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ABSTRACT

To enhance the comprehensive performance of artillery internal ballistics—encompassing power, accuracy, and
service life—this study proposed a multi-stage multidisciplinary design optimization (MS-MDO) method. First,
the comprehensive artillery internal ballistic dynamics (AIBD) model, based on propellant combustion, rotation
band engraving, projectile axial motion, and rifling wear models, was established and validated. This model was
systematically decomposed into subsystems from a system engineering perspective. The study then detailed the
MS-MDO methodology, which included Stage I (MDO stage) employing an improved collaborative optimization
method for consistent design variables, and Stage II (Performance Optimization) focusing on the independent
optimization of local design variables and performance metrics. The methodology was applied to the AIBD
problem. Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation
counts, thereby accelerating system-level convergence. Meanwhile, Stage II optimization markedly enhanced
overall performance. These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.

KEYWORDS
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Nomenclature

e1 Powder thickness
W0 Propellant chamber
tsh Rifling depth
lbd Bourrelet-to-rifling distance
lc Mass eccentricity of the projectile
W Rotating band width
lRB Rotating band location
α Forcing cone angle
a Anode width
b Groove width
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ω Powder mass
dRB Outer diameter of the rotating band
lRB The rotating band location
lp Powder length
dp Powder aperture
W0 Propellant chamber
l0 Chamber volume-to-bore area ratio
pd Projectile base pressure
pm Maximum chamber pressure
�t Increment time step
fR Engraving resistance
ux Projectile axial displacement
uy Projectile lateral displacement
uz Projectile vertical displacement
vx Projectile axial speed
vxm Projectile axial speed at the muzzle
vy Projectile lateral speed
vz Projectile vertical speed
�x Projectile axial angular displacement
�y Projectile lateral angular displacement
�z Projectile vertical angular displacement
�x Projectile axial angular speed
�y Projectile lateral angular speed
�z Projectile vertical angular speed
�ym The projectile lateral angular displacements at the muzzle
�zm The projectile vertical angular displacements at the muzzle
�ym The projectile lateral angular speed at the muzzle
�zm The projectile vertically angular speed at the muzzle
WSS Maximum value of ablative wear
WJX Maximum value of mechanical wear
ηfR The normalized engraving resistance coefficient,
ηvm The normalized initial muzzle velocity coefficient
ηds The normalized projectile disturbance coefficient at the muzzle
ηls The normalized service life coefficient
φ∗ Regularization factor
λi Weight coefficient
F0 Global objective function
f s The primary objective of the overall system function
z Shared variable of the system level
ẑs The shared parameters from the system pass to the subsystem
xi The design variables of the ith subsystem
x̂i The parameter passed to the system level by the ith subsystem
xLi Local design variables in subsystem i
ys The coupled state variable in the system
ŷs The coupled parameters from the system pass to the subsystem
yi The coupling variable of the ith subsystem
ŷi The parameter of the coupling state passed to the system level by the ith subsystem
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J∗
s Consistency constraints

Ji The consistency constraint of the ith subsystem
gs System-level constraints
gi The constraint of the ith subsystem
Jsysi The consistency constraint function for subsystem i
Jsubi Subspace objective function in the subspace i
n The number of test samples, the number of subsystems
s The dynamic relaxation factor
λ Control factor
ε The inter-disciplinary inconsistency information
ε1 The three inter-disciplinary inconsistency information of the RBE model
ε2 The three inter-disciplinary inconsistency information of the PAM model
ε3 The three inter-disciplinary inconsistency information of the RAME model
∗̂ Parameter, copy of design variables provided by the system-level
∗̂a Parameters, copy of design variables provided by the subspace a
∗̂b Parameters, copy of design variables provided by the subspace b
∗̂c Parameters, copy of design variables provided by the subspace c
fij Output response of the subsystem analyzers
f̃ij Approximate response of the subsystem analyzers
yi The actual response of the finite element model for each test sample
yi The average of the actual responses
ŷi The surrogate model response for each test sample
R2 Determination coefficient

1 Introduction

Artillery retains its crucial role in modern warfare, not only due to its battlefield importance but
also due to advancements in internal ballistics, which significantly improves firing power and accuracy.
The artillery’s internal ballistic system is an intricate assembly involving the propellant, the projectile,
and the barrel. The sequential processes of propellant ignition and combustion, the engraving of the
rotation band upon the projectile, and the projectile’s subsequent axial progression through the barrel
constitute the entirety of the internal ballistic launch sequence. Within this firing process, internal
ballistic parameters are intricately interlinked; minute variations in any parameter may precipitate
substantial effects on the overall launch performance. Consequently, a holistic optimization of the
internal ballistic firing process is essential for enhancing the overall performance of the artillery firing
sequence.

There are three methods to optimize the internal ballistic firing performance of an artillery. The
first one is to build independent optimization models for each stage. For propellant performance
enhancement, Gonzalez [1] pioneered the enhanced Lagrange multiplier method for propellant
particle design in 1990. Subsequently, in the field of propellant combustion model optimization, the
research groups of Li et al. [2], Cheng et al. [3], Xin et al. [4], and other research teams [5,6] have made
remarkable progress. These teams have used various intelligent optimization algorithms to optimize
and improve propellant parameters and propellant combustion model. However, the propellant model
could not predict the attitude of the projectile at the muzzle, and the research on the fusion of the
gunpowder combustion model and projectile motion simulation software brings new perspectives.
Hu et al. [7] optimized the parameters of engraving bands and rifling during the extrusion process
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by orthogonal design. On the other hand, the research by Yang et al. [8], Zhang et al. [9,10], and
others [11] ignored the extrusion of the banding process to optimize the interaction of the projectile in
the rifling process; moreover, the firing accuracy improved through intelligent optimization methods
[12], uncertain optimization method [8] and robust game theory methods [13] by Yang’s group. In
the field of rifling wear, a finite element model (FEM) of rifling wear was established by Ding et
al. [14,15], and Li et al. [16,17] established a unified thermochemical erosion-mechanical wear model
to achieve the prediction of the full rifling wear amount in the barrel and analyzed the influence
of the structural parameters of the bore on the firing performance and service life of the artillery.
However, these methods are all local stages of optimization of artillery firing performance, and cannot
comprehensively and integrally optimize the comprehensive performance of artillery.

The second method is to construct a comprehensive dynamic model that simultaneously covers the
burning of the firing charge, the engraving of the rotation band, and the movement of the projectile
inside the barrel [18,19]. Such as Sun et al. [18] developed an overall FEM containing the rotation
band engraving and projectile motion, and investigated the influencing parameters. However, the
model for different stages of artillery firing has different scales and parameters, and constructing such
a model is undoubtedly highly complex, and the computational cost can become a great challenge
when performing large-scale calculations for optimization design, and few researchers have used such
a model to implement optimization design.

The third approach is to consider each stage as a different subsystem and adopt a multidisciplinary
design optimization (MDO) method to coordinate the shared design variables among these subsys-
tems, so as to achieve the integrated optimization of the performance of the whole process [20,21].
For example, Xie et al. [22] successfully coordinated the two subsystems of projectile engraving and
chambering motion by applying the modified Enhanced Collaborative Optimization (ECO) method,
which provides a new approach for solving the optimization problem of complex system models.
Treating these models, which are at different stages and mature in research, as “black-box” systems
not only overcomes the problem of multiple scales and dimensions of design variables of the models
but also enables multiple subsystems to be developed and computed in parallel, thus greatly saving
project time.

Scholars have provided several distributed MDO strategies such as Collaborative Optimization
(CO), the Enhanced Collaborative Optimization (ECO), the Concurrent SubSpace Optimization
(CSSO), the Bi-Level Integrated System Synthesis (BLISS), the Analytical target cascading (ATC),
the Quantitative Safety Assessments (QSA) and so on [23]. Among them, the CO algorithm proposed
by Kroo et al. [24,25] is considered classic. The CO algorithm is very adaptable and deformable, which
can be rapidly deployed and applied to engineering fields, such as aerospace [24,26], vehicle [27,28],
engine [29], satellite [30], etc., and many new algorithms have been expanded based on the CO method,
such as the introduction of uncertainty and robust into the CO method [31,32], and the combination
of multi-objective optimization methods with CO [33–35]. However, the original CO model, setting the
consistency constraint to zero at the system level, leads to convergence issues in some cases. To address
these, researchers have improved the CO algorithm through methods: response surface [36,37], penalty
function [38] relaxation factor [39], and design space decrease [32]. However, the existing CO method
and its improvements still have two challenges. One challenge is that the methods mainly address
the consistency of design variables among subsystems, but cannot directly optimize the performance
indexes of engineering optimization problems containing local design variables in subsystems; another
challenge is that the system is slow to converge, computationally inefficient, and more costly when it
can only be numerically simulated in a “black-box” model by commercial software.
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In summary, this paper proposed a multi-stage multidisciplinary design optimal (MS-MDO)
method for the artillery firing dynamics problem, aiming at solving the optimization problem of the
integrated performance metrics of the artillery internal ballistics with multiple sequential stages. The
methodology consists of two stages: Stage I (MDO Stage) employs a modified CO (M-CO) approach
to achieve consistency of subsystem design variables and faster system convergence; Stage II, the
performance optimization (PO) stage, focuses on optimizing the local variables of the subsystems to
improve the system performance metrics.

The rest of this paper is organized as follows: In Section 2, the validated comprehensive modeling
of artillery internal ballistics dynamics (AIBD) is derived and the AIBD model is systematically
decomposed. The novel MS-MDO method and procedure is introduced in Section 3. Section 4 firstly
clarifies the AIBD optimization problem, then describes the mathematical model of the AIBD based
on the MS-MDO method, and implements and obtains the optimization result. Finally, chapter 5
summarizes the research findings. This paper presents a multi-stage multidisciplinary design optimiza-
tion (MS-MDO) method, addressing the challenge of optimizing performance metrics for engineering
problems involving local design variables within subsystems. By decomposing the problem into two
sequential optimization stages—Multidisciplinary Optimization Stage (MDO Stage) and Performance
Optimization Stage (PO Stage)—this approach systematically tackles the acceleration of variable
coordination across subsystems and the comprehensive optimization of subsystem performance
metrics. This method lays a theoretical foundation for complex engineering optimization problems
and holds significant value for the advancement of multidisciplinary optimization algorithm theory.

2 Comprehensive Modeling and Systematic Decomposition of AIBD
2.1 Mechanisms and Processes of Artillery Internal Ballistics Dynamics

The ballistic firing mechanism in artillery, although extremely short in time, fundamentally
comprises a series of successive and interactive processes, ignition, engraving of the rotation band,
axial movement of the projectile, and ablation and wear of the rifling as a result of multiple firings, as
shown in Fig. 1.

Figure 1: Multiple stages and design parameters of internal ballistic firing of artillery. (a) Parameters
of propellant, projectile, and barrel rifling (b) Multiple stages of the internal ballistic firing
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The firing process begins with the ignition stage, in which the gun’s propellant is ignited, rapidly
generating high-temperature and high-pressure gases. These gases accumulate in the combustion
chamber and rapidly build up pressure. This pressure serves as the pivotal force propelling the entire
firing process. Although this stage is extremely brief, its efficiency and stability have a decisive influence
on the projectile’s movement and firing accuracy.

Engraving of the rotation band is the subsequent stage where the projectile is driven by high-
pressure gas into contact with the rifling and rotates. The engraving process not only plays a decisive
role in projectile stability but also directly affects the degree of barrel wear. The resistance encountered
during engraving impacts both muzzle velocity and barrel lifespan.

Next comes the axial movement stage, where the projectile, guided by the rifling, swiftly progresses
along the barrel. The projectile’s velocity gradually increases until ejection from the muzzle. The
interaction force between the projectile and the barrel, the axial velocity of the projectile, and the
change of gas pressure inside the barrel in this process all affect the muzzle dynamic energy and firing
accuracy of the projectile.

Ultimately, with repeated firings, the barrel’s rifling undergoes inevitable ablation and wear,
significantly impacting the AIBD’s performance. Rifling wear increases the space in the powder
combustion chamber and gradually reduces the base pressure of the projectile, while also reducing
the effective contact between the projectile and the rifling, decreasing firing accuracy and barrel life.

2.2 Comprehensive Modeling of Artillery Internal Ballistics Dynamics
As each stage of the internal ballistic process has an impact on the final shot, precise control, and

optimization is required to ensure efficient and accurate shooting. Therefore, we developed an artillery
internal ballistics dynamics (AIBD) Model in the ABAQUS® software environment, which contains
a Finite Element Model (FEM) and a VUAMP subroutine. This FEM is based on the 3D models
of the projectile with rotation band and the barrel with rifling, and the VUAMP subroutine includes
a propellant combustion model with integrated parameters [18,40,41]. The AIBD model effectively
simulates the intricacies of the rotation band engraving (RBE) process, the projectile axial motion
(PAM) process, and the rifling ablation and mechanical wear (RAME) process, offering a thorough
analysis of the comprehensive artillery internal ballistic performance.

The AIBD model is implemented by coupling the FEM model of the projectile and barrel
with the VUAMP subroutine of the propellant combustion model, as shown in Fig. 2. During the
coupling process, the VUAMP subroutine initially calculates the instantaneous base pressure pd(t)
of the projectile. The FEM then applies the calculated base pressure pd(t) as a load to the projectile
base, conducts an analysis of the contact between the projectile and the body tube, and computes
the projectile’s position l0(t + �t) and axial velocity vx(t + �t) after the time increment �t, relaying
these values back to the VUAMP subroutine. This iterative process is repeated until the rotation band
engraving is complete or the projectile exits the muzzle. In the AIBD model, the aft end of the barrel
is fully constrained, and the projectile with the rotation band is placed in the initial breech position
with contact between the band and the rifling. For more detailed information on the RBE model and
PAM model, refer to [18,42].

The RAME models were integrated into the AIBD model in the form of the UMAT subroutine
of ABAQUS, as shown in Fig. 2. This integration facilitates the computation of ablative wear within
the inner bore and the assessment of mechanical wear on the rifling. Total rifling wear accumulates
from both ablative and mechanical wear over successive shots. Through multiple shot simulations, we
can obtain the total wear at each node of the rifling in the direction of the axis of the barrel, and
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thus the distribution of the rifling wear tired. The detailed calculation procedure can be found in the
literature [17].

Figure 2: Comprehensive finite element model of artillery internal ballistics dynamics

2.3 Model Simulation Results and Validation
The FEM results for the extrusion of an engraving band in different states are shown in Fig. 3a.

The engraving resistance curve for the engraving process is shown in Fig. 3b. The results such as
the maximum VonMises stress, the shape of the extrusion resistance curve, the maximum extrusion
resistance, and the duration of the extrusion resistance at different moments of engraving demonstrated
in these results are very close to the results of the Sun [43] experiment.

Figure 3: Simulation results of rotation band engraving
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As shown in Fig. 4, the projectile axial motion model provides the time course curve of chamber
pressure and the time course curve of the projectile’s axial velocity. The time-course curves from the
projectile axial motion model are consistent with the studies of Yu et al. [41].

Figure 4: Projectile axial motion simulation and experimental results

The RAME model used in this paper was developed by Wang et al. [16,17]. The results of the
RAME model are presented in Fig. 5. The figure shows the cumulative wear of the rifling after every
100 shots, in which the wear is mainly concentrated in the slope chamber, the beginning of the rifling,
and the muzzle position. The cumulative ablative wear mainly occurs in the sloped chamber and the
rifling initiation section, while the cumulative mechanical wear is mainly concentrated in the muzzle
position. With the increase in the number of shots, the wear amount gradually increased. After the
barrel has fired 500 rounds, the basic contour of the rifling is so worn that it can no longer reliably
guide the projectile, resulting in the scrapping of the barrel.

Figure 5: The results of the rifling ablation and mechanical wear model
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2.4 Systematic Decomposition of AIBD
2.4.1 Model Decomposition

Multiple FEMs, include the RBE model, the PAM model, and the RAME model, are utilized to
depict the entire process of AIBD in this study. Since these models primarily concentrate on their inputs
and outputs, they are considered “black-box” models and are referred to as subsystem analyzers in this
paper. The output response fij from these subsystem analyzers is employed for optimizing performance
indicators and designing constraints.

The goal of this paper is to address the challenge of achieving consistency between design variables
in these “black boxes” or subsystems through the MDO method, an effective optimization strategy.
The multidisciplinary solution framework for AIBD is illustrated in Fig. 6. This framework comprises
four hierarchical levels: system-level, subsystem-level, surrogate models, and individual subsystem
analyzers, presented in descending order.

Figure 6: The multidisciplinary solution framework for the AIBD problem

2.4.2 Experimental Design and Surrogate Modeling

Given that obtaining response fij from subsystems for this FEM is computationally intensive and
impractical for direct online optimization, we employ design of experiments (DOE) and surrogate
modeling to efficiently construct a relationship between the inputs and outputs of the subsystems.
In MDO models, both system-level and subsystem optimizers utilize the approximate response f̃ij to
develop objective functions and constraints.

Due to the complexity of the AIBD finite element model used in this paper, each computation is
time-consuming. Hence, it is essential to employ an effective Design of Experiments (DOE) method
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to reduce the number of sample points while ensuring a uniform distribution of samples in the
design space. We have chosen the Optimal Latin Hypercube Design (OLHD) method, which further
enhances the uniformity of the Latin Hypercube Design (LHD) through additional criteria. The
OLHD approach ensures that the experimental sample matrix exhibits good projection uniformity
across factor intervals and spatial uniformity within the sample space. Consequently, it allows the
surrogate model to more accurately fit the relationship between the design variable space and response
values.

In this study, a backpropagation (BP) surrogate model for each subsystem is developed utilizing
the OLHD scheme and the BP surrogate model approach. The accuracy and generalization ability of
these surrogate models are statistically validated using the coefficient of determination, R2, defined as
follows:

R2 =
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − yi)
2

(1)

where n represents the number of test samples; yi is the actual response of the finite element model for
each test sample, with yi being the average of these actual responses; and ŷi is the surrogate model
response for each test sample. The R2 value closer to 1 indicates a higher similarity between the
surrogate and finite element models. Table 1 lists the accuracy of these models for various response
metrics in AIBD. With all models showing R2 values exceeding 0.92, this demonstrates a high level of
reliability in the model’s accuracy.

Table 1: Accuracy of BP surrogate model

Model Rotating band engraving
model

Projectile axial motion model Rifling ablation and
mechanical wear model

Perfor
mance
index

Engraving
resistance

Projectile
base
pressure of
engraving

Projectile
axial
velocity
at
the
muzzle

Maximum
chamber
pressure

Projectile
lateral
angular
displacement
at
the muzzle

Projectile
vertical
angular
displacement
at the muzzle

Projectile
lateral
angular
velocity
at
the muzzle

Projectile
vertical
angular
velocity
at the
muzzle

Maximum
value of
ablative
wear

Maximum
value of
mechanical
wear

Response
symbol

fR pd vxm pm �ym �zm �ym �zm WSS WJX

R2 0.9587 0.9249 0.9737 0.9795 0.9328 0.9269 0.9347 0.9216 0.9832 0.9832

3 A Novel Multi-Stage Multidisciplinary Design Optimization (MS-MDO) Method

This chapter proposes a multi-stage multidisciplinary design optimization (MS-MDO) approach
based on collaborative optimization (CO) [24,39] algorithms. The essence of the approach is to
decouple the coupled problem of coordinating design variables and comprehensive performance
enhancement into two successive optimization stages: Stage I (MDO Stage) and Stage II, performance
optimization (PO Stage). In the MDO Stage, a modified CO methodology is used to solve the
complex system-level problem and accelerate the coordination of the shared design variables of the
subsystems. Subsequently, in the PO Stage, to solve the problem that the subsystem performance
metrics are not fully optimized. Specifically, in the MDO Stage, design variables are transferred to
the system and subsystem after each system-level iteration as a new starting point to facilitate system-
level convergence. In the PO Stage, the shared variables resulting from the MDO Stage are regarded
as fixed parameters, while the local variables within each subsystem are designated as new design
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variables for enhancing the performance metrics of the subsystems to facilitate global optimization.
The consecutive application of different optimization algorithms in two stages of the MS-MDO
methodology effectively solves the comprehensive performance optimization challenges in complex
engineering problems.

3.1 Stage I (MDO Stages) with CO Methods
The CO method is a two-layer optimization structure, which decomposes the problem into

two levels: system and subsystem, and is suitable for solving multidisciplinary and highly complex
engineering optimization problems. This system decomposition makes it possible to deal with global
objectives at the system and local objectives at the subsystem at the same time. CO method can
coordinate the design variables among subsystems efficiently by setting consistency constraints in
order to achieve coordinated optimization of the system and the subsystem.

At the system-level optimization level, the primary objective is to optimize the overall system
function f s while adhering to the consistency constraints J∗

s and system-level constraints gs. The
consistency constraints J∗

s represent the differences between the system level and the subsystems. The
design variables at the system level comprise the system design variable z and the coupled state variable
between disciplines ys. The system design variable z is derived from the design variables shared by the
disciplines. It is mathematically modeled as follows:

Find [z, ys]

min f s(z, ys)

s.t. J∗
s = ∑n

i=1(
∥∥z − x̂i

∥∥2

2
+ ∥∥ys − ŷi

∥∥2

2
) ≤ s

gs(z, ys) ≤ 0

(2)

where s is the dynamic relaxation factor; x̂i is the parameter passed to the system level by the ith
subsystem, ŷi is the parameter of the coupling state passed to the system level by the ith subsystem,
and n is the number of subsystems.

At the level of subsystem optimization, the optimization objective is to minimize the consistency
constraint Ji of the discipline while satisfying the constraint gi of the subsystem; since the design
variables xi and coupled variables yi of the subsystems are related to the system-level transfer of
the shared design variables ẑs and coupled variables ŷs spacing are minimized, respectively, and the
optimization of the subsystems helps to advance the optimization of the whole system, which is
mathematically modeled as:

Find [xi, xLi]

min Ji = ∑n

i=1(
∥∥ẑs − xi

∥∥2

2
+ ∥∥ŷs − yi

∥∥2

2
)

s.t. gi(xi, xLi) ≤ 0

yi = yi(xi, xLi, yj,j �=i)

(3)

For the ith subsystem, the design variables consist of two parts: the shared design variable xi and
the local design variable of the subsystem xLi, ẑs and ŷs represent the shared design variable and coupled
variables passed to the subsystems at the system level, and the coupling variables yi are expected and
remain constant during the optimization of the subsystem; yi are the coupling variable of the ith
subsystem and calculated by the coupled variable analyzer yi = yi(xi, xLi, yj,j �=i); if neither the system
level nor the subsystem involves coupled variables, then the parts related to the coupled variables yi in
Eqs. (2) and (3) are omitted.
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To solve the system-level convergence problem, this paper adopts the dynamic relaxation (DR)
method, and the dynamic factor s in Eq. (2) is defined by the equation:

s = λ2ε2 (4)

where λ is a control factor that satisfies 0.5 < λ < 1.0, ensuring that system-level optimization aims to
reduce inter-disciplinary inconsistency; ε is the inter-disciplinary inconsistency information, which is
calculated using the formula:

ε =
∑m

j=1

∥∥x∗
1j − x∗

2j

∥∥2

2
(5)

where x∗
ij is the jth design variable of the ith discipline after optimization and m is the total number of

shared design variables.

3.2 Stage II (Performance Optimization Stage)
In the performance optimization stage, the optimization objective is to use the performance

metrics obtained by the subsystem analyzer as the objective function of the individual subsystems,
respectively, and its mathematical model is shown in Eq. (6):

Find [xLi]

min Ji = yi (xLi)

s.t. gi(xLi) ≤ 0

yi = yi(ẑs, xLi, yj,j �=i)

(6)

For the ith subsystem, only the local design variables of the subsystem xLi are optimized as design
variables, and the shared design variables ẑs and the coupling variables yj and ys are used as fixed
parameters substituted into the model using the optimized values from Stage I.

3.3 Procedure of MS-MDO Method
The implementation flowchart for the developed MS-MDO method is illustrated in Fig. 7. The

computational steps are outlined as follows:

Step 1: Define the optimization design problem, including the objective function, design variables,
and constraint functions.

Step 2: Proceed to Stage I, the MDO Stage, and construct the MDO optimization model for the
system and subsystems optimization problem.

Step 3: Initialize or update the design variables, starting points, boundaries, and other parameters
at both the system and subsystem levels. And sequentially solve each subsystem to determine the design
variables for each.

Step 4: Calculate the inconsistency information ε and the dynamic relaxation factor s among the
systems. Solve the system-level optimization problem to obtain the shared design variables z.

Step 5: Check whether the system level meets the convergence consistency tolerance and the
maximum iteration limit. If these criteria are satisfied, the iteration stops, and proceeds to output the
optimal shared design variables at the system level and the performance indexes for each subsystem.
If not, decide whether to apply the modified collaborative optimization method (M-DRCO) or the
original collaborative optimization method (DRCO). For M-DRCO, return to Step 3, updating both
system and subsystem level starting points to the shared design variables from the previous cycle, this is
a significant advancement in the acceleration of system-level convergence within the MDO framework
in this paper. For DRCO, also return to Step 3 but continue optimizing with the original starting points.
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Figure 7: The MS-MDO method flowchart
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Step 6: Proceed to Stage II, the performance optimization stage. Construct the performance
optimization model, treating the optimal shared design variables as fixed parameters. Redefine the
objective function and design variables for each subsystem. Use the performance index of each
subsystem as the new objective function and assign the subsystem’s local design variables as the design
variables.

Step 7: Optimizing the solution for each subsystem in turn, output all optimal performance indices
and design variables for both Stage I and Stage II.

4 Application Artillery Internal Ballistics Dynamics Based on MS-MDO Method
4.1 Definition of the AIBD Problem
4.1.1 Determination of Performance Metrics for AIBD

In evaluating the performance of artillery firing dynamics, it is crucial to consider several key
aspects: safety of the bore firing process, muzzle kinetic energy, firing accuracy, and service life. For
safety, the focus is on minimizing the engaging resistance of the rotation band. Projectile velocity at
the muzzle is used to assess muzzle kinetic energy, with higher velocities being preferable [8]. Firing
accuracy hinges on the projectile’s attitude at the muzzle [44], encompassing both the projectile’s lateral
and vertical angular displacements at the muzzle, �ym and �zm, as well as its lateral and vertical angular
velocities, �ym and �zm; lower values in these indicators signify higher accuracy. Lastly, rifling wear,
which significantly affects the artillery’s service life [45], is evaluated with a focus on minimizing the
maximum ablation wear (WSS) and mechanical wear (WJX ) at each point along the rifling.

For the performance assessment of AIBD, four metrics are introduced to comprehensively
reflect the firing performance. These metrics are the normalized engraving resistance coefficient
ηfR, initial muzzle velocity coefficient ηvm, projectile disturbance coefficient at the muzzle ηds, and
service life coefficient ηls. This constitutes a multi-objective optimization (MOO) problem. There
are many methods to convert a multi-objective problem into a single objective optimization, such
as decomposition-based methods [46,47], Pareto curve [48], and the linear weighting method [49]
mentioned in this paper. In order to solve this MOO problem, in this paper, the weights of the
objective function are calculated using the analytic hierarchy process (AHP) [50] method and the
linear weighting method is used to convert this MOO problem into a single objective optimization
design problem. The global objective function, F0, is then derived by summing these weighted objective
functions. Moreover, to ensure generality and comparability, the performance metrics have been
normalized, with normalization coefficients φi calculated based on their range of variation. Finally,
Eq. (7) was employed to calculate the global objective F0.

F0 = λ1ηfR + λ2ηvm + λ3ηds + λ4ηls

= λ1

fR

φfR

+ λ2

φvxm

vxm

+ λ3

(
abs(�ym)

φ�ym

+ abs(�zm)

φ�zm

+ abs(�ym)

φ�ym

+ abs(�zm)

φ�zm

)

+ λ4

(
WSS

φWSS

+ WJX

φWJX

)
(7)

where φ∗ is the normalization factor, which is determined according to the range of variation of the
response metrics, and the normalization factors are set as follows: φfr = 135, φvxm = 982, φ�ym = 1.6 ×
10−3, φ�zm = 0.6 × 10−3, φ�ym = 1.97, φ�zm = 2.23; φWSS

= 1.3, φWJX
= 0.4, abs (∗) denotes the absolute

value function; λi(i = 1, 2, 3, 4) is the weight coefficient, weight coefficients λ1 = 0.2, λ2 = 0.4, λ3 =
0.075, λ4 = 0.1, which are calculated using the AHP.
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4.1.2 Definition of Constraint Function

In the context of optimizing AIBD, the prudent selection of constraint functions is paramount.
This study delineates a comprehensive suite of constraint functions, meticulously considering a
spectrum of factors that encompass safety, power, accuracy, and the extended longevity of the firing
mechanism.

(1) Constraints of safety

Three constraints are considered for safety: 1) Engraving resistance (fR), set between 900∼1600
kN [18,42], to ensure projectile stability during the engraving stage. 2) Projectile base pressure during
engraving (Pd), where excessive pressure (165 MPa [7]) can lead to safety hazards like barrel explosions.
3) Maximum chamber pressure (Pm), crucial for firing performance, which could not exceed a specified
limit (360 MPa [13]) to avoid structural damage to the gun. These corresponding constraint functions
are articulated as follows:

gfR = ∣∣fR(b, tsh, W , ω, mp, α, e1, dRB) − 1250
∣∣ − 350 ≤ 0 (8)

gpd = Pd(b, tsh, W , ω, mp, α, e1, dRB) − 165 ≤ 0 (9)

gpm = pm(lc, b, tsh, W , ω, e1, lbd, lRB, lp, dp, W0) − 360 ≤ 0 (10)

(2) Constraints on the minimum muzzle velocity of the gun.

Minimum muzzle velocity, essential for firing performance, must exceed 950 m/s [13] to ensure
adequate firing power.

gvxm = 950 − vxm(lc, b, tsh, W , ω, e1, lbd, lRB, lp, dp, W0) ≤ 0 (11)

(3) Constraints on artillery disturbance

The gun disturbance is effectively constraining it can minimize errors during the firing process
and enhance accuracy. Consequently, limiting gun disturbance is considered a significant constraint
in our study [13,51,52]. The constraints on the projectile’s lateral (�ym) and vertical (�zm) angular
displacement at the muzzle are outlined as:

g�ym = �ym(lc, b, tsh, W , ω, e1, lbd, lRB, lp, dp, W0) − 5.0 × 10−3 ≤ 0 (12)

g�zm = �zm(lc, b, tsh, W , ω, e1, lbd, lRB, lp, dp, W0) − 2.0 × 10−3 ≤ 0 (13)

The constraints on the projectile’s lateral (�ym) and vertical (�zm) angular velocity at the muzzle
are defined as:

g�ym = �ym(lc, b, tsh, W , ω, e1, lbd, lRB, lp, dp, W0) − 6.4 ≤ 0 (14)

g�zm = �zm(lc, b, tsh, W , ω, e1, lbd, lRB, lp, dp, W0) − 1.9 ≤ 0 (15)

(4) Constraints on the life of artillery firing

Rifling wear has been shown to lead to a reduction in muzzle velocity, generally not exceeding 10%
over the lifespan of a gun, and is primarily associated with the number of shots fired, as evidenced by
studies of Li et al. [45,53,54]. This study establishes the gun’s firing life at 500 rounds to balance power
and accuracy, with mechanical wear capped at less than 0.58 mm and ablative wear at less than 2.2 mm
[16,17]. Constraints of maximum ablative wear WSS and maximum mechanical wear WJX as follows:
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gWSS
= WSS(lc, b, tsh, W , ω, mp, α) − 2.2 ≤ 0 (16)

gWJX
= WJX(lc, b, tsh, W , ω, mp, α) − 0.58 ≤ 0 (17)

4.1.3 Selection of the Design Variables

Scholars have delved into the sensitivity of various response indicators and their corresponding
design variables of AIBD [7,14,55,56]. Drawing from their insights, we have selected [btshWωmpαe1dRB]
as the design variables for the RBE subsystem, where b is the groove width, tsh is the rifling depth, W is
the rotating band width, ω is the powder mass, mp is the projectile mass, α is the forcing cone angle, e1 is
the powder thickness, dRB is the outer diameter of the rotating band. For the PAM subsystem, the design
variable is [lcbtshWωe1lbdlRBlpdpW0], where lc is the mass eccentricity of the projectile, lbd is the bourrelet-
to-rifling distance, lRB is the rotating band location, lp is the powder length, dp is the powder aperture,
W0 is the propellant chamber. Additionally, [lcbtshWωmpα] are identified as the design variables for the
RAME subsystem.

4.2 Mathematical Model of Stage I (MDO Stages) for AIBD
Next, we detail the system-level optimization model and the subsystem-level models within the

relaxation-variable-based collaborative optimization framework for artillery firing dynamics.

4.2.1 Optimization Model of the System-Level

The system-level optimization model can be represented by Eq. (18) as:

Find z = [lcbtshWωmpαe1]
min

z
Fs = F0 + Jsys a + Jsys b + Jsys c

s.t. Jsys a = (b − b̂a)
2 + (tsh − t̂sh a)

2 + (W − Ŵa)
2 + (ω − ω̂a)

2 + (mp − m̂p a)
2

+(α − α̂a)
2 + (e1 − ê1a)

2 − s ≤ 0
Jsys b = (lc − l̂c b)

2 + (b − b̂b)
2 + (tsh − t̂sh b)

2 + (W − Ŵb)
2 + (ω − ω̂b)

2

+(α − α̂b)
2 + (e1 − ê1b)

2 − s ≤ 0
Jsys c = (lc − l̂c c)

2 + (b − b̂c)
2 + (tsh − t̂sh c)

2 + (W − Ŵc)
2 + (ω − ω̂c)

2

+(mp − m̂p c)
2 + (α − α̂c)

2 + (e1 − ê1c)
2 − s ≤ 0

(18)

where z is the shared design variable; Jsys a, Jsys b, Jsys c are the consistency constraint function for
subsystem a, subsystem b, and subsystem c, respectively, where ∗̂a, ∗̂b and ∗̂c are copies of the
parameters from subsystems a, subsystem b, and subsystem c, and s are the relaxation factors; F0

a is the global objective function of Eq.(7).

4.2.2 Optimization Model of the RBE Subsystem

The optimization model for the rotation band engraving subsystem is presented as Eq. (19):

Find x = [xaxLa] = [btshWωmpαe1dRB]
min

x
Jsys a = (b − b̂)2 + (tsh − t̂sh)

2 + (W − Ŵ)2 + (ω − ω̂)2 + (mp − m̂p)
2

s.t.
+(α − α̂)2 + (e1 − ê1)

2

gfR ≤ 0, gpd ≤ 0

(19)

where the design variable x consists of the shared design variable xa and the local design variable
xLa = [dRB]; Jsys a is the consistency constraint function and Jsys a also is the optimization objective of the
RBE subsystem; gfR and gpd are the constraint function of Eqs. (8) and (9).
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4.2.3 Optimization Model of the PAM Subsystem

The optimization model for the projectile’s axial motion subsystem is presented in Eq. (20):

Find x = [xbxLb] = [lcbtshWωe1lbdlRBlpdpW0]
min

x
Jsubb = (lc − l̂c)

2 + (b − b̂)2 + (tsh − t̂sh)
2 + (W − Ŵ)2 + (ω − ω̂)2

+(e1 − ê1)
2

s.t. gpm ≤ 0, gvxm ≤ 0, g�ym ≤ 0, g�zm ≤ 0, g�ym ≤ 0, g�zm ≤ 0

(20)

where the design variable x consists of the shared design variable xb and the local design variable
xLb = [lbdlRBlpdpW0]; Jsubb is the consistency constraint function, and is the optimization objective of the
PAM subsystem; gpm, gvxm , g�ym , g�zm , g�ym and g�zm are constraint functions from the Eqs. (10) ∼ (15).

4.2.4 Optimization Model of RAME Subsystem

The optimization model for the rifling wear subsystem is presented in Eq. (21):

Find x = [xc] = [lcbtshWωmpα]
min

x
Jsubc = (lc − l̂c)

2 + (b − b̂)2 + (tsh − t̂sh)
2 + (W − Ŵ)2 + (ω − ω̂)2

s.t.
+ (mp − m̂p)

2 + (α − α̂)2

gWSS
≤ 0, gWJX

≤ 0

(21)

where the design variables x are all composed of shared design variables xc, and there are no local
design variables; Jsubc is the consistency constraint function, and is the optimization objective of the
RAME subsystem; gWSS

and gWJX
are the constraint functions from the Eqs. (16) and (17).

4.3 Mathematical Model of Stage II (PO Stage) for AIBD
Both the RBE and PAM subsystems include local design variables in their respective optimization

models as listed in Eqs. (20) and (21). Therefore, optimizing these local variables within the subsystems
is essential for improving the overall performance index.

4.3.1 Optimization Model for the Performance of the Rotating Band Subsystem

The optimization model for the rotating band subsystem is delineated in Eq. (22) as follows:

Find x = [xLa] = [dRB]
min

x
f = fR(dRB)

s.t. gfR ≤ 0, gpd ≤ 0
(22)

where the design variable x is the local design variable dRB, the objective function is the engraving
resistance fR. It is worth noting that when using a surrogate model to solve for the performance metrics
at the PO stage, the optimal values z∗ = [lcbtshWωmpαe1] obtained at the MDO stage, need to be
substituted as parameters into the model.

4.3.2 Optimization Model for the Performance of Projectile Movement in the Barrel Subsystem

The performance optimization model for projectile movement within the barrel subsystem is
presented in Eq. (23):
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Find x = [xLb] = [lbdlRBlpdpW0]

min
x

f = λ2

φvxm

vxm

+ λ3

(
abs

(
�ym

)
φ�ym

+ abs (�zm)

φ�zm

+ abs
(
�ym

)
φ�ym

+ abs (�zm)

φ�zm

)

s.t. gpm ≤ 0, gvxm ≤ 0, g�ym ≤ 0, g�zm ≤ 0, g�ym ≤ 0, g�zm ≤ 0

(23)

where the design variable x consists of the local design variable xLb = [lbdlRBlpdpW0], the objective
function is a multi-objective function consisting of the normalized muzzle velocity and normalized
with the projectile perturbation coefficient, and the weight coefficients λ2 = 0.4, λ3 = 0.075 are same
as the weight coefficients of MDO stage in the system-level objective function, as in Eq. (7).

4.4 Optimization Process and Results
The boundary of design variables settings for both system-level and subsystem are detailed in

Tables 2 and 3. Considering the influence of the initial values of the system-level shared design
variables on the convergence results, in order to objectively evaluate the research methodology, we
set four sets of initial values for these variables, which are listed in rows 3 to 6 of Table 2.

Table 2: Design variable boundaries and initial points of system-level

Design
variable name

Mass
eccentricity/
mm

Groove
width/mm

Rifling
depth/mm

Rotating
band width/
mm

Propellant
mass/kg

Projectile
mass/kg

Forcing
cone
angle/°

Propellant
thickness/
mm

Symbol lc b tsh W ω mp α e1

Upper boundary/
Start point 1

0.30 6.90 3.10 62.00 18.00 45.80 5.71 2.40

Lower boundary/
Start point 2

0.00 5.90 2.33 54.00 16.40 45.20 1.91 2.10

Start point 3 0.15 6.4 2.7125 58 17.2 45.5 3.81 1.275
Start point 4 0.13 6.41 2.57 54.00 17.36 45.66 3.80 2.10

Table 3: Local design variable boundaries for each subsystem

Subsystem name Rotation band
engraving subsystem

Projectile axial motion subsystem

Design variable
name

Outer diameter of the
rotating band/mm

Bourrelet-to-
rifling distance/
mm

Rotating band
location/mm

Powder
length/mm

Powder
aperture/mm

Propellant
chamber/dm3

Symbol dRB lbd lRB lp dp W0

Upper boundary 81.00 0.60 192.00 15.00 0.80 27.00
Lower boundary 79.80 0.10 172.00 13.00 0.60 25.00

Sequential Least Squares Optimization (SLSQP) is a local optimization algorithm based on
gradient information that solves nonlinear minimization problems with constraints. Scipy.SLSQP has
been utilized as the optimizer at both the system and subsystem levels during the MDO Stage to solve
complex constraints in order to ensure the convergence stability of the CO method. The results of the
system-level calculations using both the original and modified CO methods Stage I are presented in
Table 4.
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Table 4: System-level results of the original CO and modified CO methods in Stage I

Starting point Solution strategy Iteration count Evaluation count Jsys a Jsys b Jsys c

Start point 1
DRCO 25 320 7.44E-14 1.98E-16 5.46E-09
M-DRCO 23 303 1.08E-07 0 1.02E-09

Start point 2
DRCO 20 269 5.85E-09 1.49E-08 2.75E-07
M-DRCO 16 220 2.76E-07 0 9.28E-10

Start point 3
DRCO 13 174 2.23E-10 1.90E-09 7.22E-05
M-DRCO 8 112 1.22E-08 0 4.12E-07

Start point 4
DRCO 23 332 3.07E-16 3.20E-16 1.54E-08
M-DRCO 19 220 1.65E-12 1.65E-12 1.36E-09

The RBE and PAM subsystems have been transformed into single-objective optimization prob-
lems in the PO Stage, unlike the two-level nested optimization challenges in the MDO Stage.
Pygmo2.GPPSO (Gaussian Process and Particle Swarm Optimization) [57] is an intelligent optimiza-
tion algorithm that performs well in global optimization search. Pygmo2. GPPSO optimizer was used
as the optimizer in Stage II, the population size of GPPSO was set to 200 and the number of iteration
generations was set to 1000, the performance of Stages I and II based on the M-DRCO strategy are
presented in Table 5.

Table 5: Performance comparison of Stages I and II with the M-DRCO strategy

Starting point Stages Rotation band
engraving
subsystem

Projectile axial motion subsystem Rifling ablation and mechanical
wear subsystem (Only stages I)

Engraving
resistance/kN

Projectile velocity
at muzzle/(m/s)

Projectile disturbance
coefficient

Mechanical
wear/mm

Ablative
wear/mm

Start point 1
Stage I 913.8 990.40 4.06

0.53 1.74
Stage II 899.9 1005.00 1.767

Start point 2
Stage I 1574.7 981.83 0.70

0.53 1.71
Stage II 899.9 985.82 0.54

Start point 3
Stage I 902.6 962.19 2.73

0.48 1.67
Stage II 899.9 973.43 0.58

Start point 4
Stage I 1286.2 990.71 2.87

0.50 1.66
Stage II 900.0 997.02 0.54

From Table 4, the CO and M-CO strategies are convergent at all starting points, i.e., they all satisfy
the consistency convergence condition (Jsys i < 1 × 10−4). By comparing the number of iterations and
evaluations for the original CO and M-CO, it is clear that the M-CO strategy significantly outperforms
the original.

Taking the starting point 4 as an example, Fig. 8 shows the convergence iteration of the M-DRCO
algorithm. Fig. 8b shows ε1, ε2, and ε3 calculated according to Eq. (6), which represents the three
inter-disciplinary inconsistency information described in this paper (i.e., RBE model, PAM model,
and RAME model). The system level is considered to have a feasible solution only when all three
inconsistency information values are simultaneously less than or equal to the dynamic scaling factor
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s. As shown in Fig. 8a, at the starting point 4, only three iterations produced a feasible solution, even
though there were 19 iterations at the system level.

Figure 8: The convergence curves of MS-MDO strategy at the starting point 4 (Uniformly denoted by
1E-10 when E < 1E-10 or less in Fig. 8b)

Consider that the number of times the algorithm evaluates the objective function (or loss function)
is the number of evaluations, especially when “black-box” models are involved (e.g., hydrodynamics
or explicit dynamics finite element models), where each evaluation incurs a high computational cost.
Consequently, the M-DRCO strategy aimed at reducing the number of evaluations can significantly
lower the overall computational costs. As can be seen from the data in column 4 of Table 4, the
M-DRCO algorithm has fewer iterations compared to the DRCO algorithm under all different starting
points. Fig. 8 demonstrates the effectiveness of the M-DRCO strategy with the convergence curves of
the objective function, the consistency constraint function, and the relaxation factors at the starting
point 4. The M-DRCO strategy adopts the dynamic relaxation (DR) factor s to dynamically adjust
the consistency constraints, thus accelerating the convergence speed, and the system-level convergence
is realized in only 19 iterations. This reveals that the M-DRCO strategy effectively improves the
convergence speed by reducing the number of evaluations of the “black-box” model, which in turn
effectively reduces the computational cost.

Statistical analysis of the data in Table 5 reveals changes in performance indices as depicted in
Fig. 9. Implementing the M-DRCO strategy leads to a significant reduction of 18.7% in average
engraving resistance in Stage II compared to Stage I, with values engraving resistance near the
900 kN constraint. While the increase in projectile velocity at the muzzle is modest at 1.15%, it
still represents an improvement over Stage I, exemplified by reaching 1005 m/s at starting point 1.
Moreover, the normalized projectile disturbance coefficient dramatically decreases by 59.8%. These
findings underscore the M-DRCO strategy’s substantial optimization effect in Stage II.
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Figure 9: Change rate of each performance index

An in-depth analysis of Eqs. (18) to (21) within the CO strategy uncovers the reasons behind
the effectiveness of the MS-MDO approach, as proposed in this paper, for addressing engineering
optimization problems that involve local design variables in subsystems. Since the core function of
the CO strategy at the system level is primarily to coordinate shared design variables, excluding
the local design variables of subsystems; the subsystem objective function is limited to consistency
constraints and does not include performance metrics. When after satisfying the local constraints, the
local design variables do not contribute to optimizing performance indices. Therefore, the CO strategy
is limited to addressing the coordination problem of design variables and coupling variables among
subsystems, without further enhancing the performance index. In Stage II, we further optimized the
local design variables through the application of performance optimization methods. This approach
significantly improves the performance metrics and proves the effectiveness of this stage in enhancing
the performance of the system.

In summary, the MS-MDO method proposed in this paper effectively reduces the number of
iterations and evaluations while successfully coordinating the optimization of the design variables in
Stage I, and improves the performance metrics in Stage II, which achieves the original intention of
this paper.

4.5 Validation of Optimization Results for AIBD
It can be found in Table 5 that starting point 4 has a better overall performance after the M-DRCO

strategy optimized in Stage I and Stage II. The optimized system shared design variables and the
local design variables of each subsystem are recombined into the design parameters of each subsystem
and substituted into the FEMs of RBE, PAM, and RAME described in Section 2.2 sequentially for
simulation to obtain the computational results, as Figs. 10 to 12.
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Figure 10: Compare the engraving resistances and velocities for Stage I and Stage II

Figure 11: Compare the projectile attitude change along the barrel for Stage I and Stage II

Figure 12: Variation of rifling wear along the barrel after accumulating 500 shots
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Fig. 10a demonstrates the engraved resistance comparison between Stages I and II, derived from
the RBE finite element model using optimized parameters from both stages. Figs. 10b and 11 present
the projectile’s velocity, chamber pressure, and attitude during axial movement calculated with the
PAM finite element model and its optimized parameters. Additionally, Fig. 12 illustrates the rifling
wear variation along the barrel’s axial direction after 500 shots, as simulated with the RAME finite
element model using optimized parameters.

These validation curves affirm that the finite element model’s outcomes align with the surrogate
model’s performance obtained through the MS-MDO method, verifying the surrogate model’s effec-
tiveness. Notably, performance enhancements in Stage II, such as reduced engraving resistance and
increased muzzle velocity, significantly surpass those in Stage I. This underscores that the MS-MDO
method successfully enhances the overall performance of artillery internal ballistics by effectively
coordinating parameters across various subsystem models.

5 Conclusion

This study introduces a multi-stage multidisciplinary optimization (MS-MDO) method to address
the challenge of enhancing the comprehensive performance of the comprehensive artillery internal
ballistic dynamics (AIBD) model. The power, accuracy, and lifetime of artillery firing are improved
through the MS-MDO method. These research results provide effective methods and strategies for
artillery design and performance enhancement and are expected to have a positive impact on the
military field and engineering practice.

1) This study established and validated a comprehensive ballistic dynamics model in artillery,
integrating the propellant combustion model, the rotation band engraving model, the projectile axial
motion, and the rifling wear model. The model was effectively decomposed into subsystems using
a system engineering approach. We then applied a multi-stage multidisciplinary optimization (MS-
MDO) method to address the optimization challenges of both the reducer model and the AIBD model,
demonstrating the method’s efficacy through validation.

2) The Stage I (MDO Stage), featuring the M-DRCO method proposed in this paper, showcased
considerable benefits. It significantly reduced the number of iterations and evaluations, thereby cutting
computational costs. The method enhanced the convergence speed of the consistency constraint
function and effectively coordinated shared variables across different stages’ optimization models.

3) In Stage II (Performance Optimization), we observed substantial improvements in performance
metrics over Stage 1 results. Notably, the average engraving resistance was reduced by 18.7% in Stage 2.
The normalized projectile disturbance coefficient decreased by 59.8%, and while the increase in muzzle
velocity was modest, it achieved satisfactory levels.

The MS-MDO method proposed in this paper has achieved remarkable results and can be further
generalized for use in complex engineering problems. Furthermore, its effectiveness is mainly limited
to subsystems containing local design variables, and the traditional CO method may be more suitable
for systems that do not contain local design variables. In addition, the sensitivity of this study’s method
to the starting design point may limit its ability to directly obtain a globally optimal solution in some
cases.

Looking ahead, integrating uncertainty factors with multidisciplinary design optimization
(MDO) and exploring the combination of multi-objective optimization with MDO is pivotal for
enhancing optimization stability and tackling complex engineering challenges.
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