function, facilitating the search for the MPP [41]. The sample points required for the
stochastic response surface method are selected based on sparse grid techniques, which significantly
enhance the accuracy of the constructed model and provide more precise results.

In complex structure analysis, the expression of the objective function is often fuzzy, which
brings difficulty to conventional calculation. The stochastic response surface method approximates
the function relationship between variables and outputs in uncertain problems through specialized
sampling and polynomial expansion. For random output response values Y that follow a standard
normal distribution, they can be expressed by using Hermite polynomials as follows:
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Y = a0y0 +
k∑

l1=1

al1
y1

(
xl1

)+
k∑

l1=1

l1∑
l2=1

al1 l2
y2

(
xl1

, xl2

)

+
k∑

l1=1

l1∑
l2=1

l2∑
l3=1

al1 l2 l3
y3

(
xl1

, xl2
, xl3

)+ · · · (36)

where a0, al1, al1l2, and al1l2l3 are undetermined coefficients, k denotes the number of random variables,
and yn denotes the Hermite polynomial of order n. For example, when k = 3, n = 3, response surface
model can be expressed as follows:

Y = a0 + a1x1 + a2x2 + a3x3 + a4

(
x1

2 − 1
)+ a5x1x2

+ a6

(
x2

2 − 1
)+ a7x2x3 + a8

(
x3

2 − 1
)+ a9x1x3 (37)

The key to the application of the response surface method lies in the determination of undeter-
mined coefficients. By applying the least squares method, the solution for undetermined coefficients
is expressed as follows:

a = (f Tf
)−1

f TG (38)

where G is the sampling point limit state function vector, and f is the sample point base matrix.

To obtain random response surface sample points. The sparse grid technique is applied to
uncertainty analysis, utilizing the Smolyak algorithm-based sparse grid method [42]. Tensor product
rules based on sparse grids can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Qd
l (f ) =

∑
l+1≤|k|≤l+d

(−1)
l+d−|k|

(
d − 1

l + d − |k|
)(

Q1
k1

⊗ · · · ⊗ Q1
kd

)
(f )

Ud
l = U

l+1≤|k|≤l+d

(
U 1

k1
⊗ · · · ⊗ U 1

kd

)
wi = (−1)

l+d−|k|
(

d − 1
l + d − |k|

)(
wi1

k1
⊗ · · · ⊗ wid

kd

) (39)

where l denotes accuracy, d denotes dimensionality of the variable space, Q (f ) denotes sparse grid
integration formula, ⊗ denotes tensor product operation, |κ | denotes summation of multidimensional
indices, and Ul

d denotes integration points in a d-dimensional variable space. wi denotes the weight
of the i-integration point.

Sparse grid techniques generate different types of sparse grids depending on the integration rule
used. This paper troughed the Cleanshaw-Curtis to select samples. Based on the Gauss-Chebyshev
integration rule [43], the experimental sample points selected based on the Clenshaw-Curtis sparse
grid are shown in Fig. 6 in this paper.
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Figure 6: Sample space for experimental design (d = 3; m = 25)

6 Sensitivity Analysis and Filtration

By introducing Lagrange multipliers, the Lagrange function for stress constraint can be estab-
lished as follows:

L = σ
PN − λT

(KU − Fm) (40)

The sensitivity of the design variable ρe is expressed as follows:

∂L
∂ρe

= ∂σ
PN

∂ρe

− λT

(
∂K
∂ρe

U + K
∂U
∂ρe

− ∂Fm

∂ρe

)
(41)

According to the chain rule, the sensitivity of the design variable σ
PN can be expressed as follows:

∂σ
PN

∂ρe

=
Ne∑
e=1

cp

∂σ PN

∂σ VM
e

(
∂σ VM

e

∂σ e

)T
∂σ e

∂ρe

(42)

According to Eq. (16), the P function provides the derivative information of the von Mises stress
concerning each component, expressed as:

∂σ PN

∂σ VM
e

=
(

Ne∑
e=1

(
σ VM

e

σs

)p
) 1

p −1 (
σ VM

e

σs

)p−1 1
σs

(43)

For a plane structure problem, the derivative of element stress concerning stress components can
be calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂σ VM
e

∂σex

= 1
2σ VM

e

(
2σex − σey

)
∂σ VM

e

∂σey

= 1
2σ VM

e

(
2σey − σex

)
∂σ VM

e

∂τexy

= 3τexy

σ VM
e

(44)



CMES, 2024, vol.140, no.1 769

Combine Eqs. (2), (11) and (12), the derivative of stress components concerning design variables
can be obtained as follows:
∂σ e

∂ρe

= dEII
e (ρe)

dρe

E0D0Bcue + EII
e (ρe) E0D0Bc

∂ue

∂ρe

(45)

Consider the load design independence and bring Eqs. (45) into (42), then substitute them into
Eq. (41) to obtain:

∂L
∂ρe

=
Ne∑
e=1

cp

∂σ PN

∂σ VM
e

(
∂σ VM

i

∂σ e

)T (dEII
e (ρe)

dρe

E0D0Bcue + EII
e (ρe) E0D0Bc

∂ue

∂ρe

)

− λT

(
∂K
∂ρe

U + K
∂U
∂ρe

)
(46)

Expand Eq. (50) and merge terms of the same kind, expressed as:
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(47)

Eliminate the derivation of displacement to the design variable and establish the adjoint vector
equation:

Kλ =
Ne∑
e=1

cp

∂σ PN

∂σ VM
e
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e (ρe) E0B

T
c DT
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(
∂σ VM

e
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(48)

Then the corresponding sensitivity is:

∂L
∂ρe

=
Ne∑
e=1

cp

∂σ PN

∂σ VM
e

(
∂σ VM

e

∂σ e

)T dEII
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where the sensitivity of the stiffness matrix is expressed as follows:

∂K
∂ρe

=
Ne∑
e=1

dEI
e (ρe)

dρe

E0

∫
�e

BT
e D0Behd�e (50)

The sensitivity of the total volume concerning the design variables is expressed as follows:

∂V
∂ρe

= ve (51)

To avoid excessive intermediate density units, density filtering technology is used to suppress them,
which is expressed as:

ρe =
∑

i∈Ne
Heixi∑

i∈Ne
Hei

(52)

where xi is the design variable of the unit, Ne is a collection of units in the neighborhood of element e,
and Hei is a linear distance function.
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To control the minimum size of the topology structure and obtain a clear topology configuration,
the Heaviside function is used to map the element density variables [44]. The mapping relationship is
expressed as follows:

ρe = tanh (ψθ) + tanh (ψ (ρe − θ))

tanh (ψθ) + tanh (ψ (1 − θ))
(53)

where Ψ is the mapping parameter, and θ is the mapping threshold parameter. Density mapping
variables are calculated by applying density filters and mapping functions to design variables. For
sensitivity consistency, the chain rule is expressed as follows:

∂s
∂xj

=
∑
e∈Nj

∂s
∂ρe

∂ρe

∂ρe

∂ρe

∂xj

=
∑
e∈Nj

Hje∑
i∈Ne

Hei

ψ
(
1 − tanh2

(ψ (ρe − θ))
)

tanh (ψθ) + tanh (ψ (1 − θ))

∂s
∂ρe

(54)

where s is the objective function or constraint function.

7 Sequential Optimization and Reliability Assessment (SORA)

The probabilistic-ellipsoid hybrid reliability-based topology optimization with SORA includes
two sequentially executed parts: DTO and post-analysis of reliability. The main process consists of the
following steps:

Step 1: Perform DTO with the mean values of the uncertain variables treated as deterministic
parameters.

Step 2: The Performance Measure Approach (PMA) is used for reliability analysis to solve for the
MPP that satisfies the required level of reliability [45]. The random variables are modified.

Step 3: According to the DTO model, the optimal structure is determined by solving the
optimization problem. In each loop, the information obtained from the MPP in the previous cycle
is used to update the topology optimization model until the desired performance metrics are achieved
and convergence is reached.

The mathematical model is expressed as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

ρ
V (ρn)

s.t. G
(
ρ(n), X∗(n−1), Y∗(n−1)

) ≥ 0

h
(
ρ(n)
) = σs − σ VM

e

(
ρ(n)
) ≥ 0

0 < ρmin ≤ ρn
e < ρmax ≤ 1

(55)

where h (ρ (n)) denotes the deterministic constraint function, n denotes the number of loops, X∗(n-1) and
Y∗(n-1) denote the MPP in the uncertain variable space relative to the limit state in the (n-1) loop. Both
are obtained through the transformation of the corresponding standard variable space’s MPP point
u∗(n-1) and ξ ∗(n-1), expressed as:{

X∗(n−1) = T−1
(
u∗(n−1)

)
Y∗(n−1) = T−1

(
ξ

∗(n−1)
) (56)

In the (n-1) loop, through inverse reliability analysis to obtain u∗(n-1), mathematical model is
expressed as follows:
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⎧⎪⎪⎨⎪⎪⎩
minu,δ g (u, ξ)

s.t. ‖u‖ + ‖ξ‖ = β∗
m

δ
T
δ ≤ 1

(57)

In solving the optimization problem with the aforementioned equality constraint, an additional
approach called the advanced mean value (AMV) was used, in addition to conventional mathematical
programming algorithms. The iteration format is expressed as follows:(

u(n+1), ξ (n+1)
) = −β∗

m

∇u,δg
(
u(n), ξ

(n)
)∥∥∇u,δg

(
u(n), ξ

(n)
)∥∥ (58)

The specific optimization flowchart is shown in Fig. 7.

Figure 7: Hybrid reliability topology optimization workflow diagram

8 Numerical Examples

Three examples of structures are presented, namely the L-shaped beam, T-shaped structure, and
steering knuckle of the vehicle, considering stress constraint in the probabilistic-ellipsoid hybrid multi-
material reliability-based topology optimization were selected to validate the validity of the proposed
method. The Young’s modulus E0 = 2.1 × 105, Poisson’s ratio μ = 0.3, p-norm factor p = 8, stress
penalty factor PII = 0.8, density penalty factor PI = 3. The density of the initial element is 1 and the
initial volume of the structure is V0. V/ V0 is the fraction of the initial volume of the structure to the
volume of the optimized structure (V). The ordered-SIMP method is applied to normalize the three
selected materials. The normalization scheme for material densities is presented in Table 1.
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Table 1: Normalization scheme for material densities

Materials ρN EN Color setting

L-shaped beam

Void 0 0
A 0.4 0.3
B 0.8 0.7
C 1.0 1.0

T-shaped structure

Void 0 0
A 0.4 0.3
B 0.8 0.7
C 1.0 1.0

Steering knuckle

Void 0 0
A 0.3 0.3
B 0.6 0.7
C 1.0 1.0

3D T-shaped beam

Void 0 0
A 0.3 0.7
B 0.5 0.8
C 1.0 1.0

8.1 2D L-Shaped Beam Structure
As shown in Fig. 8. The design domain has dimensions of 100 mm × 100 mm and a thickness of

1 mm. Its number of quadrilateral elements is 6400. The L-shaped beam structure is clamped at the top
end, and mechanical loads are applied to the upper right end of the structure. The loads are uniformly
distributed over six adjacent nodes to prevent stress concentration. Mechanical loads at each node:
Fx

m, Fy1
m, and Fy2

m. The stress constraint value is 240 MPa.

Figure 8: Geometric configuration of an L-shaped beam
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In reliability analysis, the random variable is Fx
m. It fits the normal probability distribution and

the standard deviation is 5% of the mean. Fy1
m and Fy2

m are non-probabilistic ellipsoid variables. As
shown in Fig. 9, A is the ellipsoidal eigenmatrix and Y0 is the center of the ellipsoid. Mechanical loads:
Fx

m = 50 N, Fy1
m = 350 N, Fy2

m = 100 N. The response surface coefficients for the build are shown in
Table 2, ξ 1, ξ 2 and u standardized variable values for the corresponding variables Fy2

m, Fy1
m, and Fx

m.
The sensitivity values to random variables are shown in Table 3. The three variables, Fy2

m, Fy1
m, and

Fx
m have different degrees of influence on the output.

Figure 9: Ellipsoidal model

Table 2: Random response surface coefficient

It. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 −0.0297 −0.0463 −0.0786 0.0039 −0.0142 0.0330 −0.0144 0.0000 0.0059 −0.0000
2 0.1706 −0.0339 −0.0745 0.0043 −0.0001 0.0002 −0.0002 0.0000 −0.0000 −0.0000
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
5 0.2078 −0.0453 −0.0526 0.0031 −0.0001 0.0004 −0.0003 0.0000 −0.0001 −0.0000
6 0.2079 −0.0452 −0.0527 0.0031 −0.0001 0.0004 −0.0003 0.0000 −0.0001 −0.0000
Note: Functional functions: g (u, ξ ) = a0 + a1u + a2ξ1 + a3ξ2 + a4 (u2–1) + a5uξ1 + a6 (ξ1

2–1) + a7ξ1ξ2 + a8 (ξ2
2–1) + a9uξ2.

Table 3: The value of sensitivity to random variables

It. dg1 (ξ 1) dg2 (ξ 2) dg3 (u)

1 −0.0770 −0.1954 −0.0035
2 −0.0334 −0.0752 −0.0043
··· ··· ··· ···
5 −0.0449 −0.0531 −0.0031
6 −0.0448 −0.0532 −0.0031

As shown in Fig. 10. The stress is concentrated at the corner of the L-shaped beam, so it is
necessary to consider stress constraint. Fig. 11 shows the DTO process involves the variation of stress
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distribution throughout the configuration. As the iteration process continues, the stress distribution
changes accordingly, and the stress concentration is relieved. As shown in Fig. 12, material A occupies
the majority of the region. Due to the higher stress distribution at the corners of the structure, the
concentration of materials is more pronounced, with the presence of material C and a small amount
of material B. There is also a small amount of material B distributed in other parts of the beam to
accommodate the increase in local stress.

Figure 10: Initial Von Mises stress distribution diagram

(a) It.1 (b) It.20 (c) It.40 (d) It.150 

Figure 11: Structural evolution for DTO with stress distribution (a–d)

(a)  (b) 

Figure 12: DTO results of structure: (a) Optimized structure, (b) Von Mises stress distribution
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Table 4 shows the configuration of the structure changes of the probability-ellipsoid hybrid
reliability topology optimization process. The adopted posterior decoupling strategy also plays a
corresponding role. During the three external cycles, the first step in each cycle is to continue the
optimization based on the results obtained in the previous cycle. Both the structure and material
distribution undergo significant changes and finally converge to the optimal configuration. Increasing
the distribution of intermediate materials has a more significant effect in obtaining a more reliable
configuration. The resulting configuration of RBTO is shown in Fig. 13, the stress concentration is
alleviated. Materials A and B constitute a substantial proportion of the overall configuration. Due to
the high level of stress distribution at the corners, there is a higher concentration of materials in those
areas. Material C is primarily concentrated at the corners to adapt to high levels of stress distribution.

Table 4: Hybrid reliability iterative process

It.0 It.60 It.150

1

2

. . . . . . . . . . . .

6

Comparing Figs. 12 and 13, based on the optimization results of RBTO and DTO,both RBTO
and DTO have alleviated stress concentration. However, as shown in Fig. 14, the result of RBTO has
a greater distribution of materials B and C, indicating structural changes. The structure becomes more
reliable.
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)b()a(

Figure 13: RBTO results of structure (β∗
m = 3): (a) Optimized structure, (b) Von Mises stress

distribution

Figure 14: The proportion of materials in the optimized structure: (a) DTO and (b) RBTO

As shown in Table 5, RBTO, compared to DTO, resulted in a 10.5% increase in volume ratio
in the topology optimization results, and the reliability index has improved. The reliability index
of DTO approaches zero, indicating a higher probability of structural failure. Then RBTO shows
a higher distribution of materials in the resulting configuration compared to DTO. Although the
maximum stress changes are relatively small, there is indeed a reduction and the stress distribution
in the structure becomes more uniform. Therefore, the proposed approach can significantly enhance
structural reliability.

Table 5: DTO and RBTO results in data

Approach Volume
fraction (%)

Reliability
index (β∗)

Max von mises
stress (MPa)

MPP (ξ 1, ξ 2, u)

DTO 19.7 1.7802 × 10−5 239.704 (-, -, -)
RBTO (SORA) 30.2 3.0000 239.440 (1.2167, 2.7377, 0.1561)

Fig. 15 shows the iteration curves for DTO and RBTO. Compared with DTO, under stress
constraints, RBTO describes uncertainty variables by probability and ellipsoid models, takes into



CMES, 2024, vol.140, no.1 777

account the uncertainty of mechanical load, and obtains a more reliable structure between the
uncertainty domain of structural parameters and the fault domain. Therefore, the maximum von Mises
stress of RBTO fluctuates less during iteration, once again highlighting the necessity and effectiveness
of reliability analysis for elastic structural optimization problems with stress constraint.

Figure 15: Volume fraction and maximum von Mises stress iteration curves: (a) DTO, (b) RBTO

8.2 2D T-Shaped Structure
As shown in Fig. 16, the design domain has dimensions of 120 mm × 80 mm and a thickness of

1 mm. Its number of quadrilateral elements is 6000. The bottom of the T-shaped structure is clamped.
Fx

m is applied at the top midpoint of the structure, Fy1
m and Fy2

m are applied in the upper left 1/6 and
upper right 1/6 of the structure. Fx

m = 180 N, Fy1
m = 280 N, Fy2

m = 200 N. The stress-constraint value
is 245 MPa.

Figure 16: Geometric configuration of T-shaped structure
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In reliability analysis, the random variable is Fx
m. It fits the normal probability distribution and

the standard deviation is 10% of the mean. Fy1
m and Fy2

m are ellipsoid variables. As shown in Fig. 17,
A is the ellipsoidal eigenmatrix and Y0 is the center of the ellipsoid. The response surface coefficients
for the build are shown in Table 6, taking β∗

m = 3 as an example, ξ 1, ξ 2, and u standardized variable
values for the corresponding variables Fx

m, Fy1
m, and Fy2

m.

Figure 17: Ellipsoidal model

Table 6: Random response surface coefficient (β∗
m = 3)

It. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 −0.1331 −0.0724 −0.0006 −0.0341 −0.0468 0.0230 −0.0331 0.0370 −0.0495 0.0753
2 −0.1115 −0.0074 −0.0047 −0.0758 −0.0115 0.0052 −0.0011 −0.0024 −0.0068 0.0175
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
7 0.1124 −0.0050 −0.0038 −0.0798 −0.0128 0.0050 −0.0008 −0.0037 −0.0078 0.0195
8 0.1123 −0.0048 −0.0039 −0.0801 −0.0126 0.0051 −0.0010 −0.0036 −0.0079 0.0194
Note: Functional functions: g (u, ξ ) = a0 + a1u + a2ξ1 + a3ξ2 + a4 (u2–1) + a5uξ1 + a6 (ξ1

2–1) + a7ξ1ξ2 + a8 (ξ2
2–1) + a9uξ2.

The initial stress distribution of the structure is shown in Fig. 18. The stress is concentrated at
the corners of the T-shaped structure, so it is necessary to consider stress constraint. Fig. 19b shows
the stress concentration is significantly alleviated through DTO. As shown in Fig. 19a, material A
occupies the majority of the region. In the higher stress distribution, the concentration of materials
is more pronounced, with the presence of material C and material B. There is also a small amount
of material B distributed in other parts of the beam to accommodate the increase in local stress. As
shown in Figs. 20 and 21, materials A and B occupy the majority of the area in the reliability analysis.
Due to the high stress level at the bottom and corner of the structure, the concentration of materials
is more pronounced, with the presence of material C and material B. In other parts of the structure,
there is also a small amount of material B distributed to accommodate the increased local stress.
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Figure 18: Initial stress distribution diagram

Figure 19: DTO results of structure: (a) Optimized structure; (b) Von Mises stress distribution

Figure 20: RBTO results of optimized structure: (a) β∗
m = 3, (b) β∗

m = 4, (c) β∗
m = 5
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Figure 21: RBTO results of von Mises stress distribution: (a) β∗
m = 3, (b) β∗

m = 4, (c) β∗
m = 5

In combination with Fig. 22, it would be more visually intuitive to observe the changes in structure
and material distribution under DTO and different reliability indices. In the results of RBTO, there
is a higher distribution of materials B and C, and these materials are distributed more extensively
in regions with higher stress levels. The structure changes. With the increase in the reliability index,
there is an increasing distribution of materials B and C and the structure has significant changes. As
shown in Table 7, comparing the results of DTO and RBTO with three different reliability indices.
The reliability index of DTO approaches zero, indicating a higher probability of structural failure.
The RBTO results with three different reliability indices show an increase in volume ratio compared to
the DTO topology optimization results. Moreover, as the reliability index increases, the optimization
results exhibit a corresponding increase in volume. In summary, compared to DTO, RBTO shows
significant differences in both the structure and material distribution and has an improved reliability
of the structure. Under the selected reliability index, as the reliability index increases, the structure
becomes more reliable.

Figure 22: (Continued)
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Figure 22: The proportion of materials in the optimized structure: (a) DTO, (b–d) RBTO

Table 7: DTO and RBTO results in data

Approach Volume
fraction (%)

Reliability
index (β∗)

Max von mises
stress (MPa)

MPP (ξ 1, ξ 2, u)

DTO 16.70 2.0802 × 10−5 244.941 (-, -, -)
RBTO (SORA) 17.80 3.0000 244.970 (2.1241, 1.2293, 1.7254)

21.30 4.0000 244.894 (1.7734, 3.3150, 1.3659)
23.70 5.0000 244.580 (2.1754, 4.1647, 1.7097)

Fig. 23 shows the iteration curve graphs for DTO and RBTO with three different reliability indices.
RBTO shows smaller fluctuations in the maximum von Mises stress during the iteration process. With
the increase of the reliability index, the distance between the domain of uncertainty and the fault
domain allowed by the structure’s parameter changes becomes larger. Therefore, the obtained structure
is more reliable, the iteration converges faster.

Figure 23: (Continued)
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Figure 23: Volume fraction and maximum von Mises stress iteration curves: (a) DTO, (b–d) RBTO

8.3 Steering Knuckle Structure
As a crucial component of the automotive suspension system, the steering knuckle plays a vital role

in the steering and braking processes of a vehicle. It directly bears the vertical, lateral, and longitudinal
forces from the road surface, which are transmitted to the wheels and further conveyed to other
components through the steering knuckle. Due to its function, the steering knuckle needs to possess
high strength and operate under complex working conditions. As shown in Figs. 24 and 25, taking the
steering knuckle of a Formula racing car as the research subject, considering its typical design.

Figure 24: (a) The typical style and assembly relationship of the steering knuckle, (b) Front view of the
steering knuckle model

The steering knuckle experiences complex loading conditions, particularly in typical combined
steering and braking scenarios. It primarily undergoes vertical, lateral, and longitudinal loads, with
fixed constraints applied at the wheel hub bearing mounting holes.

To simplify the calculations, the design of the structure is illustrated in Fig. 25a. The steering
knuckle structure has a thickness of 1 mm and consists of 2444 quadrilateral elements. The red-colored
positions form a complete circle in which the structure is clamped and mechanical loads are uniformly
distributed around the 6 bolt holes. Fx1

m = Fx2
m = Fx3

m = Fx4
m = Fy1

m = Fy2
m = 100 N, Fx5

m = Fx6
m =

Fy3
m = Fy4

m= 70 N. The stress-constraint value is 235 MPa.
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Figure 25: (a) Two-dimensional design domain of the steering knuckle and (b) Initial Von Mises stress
distribution diagram

In reliability analysis, the random variable is Fy3
m. It fits the normal probability distribution and

the standard deviation is 5% of the mean. Fx5
m and Fx6

m are ellipsoid variables. As shown in Fig. 26,
A is the ellipsoidal eigenmatrix and Y0 is the center of the ellipsoid. The response surface coefficients
for the build are shown in Table 8, ξ 1, ξ 2 and u standardized variable values for the corresponding
variables Fx5

m and Fx6
m.

Figure 26: Ellipsoidal model
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Table 8: Random response surface coefficient

It. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 0.2005 −0.0498 −0.0071 −0.0123 −0.0216 0.0067 −0.0000 −0.0060 −0.0029 0.0139
2 0.2177 −0.0358 −0.0162 −0.0144 0.0007 −0.0002 0.0009 0.0016 0.0000 0.0037
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
5 0.2209 −0.0295 −0.0140 −0.0176 0.0009 −0.0003 0.0011 0.0002 0.0000 0.0004
6 0.2190 −0.0297 −0.0142 −0.0174 0.0008 −0.0003 0.0011 0.0002 0.0000 0.0004
Note: Functional functions: g (u, ξ ) = a0 + a1u + a2ξ1 + a3ξ2 + a4 (u2–1) + a5uξ1 + a6 (ξ1

2–1) + a7ξ1ξ2 + a8 (ξ2
2–1) + a9uξ2.

As shown in Fig. 25b, the structure has a significant stress concentration, so it is necessary to
consider stress constraints. Fig. 27b shows the stress concentration is significantly alleviated through
DTO. As shown in Figs. 28a and 29, materials A and C occupy the majority of the region. The region
with higher stress levels exhibits a more pronounced concentration of material B.

Figure 27: DTO results of steering knuckle structure: (a) Optimized structure, (b) Von Mises stress
distribution

Comparing Figs. 27 and 28, the optimization results from RBTO and DTO indicate that the stress
concentration is alleviated. But materials B and C are distributed more prominently, and structure has
significant changes for RBTO compared to DTO.

As shown in Table 9, compared to DTO, RBTO results in an increase in volume ratio in the
optimized topology, and the reliability index has improved. The reliability index of DTO approaches
zero, indicating a higher probability of structural failure. The results obtained from RBTO show a
higher distribution of material B. Although the maximum stress changes are relatively small, there is
indeed a reduction. Therefore, the proposed approach can significantly enhance structural reliability.
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Figure 28: RBTO results of steering knuckle (β∗
m = 4). (a) Optimized structure, (b) Von Mises stress

distribution

Figure 29: The proportion of three materials in the optimized structure: (a) DTO and (b) RBTO

Table 9: DTO and RBTO results in data

Approach Volume fraction
(%)

Reliability index
(β∗)

Max von mises
stress (MPa)

MPP (ξ 1, ξ 2, u)

DTO 12.44 2.6658 × 10−5 234.848 (-, -, -)
RBTO (SORA) 13.66 4.0000 233.526 (2.9776, 1.3866, 2.2827)

Fig. 30 shows the iteration curves for DTO and RBTO. During the iterative process, RBTO effec-
tively reduces the maximum von Mises stress, reaching convergence and showing smaller fluctuations
in the maximum. So, reliability analysis is necessary and effective for elastic structural optimization
problems with stress constraints.
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Figure 30: Volume fraction and maximum von Mises stress iteration curves: (a) DTO, (b) RBTO

8.4 3D T-Shaped Beam
As shown in Fig. 31. The design domain has dimensions of 80 mm × 50 mm × 4 mm. The loads

are uniformly distributed over five adjacent nodes. Mechanical loads at each node: Fx1
m, Fx2

m, and Fy
m.

The stress constraint value is 235 MPa.

Figure 31: Geometric configuration of T-shaped structure

In reliability analysis, the random variable is Fx2
m. It fits the normal probability distribution and

the standard deviation is 10% of the mean. Fx1
m and Fy

m are non-probabilistic ellipsoid variables. As
shown in Fig. 32, A is the ellipsoidal eigenmatrix and Y0 is the center of the ellipsoid. Mechanical
loads: Fx1

m = 45 N, Fx2
m = 30 N, Fy

m = 30 N. The response surface coefficients for the build are
shown in Table 10, ξ 1, ξ 2 and u standardized variable values for the corresponding variables Fx2

m, Fx1
m,

and Fy
m.
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Figure 32: Ellipsoidal model

Table 10: Random response surface coefficient

It. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 −0.1335 −0.0008 −0.0735 −0.0403 −0.0803 0.1607 −0.0672 −0.0245 0.0165 0.0167
2 0.1692 −0.0181 −0.0573 −0.0122 −0.0008 −0.0034 −0.0182 0.0242 −0.0089 0.0011
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
7 0.2074 −0.0113 −0.0480 −0.0247 −0.0001 −0.0051 −0.0215 0.0335 −0.0132 −0.0024
8 0.2075 −0.0113 −0.0480 −0.0247 −0.0001 −0.0051 −0.0215 0.0335 −0.0133 −0.0024
Note: Functional functions: g (u, ξ ) = a0 + a1u + a2ξ1 + a3ξ2 + a4 (u2−1) + a5uξ1 + a6 (ξ1

2−1) + a7ξ1ξ2 + a8 (ξ2
2−1) + a9uξ2.

Compared with Figs. 31, 33, 34, and Table 11, the optimization of RBTO and DTO alleviates
the stress concentration. Compared with DTO, RBTO has a higher reliability index as the structure
volume increases, the distribution of material B and C increases, and the optimized structure is more
reliable. As shown in Figs. 35 and 36, the proportion of B and C materials increased after RBTO
and the RBTO stress constraint iteration curve can converge faster. The example further verifies the
feasibility and effectiveness of the proposed method in 3D structure optimization.

Figure 33: DTO results of steering knuckle structure: (a) Optimized structure, (b) Von Mises stress
distribution
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Figure 34: RBTO results of steering knuckle structure: (a) Optimized structure, (b) Von Mises stress
distribution

Table 11: DTO and RBTO results in data

Approach Volume fraction
(%)

Reliability index
(β∗)

Max von mises
stress (MPa)

MPP (ξ 1, ξ 2, u)

DTO 14.81 2.6658 × 10−5 234.924 (-, -, -)
RBTO (SORA) 21.22 4.0000 234.704 (0.3236, 3.5125, 1.8861)

Figure 35: The proportion of materials in the optimized structure: (a) DTO and (b) RBTO
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Figure 36: Volume fraction and maximum von Mises stress iteration curves: (a) DTO, (b) RBTO

9 Conclusion

This paper integrates reliability analysis and ordered-SIMP material interpolation model into
stress-constrained topology optimization of multi-material structures under mechanical loads. By
considering mechanical loads as uncertain variables and combining probability and ellipsoid models,
the conclusions of the numerical example are as follows:

(1) Compared with DTO, hybrid RBTO (SORA), considering stochastic uncertainty and epis-
temic uncertainty, alleviates the stress concentration while increasing the volume of the structure
and having more material distribution in the area with higher stress level, reduces the probability of
structural failure caused by parameter uncertainty, and the structure has higher reliability.

(2) Based on the iteration curves of the objective function and the maximum von Mises stress, the
method shows stable convergence. Among the selected reliability indicators, as the reliability indicator
increases, the topological structure of the design exhibits variations. The volume ratio increases, and
there is a greater distribution of high-performance materials, resulting in a more reliable structure.

(3) Hybrid RBTO (SORA) combined with stochastic response surface and sparse grid technology
can effectively achieve accurate MPP search, which has important practical significance in solving
stress constraint problems under external load stochastic uncertainty and epistemic uncertainty.

(4) The aforementioned examples all involve single-field topology optimization of structural
domains. Further exploration can be done by incorporating multi-field coupling in the optimization
process in future studies to enhance the proposed method.
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