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ABSTRACT

Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning, with
convolutional neural networks (CNN) playing an important role in this field. However, as the performance of
crack detection in cement pavement improves, the depth and width of the network structure are significantly
increased, which necessitates more computing power and storage space. This limitation hampers the practical
implementation of crack detection models on various platforms, particularly portable devices like small mobile
devices. To solve these problems, we propose a dual-encoder-based network architecture that focuses on extracting
more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention
mechanisms for more efficient feature fusion. Firstly, we use small channel convolution to construct shallow feature
extraction module (SFEM) to extract low-level feature information of cracks in cement pavement images, in order to
obtain more information about cracks in the shallow features of images. In addition, we construct large kernel atrous
convolution (LKAC) to enhance crack information, which incorporates coordination attention mechanism for
non-crack information filtering, and large kernel atrous convolution with different cores, using different receptive
fields to extract more detailed edge and context information. Finally, the three-stage feature map outputs from
the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel
atrous convolution module, and the shallow feature and detailed edge feature are fully fused to obtain the final
crack prediction map. We evaluate our method on three public crack datasets: DeepCrack, CFD, and Crack500.
Experimental results on the DeepCrack dataset demonstrate the effectiveness of our proposed method compared to
state-of-the-art crack detection methods, which achieves Precision (P) 87.2%, Recall (R) 87.7%, and F-score (F1)
87.4%. Thanks to our lightweight crack detection model, the parameter count of the model in real-world detection
scenarios has been significantly reduced to less than 2M. This advancement also facilitates technical support for
portable scene detection.
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1 Introduction

Crack detection is an important aspect of ensuring the safety and security of various types
of infrastructure [1]. It is crucial to promptly detect, locate, and repair them based on the severity of
the damage to prevent the progressive deterioration of cracks and the catastrophic destruction of
infrastructure [1]. Therefore, in order to ensure the safety of infrastructure, regular crack detection
of cement pavement is necessary.

With the rapid development of computer vision, many researchers have joined this field. Due to
the contrast between the background and crack areas, some researchers [2,3] proposed a threshold-
based method to detect cracks. Subsequently, other researchers [4,5] considered using edge detection
algorithms to reduce noise impact and better detect discontinuous cracks. While these heuristic
algorithms achieve superior results in specific scenarios, they are difficult to handle with noise and
complex backgrounds with low contrast. To address these deficiencies, the researcher proposed a crack
detection algorithm based on random structure forest. By learning the inherent structure information
of cracks, the influence of background noise of crack image on crack detection can be suppressed
[6], and the crack pixels with uneven gray value distribution can be better extracted. In practice, the
background noise of cracks is extremely complex, and it is difficult to distinguish cracks based on the
above manual characteristics and traditional machine learning methods.

Due to the rapid development of deep learning technology and its powerful feature extraction
ability, researchers have begun to combine deep learning technology with crack detection in order
to solve the problems encountered using traditional digital image processing technology [7]. This has
effectively improved the reliability and accuracy of crack detection. Full convolutional neural networks
(FCN) have been widely used in road detection tasks [8–10] and have achieved state-of-the-art (SOTA)
performance. Some works treat crack detection as a segmentation task based on advanced network
models such as U-Net [11] or SegNet [12]. Currently, advanced network models improve performance
based on multi-scale feature fusion architecture with a powerful backbone [13–15], such as VGG,
ResNet, DeepLabV3+.

Enhancing the precision of network models, however, entails a trade-off, as it leads to a rise
in network parameters and significantly increases computational demands. For realistic application
scenarios that require embedded or mobile devices for crack detection tasks, storage space, computing
units and power supplies are extremely limited. Consequently, deploying substantial crack detection
models on these devices poses considerable challenges. For the aforementioned issues, we believe that in
evaluating crack detection performance, both the number of model parameters and running speed are
as important as accuracy. Motivated by these insights, we believe it is essential to develop a streamlined
and efficient crack detection model to significantly improve its usability and applicability in real-world
scenarios.

Accordingly, this research designs an extremely lightweight network model for crack detection
in this paper. As shown in Fig. 1 below, our new network architecture comprises a dual encoder
feature extraction module and feature cross-fusion module. In Table 1, the full names corresponding
to the abbreviations used in Fig. 1 are provided, offering a clearer understanding of the network
structure depicted in the figure. The dual encoder consists of a shallow feature extraction module
and large kernel atrous convolution module [16] that integrates the attention mechanism [17]. Shallow
convolution is composed of convolution, rectified linear unit (ReLU) and batch normalization (BN)
layer, inheriting the advantages of a convolutional neural network. Simultaneously, by minimizing the
number of layers, we can effectively reduce the model’s parameter size, leading to a more compact
and efficient design. By leveraging the characteristics of small operation cost and large receptive field



CMES, 2024, vol.140, no.1 257

of large kernel atrous convolution, we have developed a hybrid atrous convolution module combined
with coordination attention mechanism to extract more features without increasing computation or
parameters. As is shown in Fig. 2, three side outputs of cross-fusion are shown, and the red boxes
indicate the noise in the prediction map. Finally, we obtain the final prediction map through our feature
cross-fusion module. Our primary contributions are summarized below.

Figure 1: The above overall network architecture is our proposed lightweight crack detection model.
Shallow feature extraction module (SFEM), coordination attention atrous convolution (CAAC) and
large kernel atrous convolution (LKAC) are its three primary components. (1) Use SFEM to extract
shallow features, (2) use LKAC to get crack edge and other contextual information, (3) the CAAC
further refine features that is extracted

Table 1: Every abbreviation is matched with its complete spelling for easy reference in Fig. 1

Abbreviation Complete spelling Abbreviation Complete spelling

BN Batch normalization ReLU Rectified linear unit
Conv Convolution CAAC Coordination attention atrous

convolution
SFEM Shallow feature extraction

module
LKAC Large kernel atrous convolution
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Figure 2: The results of using cross feature fusion and side outputs were compared. (a) Raw images,
(b) side output1, (c) side output2, (d) side output3, (e) the fused map after using cross featre fusion

(1) We have designed a new lightweight and highly accurate network architecture for crack
detection, which can fully extract crack characteristics while significantly reducing parameters. To
capture shallow features of crack information, we use a shallow feature extraction module (SFEM) to
improve model accuracy without increasing tedious calculations.

(2) We propose the use of large kernel atrous convolution (LKAC) with lightweight attention to
capture deep-level semantic information about cracks for detection. The large kernel atrous convolu-
tion has a wide receptive field, and coordinated attention can capture richer context information.

(3) Numerous experiments on public datasets demonstrate the superior performance of our model
and fewer parameters than other models in detecting cracks. In the DeepCrack dataset, the F1 value
reaches 87.4%, with only 1.95M parameters.

Other sections for this paper are as follows. Section 2 reviews the work on crack detection and
lightweight networks. Section 3 introduces our proposed crack detection architecture. The experimen-
tal results are shown in Section 4. Section 5 gives the conclusions and prospects.

2 Related Works

In the early stages of cement pavement crack detection, the primary method of detection and
maintenance relied heavily on manual inspection. Manual inspection methods are not only time-
consuming but also require significant human, material, and financial resources. Additionally, they
suffer from drawbacks such as low detection accuracy and considerable susceptibility to human-
induced variations in results. With the continuous advancement of deep learning technologies, various
methods and models have been applied to crack detection.

2.1 Crack Detection Methods Based on Encoder Feature Extraction
Since the threshold value of the pavement gray map is related to the average value of pixel

brightness, Cheng et al. [18] proposed a real-time image threshold algorithm that reduces sample space
and differences to determine appropriate thresholds while reducing sample space. Uneven shadows
and lighting are common in photos taken in real scenes, which can seriously affect crack detection
by threshold segmentation. Then, in order to reduce the influence of noise in the image background,
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the researchers [4,5] used an edge detection algorithm to detect cracks. With the rapid development of
deep learning, unprecedented breakthroughs have been made in the field of computer vision. Many
deep learning methods have also been applied to crack detection tasks. Dung et al. [19] proposed a
coding-decoding full convolutional network for crack detection, which has shown improved accuracy
in predicting crack path and density. Liu et al. [20] proposed a network architecture composed of a
full convolutional network and a deep supervision network. Zou et al. [21] proposed DeepCrack, an
end-to-end trainable deep convolutional neural network for automatic crack detection by learning
advanced features of crack representation. Due to the limitations of the receptive field of convolution,
some researchers have attempted to use atrous convolution [22]. Hybrid atrous convolutional network
(HACNet) had been proposed by Chen et al. [16], which used an atrous convolutional network with an
appropriate expansion rate to expand the receiving field while maintaining the same spatial resolution.
Zhou et al. [23] proposed an attention mechanism and hybrid pool module to capture both long-
range and short-range dependence in crack detection. Qu et al. [24] proposed a concrete pavement
crack detection algorithm based on attention mechanism and multi-feature fusion. Yang et al. [25]
designed an end-to-end deep crack segmentation network is proposed, which combined progressive
and hierarchical context fusion.

The methods previously described predominantly utilize a singular encoder-decoder structure,
which fails to capture certain edge detail information and global information effectively. Therefore,
we propose a network structure based on dual-encoder feature extraction for crack characterization,
designed for dual-level extraction of feature information, ensuring the generation of more precise and
accurate prediction maps.

2.2 Crack Detection Methods Based on Lightweight
Due to limited computing resources in actual application scenarios, almost no deep learning

network models have been used for crack detection tasks. So a lightweight network for crack
detection is urgently needed. In computer vision tasks, knowledge distillation [26] and network
pruning are commonly used to build lightweight models; however, these methods are only effective
for complex models with high efficiency. Therefore, the most feasible way to achieve a lightweight
crack detection network is by building an efficient network structure. For example, MobileNets use
intermediate expansion layers that employ lightweight depthwise convolutions to filter nonlinear
feature sources [27]. Recently, many lightweight networks based on deep learning have emerged.
Liao et al. [28] used the modified residual network to build a lightweight network architecture with an
encoder-decoder structure. Zhang et al. [29] proposed a lightweight U-Net model based on attention
fusion. Deng et al. [30] proposed asymmetric architectures by gradually fusing information from
astrous convolutional layers to reduce network parameters and improve computational and detection
performance. These lightweight networks confirm their utility by reducing the size and running time
of the model while maintaining similar performance parameters.

Although the aforementioned lightweight networks have achieved certain effects, there still exists
an issue of low accuracy, which creates a gap between their performance and the practical application
requirements in real-world scenarios. Therefore, dual-encoder network with low parameter count is
proposed to address the issues of large parameter size and low accuracy.

2.3 Attentional Mechanism Feature Filtering
There is some unimportant information in the feature extracted by the encoder, which makes it

difficult to filter out irrelevant information about cracks. A “Squeeze and Excitation” (SE) block was
proposed by Hu et al. [31] to model the interdependencies among channels by adaptively recalibrating
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the channel feature response mode and enhancing the representation capability of CNN by improving
the spatial coding quality of the entire feature hierarchy. Chen et al. [32] proposed feature maps
extracted from the convolutional neural network would be used in Transformer as input sequence to
extract global context information, and at last, encoded features would be fused with CNN feature
graphs to generate feature maps. In order to capture large receptive field contextual information,
Liu et al. [33] designed a self-attention module with 1 × 1 convolution kernel was proposed to extract
context information efficiently across feature channels. For inadequate local feature processing and
information loss caused by pooling operations, Yang et al. [34] proposed a multi-scale triple attention
network for end-to-end pixel-level crack detection. Zhao et al. [35] made the model adaptively combine
local crack features with their global dependencies by establishing a connection between feature
interdependencies in channel and spatial dimensions.

In the methods described above, the employed attention mechanisms, while effective in filtering
out non-crack information, concurrently increase the complexity of the network model due to their
substantial parameter size. Consequently, the implementation of attention mechanisms with smaller
parameter sizes, capable of efficiently filtering irrelevant information within the network, can enhance
performance without increasing the complexity of the model.

3 Proposed Approach
3.1 Network Architecture

In our paper, crack detection is treated as a pixel-level segmentation task, where “0” represents
“non-crack pixels” and “1” represents “crack pixels”. This is shown in Table 2, Our network model
achieves the highest F1 value of 0.874 and MIoU of 0.883 on the DeepCrack dataset. Compared with
all the contrastive methods listed in Table 2, the image segmentation evaluation metrics employed
in this study have shown optimal outcomes in every aspect. Benefiting from atrous convolution
and lightweight attention [17], as demonstrated in Fig. 1, We have developed a lightweight network
featuring dual-encoder structure, consisting of shallow feature extraction module and large kernel
atrous convolution module integrated with lightweight attention mechanism. On this basis, features
extracted from the two encoders are cross-fused in the manner depicted in Fig. 1, effectively generating
the final predictive image. The shallow feature extraction module (SFEM) is divided into three stages
and comprises seven convolution blocks. As shown in Fig. 3, the detailed information of our model
and the specific configurations of each module are elaborately depicted. Each block consists of one
convolution layer with 3 × 3 kernel, followed by one batch normalization (BN) layer and one rectified
linear unit (ReLU) layer. Specifically, the first stage consists of two convolution blocks with 64 channels
each, the second stage is composed of two convolution blocks with 128 channels each, and the third
stage includes three convolution blocks with 256 channels each. These three stages together form the
SFEM, serving as one of the encoders. The large kernel atrous convolution (LKAC) module is divided
into upper, middle, and lower parts. The upper part consists of one convolution layer with 3 × 3 kernel
and 48 channels, followed by one batch normalization (BN) layer and one ReLU layer. The middle part
is primarily composed of the coordination attention atrous convolution (CAAC) module. The lower
part includes two convolution layers, each with 1 × 1 kernels and one channel, corresponding to the
outputs of the two CAAC modules. Finally, the results from these two layers are concatenated. In
the network’s decoder, the feature cross-fusion stage is employed. Specifically, the output feature map
from the first stage of the SFEM is added to the result of the first CAAC module to generate the first
side output. The output feature map from the second stage of SFEM is directly used as the second
side output. The output from the third stage of SFEM is added to the output of the LKAC encoder
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to form the third side output. Finally, the feature map obtained by adding these three side outputs is
concatenated with the output of the LKAC encoder to produce the final prediction map.

Table 2: Evaluation metrics with testing and training for each method on the DeepCrack dataset

Methods P R F1 PA MA MIoU

CrackW-Net [36] 0.795 0.821 0.808 0.983 0.906 0.830
DeepCrack [20] 0.825 0.838 0.832 0.985 0.915 0.848
U-Net [11] 0.848 0.849 0.848 0.987 0.921 0.861
DeepLabV3+ [15] 0.801 0.810 0.805 0.983 0.900 0.828
UHDN [37] 0.842 0.772 0.805 0.984 0.886 0.829
CrackSegNet [38] 0.780 0.829 0.804 0.983 0.910 0.827
FPHBN [39] 0.807 0.834 0.821 0.984 0.913 0.840
HACNet [16] 0.855 0.864 0.859 0.990 0.930 0.870
Ours 0.872 0.877 0.874 0.991 0.941 0.883

Figure 3: Flowchart of the research methodology steps. The flowchart includes detailed annotations
of the input and output dimensions, as well as the implementation specifics of the module parameters
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3.2 Coordination Attention Atrous Convolution
Ordinary convolution has some fatal defects, such as frequent upsampling and pooling operations,

which will lead to the loss of internal data structure and loss of spatial hierarchical information. We
will avoid these operations and use atrous convolutions for feature extraction. As shown in Fig. 1, the
CAAC module comprises four groups of atrous convolution blocks, each characterized by varying
dilation rates. Each group predominantly consists of one 3 × 3 atrous convolution layer, followed by
one BN layer and one ReLU layer. After cascading these four groups of atrous convolution blocks, the
output is processed through two 1-D convolution blocks. The first 1-D convolution block includes one
1 × 3 convolution layer, one BN layer, and one ReLU layer, while the second 1-D convolution block
is composed of one 3 × 1 convolution layer, one BN layer, and one ReLU layer.

Inspired by HACNet [16], the dilation rates for these four groups of atrous convolution blocks are
sequentially set as {2, 4, 8, 18}. For the atrous convolution block with dilation rate of 2, coordination
attention (CA) mechanism is adopted. This is due to the more complex nature of the information
features extracted in the atrous convolution layers with smaller dilation rates. Since 1-D convolution
has the advantages of fewer parameters and less computing resources, we cascade and fuse the outputs
of all atrous convolution blocks and pass a pair of 1-D convolution before the final output to reduce the
number of channels of the feature map and achieve the effect of refining the features. In this module,
the receptive field (RF) size in the j th convolutional layer is calculated as follows:

RFj = (RFj−1 − 1) × sj + 1 + (kj − 1) × rj, (1)

where RFj is the size of the RF in the j th layer and the same RFj−1 is the RF size at layer ( j − 1). In
the j th layer, sj, kj, rj represent the dilation rate, kernel size, and stride, respectively.

3.3 Lightweight Attention Mechanism
Recently, the attention mechanism has been widely used in crack detection methods based on

deep learning [23,24,29]. The features extracted by the crack detection network model contain a lot
of detailed information, but also contain a lot of noise, which leads to the final result is not clear.
Currently, prevailing crack detection methodologies employ the attention mechanism. This approach
enhances performance while simultaneously increasing the parameter count and computational
resource requirements. To solve this problem, coordinated attention with a small number of parameters
and occupying small computational resources is used in our proposed network. The diagram of
coordinated attention intends to be designed as shown in Fig. 4. In order for the attention block to
capture long-distance interactions with precise location information, we decompose the global pooling
into a pair of 1-D average pooling to aggregate features along the horizontal and vertical directions,
respectively, to generate bidirectional spatial feature perception. For example, if we set the pooling
kernels to be (H,1), (1,W ), and input T , the output of the c-th channel at height h can be written as,

mh
c (h) = 1

W

∑

0≤i<W

tc (h, i) , (2)

Similarly, the output of the c-th channel at width w can be formulated as,

mw
c (w) = 1

H

∑

0≤i<H

tc (j, w) . (3)

The feature aggregation of formulas (2) and (3) in the generation process can be expressed as,

n = ζ
(
C

(〈
mh, mw

〉))
, (4)
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where 〈·, ·〉 represents the concatenation them along the horizontal and vertical, ζ is a non-linear
activation function, C is the convolution operation. Then, we divide n into horizontal nw and vertical
nh. What’s more, Ch and Cw are 1 × 1 convolutions that transform nh and nw to have the same number
of channels as the input T . The outputs kh and kw are then expanded and used as attention weights,
respectively. Finally, the output O via attention can be formulated as,

kh = γ
(
Ch(nh)

)
, (5)

kw = γ (Cw(nw)) , (6)

Oc (i, j) = kh
c (i) × kw

c (j) × tc(i, j), (7)

where γ denotes the sigmoid function.

Figure 4: The details of the coordination attention mechanism. The input of feature maps are divided
into horizontal and vertical average pooling parts, called AVG Pooling-X and AVG Pooling-Y,
respectively. For these two parts, convolution is performed separately and then concatenated

3.4 Loss Function
In our proposed model, the loss function is an integral part, supervising our side outputs as well

as the final output, so that the prediction results are closer to the label map quickly. We denote the
training set by S = (Rn, Kn) , n = 1, . . . , N, where Rn stands for the original image and Kn for the
labeled image. W denotes all parameters of the whole network, and all the side output layers can be
viewed as classifiers with parameter w(m). F denotes the result of the model prediction. Then the side
loss function Lside can be formulated as,

Lside (R, K, W , w) =
3∑

m=1

αmlm
side

(
R, K, W , w(m)

)

=
3∑

m=1

αmθ
(
F , K, W , w(m)

)
,

(8)

where θ denotes the modified cross-entropy function, αm is a hyper-parameters representing the loss
weight for each side output layer, which can be rewritten as,

θ = −u0

∑

i∈G+
log Pr

(
ki = 1| R; W , w(m)

)

−u1

∑

i∈G−
log Pr

(
ki = 0| R; W , w(m)

)
,

(9)
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where u0, u1 denote the class loss weights for cracks and non-cracks, respectively, G+ and G− represent
the total number of cracked and non-cracked pixels. Pr(·) means the probability of positive or negative
for a pixel in the predicted map. ki ∈ {1, 0} refers to the predicted results of the m-th side output layer.
The final fusion loss obtained by concatenating all the side output layers can be expressed as,

Lfuse (R, K, W) = −u0

∑

i∈G+
log Pr (ki = 1| R; W)

−u1

∑

i∈G−
log Pr (ki = 0| R; W) ,

(10)

Therefore, the total loss function of the model can be simplified as,

L = Lside (R, K, W , w) + Lfuse (R, K, W) . (11)

4 Expiremental Results and Discussion

In this section, we mainly focus on the presentation of experimental results. Firstly, let us briefly
describe the implementation details, then introduce the relevant datasets. Finally, we introduce the
compared model methods as well as the evaluation metrics and the ablation studies.

4.1 Implementation Details
Both our proposed model and compared models are implemented on PyTorch, a public deep

learning framework. In the proposed network, batch normalization and ReLU are used after each
convolutional layer in order to make the model converge faster during training. In the model, the
initial learning rate is set to 1e-4 and is reduced to 10 times every 50 epochs, the training epoch is set
to 500. We adopt stochastic gradient descent (SGD) as the optimizer with weight decay (2e-4) and
momentum (0.9). Experiments are implemented with the 4-core Inter (R) Xeno (R) Sliver CPU and
the Tesla A100 40 GB GPU on the Ubuntu 16.04 system.

4.2 Datasets
We train and test on the DeepCrack dataset, and verify the effectiveness of the model on CFD

and Crack500 datasets. A concise introduction of each dataset is given below.

(1) DeepCrack [20]: This dataset contains 537 crack images with a resolution of 544 × 384. It is
divided into two groups, the training set contains 300 images and the test set contains 234 images.

(2) CFD [39]: This dataset contains 118 crack images with a resolution of 480 × 320. Each image
has its corresponding pixel-wise label image. Our model is tested on the CFD dataset.

(3) Crack500 [40]: This dataset contains 500 images with a resolution of 2000 × 1500. These images
were divided into 3 sets, 250 training sets, 50 validation sets, and the remaining 200 as the test set.

4.3 Comparison Methods
(1) U-Net [11]: The model is composed of U-shaped encoder-decoder structure and skip connec-

tion layer.

(2) UHDN [37]: The prediction of the image is realized by encoder-decoder architecture with
hierarchical feature learning and dilated convolution.
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(3) DeepLabV3+ [15]: It is a combination of the advantages of the spatial pyramid pooling module
and the encoder-decoder structure.

(4) DeepCrack [20]: This is a fully convolutional network and refines the result with guided filtering
and conditional random fields.

(5) HACNet [16]: It uses a hybrid approach to concatenate atrous convolutions with different
dilation rates to aggregate features.

(6) FPHBN [39]: The network aggregates contextual information into low-level features through
a feature pyramid.

(7) CrackSegNet [38]: This network consists of backbone network, dilated convolution, spatial
pyramid pooling and skip connection modules.

(8) CrackW-Net [36]: Based on U-Net, a skip-level round-trip sampling block is proposed.

4.4 Evaluation Metrics
Parameter count (Params) is an important evaluation criterion for a lightweight model. We

measure the running speed of these models in frames per second (FPS). In addition, the Params and
FLOPs of each convolution layer can be expressed as follows:

Params = (CinT 2 + 1)Cout, (12)

FLOPs = 2HW(CinT 2 + 1)Cout, (13)

where T denotes the size of convolution kernel, Cin and Cout indicate the nuber of channels for input
and output feature maps, respectively. H and W respent the height and width of the feature map,
respectively. These methods’ performance is evaluated using precision (P), recall (R), and F-score
(F1), the pixel accuracy (PA), mean pixel accuracy (MA), mean intersection over union (MIoU). The
equations are calculated as,

P = TP
TP + FP

, (14)

R = TP
TP + FN

, (15)

F1 = 2PR
P + R

, (16)

where TP denotes true positives, FP means false positives and FN refers false negatives.

PA =
∑k

i=0 pii∑k

i=0

∑k

j=0 pij

, (17)

MA = 1
k + 1

k∑

i=0

pii∑k

j=0 pij

, (18)
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MIoU = 1
k + 1

k∑

i=0

pii∑k

j=0 pij + ∑k

j=0 pji − pii

, (19)

where k means the number of classes, pii denotes the number of pixels with classification i that are
predicted to be i, while pij indicates the number of pixels with classification i but predicted to be j.

4.5 Experimental Results
To evaluate the validity of our experiment, we introduce eight metrics used in crack detection:

Precision, Recall, F-score, MIoU , Params, Training time, FPS, FLOPs. Where, Params, FPS and
FLOPs evaluate the complexity of the model, and Training time denotes the time for the network
to run one epoch.

(1) Results on DeepCrack

Fig. 5a displays the Precision-Recall curves on the DeepCrack dataset, with our model reaching
the upper right corner. It exceeds current crack detection methods by achieving the highest F1 value
of 0.874. As illustrated in Table 2, our method compared to FPHBN and CrackW-Net, shows an
improvement of 5.3% and 6.6% on the F1 value, and an enhancement of 4.3% and 5.3% on the MIoU ,
respectively. The two methods mentioned above can be attributed to the utilization of distinct fusion
techniques combined with encoder-decoder network structures. What’s more, our method achieves
the highest MIoU value of 0.883. Fig. 6 presents the feature maps of test results on three datasets:
DeepCrack, CFD, and Crack500, comparing our method with others. The first two rows are derived
from the DeepCrack dataset, the middle two rows from the CFD dataset, and the final two rows from
the Crack500 dataset. Notably, Fig. 6c illustrates the results from our model, where it can be observed
that the edge details of the cracks are clearer and more abundant, showing the highest conformity with
the label images. In our model, there are three sideoutput feature maps. Table 3 presents the evaluation
metrics on the DeepCrack dataset, showing that all metrics gradually increase, with the results reaching
their optimum after fusion.

Figure 5: The precision and recall curves on the testing set of (a) DeepCrack, (b) CFD and (c) Crack500
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Figure 6: From DeepCrack, CFD and Crack500, visualization results of different methods were
obtained. Columns from left to right as: (a) raw image (b) ground truth (c) ours (d) CrackW-Net [36]
(e) DeepCrack [20] (f) CrackSegNet [38] (g) FPHBN [39] (h) U-Net [11] (i) UHDN [37] (j) HACNet
[16] (k) DeepLabV3+ [15]

Table 3: Evaluation metrics of three side outputs on DeepCrack dataset

Methods P R F1 PA MA MIoU

Sideoutput1 0.845 0.852 0.848 0.986 0.922 0.861
Sideoutput2 0.858 0.840 0.849 0.987 0.917 0.862
Sideoutput3 0.871 0.849 0.859 0.988 0.924 0.871
Fused output 0.872 0.877 0.874 0.991 0.941 0.883

(2) Results on CFD and Crack500

We use these two datasets to verify the generalization of our approach. The trained models on
DeepCrack dataset are used to predict the maps on CFD and Crack500 datasets. As demonstrated
in Table 4 our approach achieves the highest F1 value 0.640 and MIoU value 0.736 on CFD dataset,
respectively. As shown in Table 5, our method reaches the highest F1 value 0.630 and MIoU value 0.725
on Crack500 dataset, separately. Compared to HACNet [16], our method also employs a similar atrous
convolution extraction module. However, in contrast to the single encoder feature extraction used by
HACNet, our dual encoder approach significantly enhances performance. In terms of the F1 and MIoU
metrics, our method shows an improvement of 3.2% and 2.2%, respectively, over HACNet on the CFD
dataset. On the Crack500 dataset, the F1 and MIoU improved by 5% and 3.2%, respectively. Figs. 5b
and 5c show that our method has a better Precision-Recall curve than other methods on both the
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CFD and Crack500 datasets. Table 6 displays the sideoutput and post-fusion results for the CFD and
Crack500 datasets. The fusion of the three sideoutputs achieved the highest F1 and MIoU .

Table 4: Evaluation metrics of compared methods test on CFD dataset

Methods P R F1 PA MA MIoU

CrackW-Net [36] 0.465 0.553 0.505 0.983 0.771 0.660
DeepCrack [20] 0.547 0.648 0.593 0.986 0.820 0.704
U-Net [11] 0.524 0.556 0.540 0.985 0.774 0.667
DeepLabV3+ [15] 0.494 0.634 0.558 0.984 0.810 0.685
UHDN [37] 0.531 0.674 0.594 0.985 0.832 0.703
CrackSegNet [38] 0.550 0.636 0.590 0.986 0.820 0.702
FPHBN [39] 0.500 0.600 0.550 0.984 0.795 0.679
HACNet [16] 0.600 0.625 0.612 0.987 0.802 0.714
Ours 0.610 0.660 0.640 0.996 0.827 0.736

Table 5: Evaluation metrics of compared methods test on Crack500 dataset

Methods P R F1 PA MA MIoU

CrackW-Net [36] 0.541 0.562 0.552 0.978 0.760 0.680
DeepCrack [20] 0.564 0.660 0.608 0.980 0.811 0.707
U-Net [11] 0.573 0.586 0.580 0.977 0.796 0.693
DeepLabV3+ [15] 0.526 0.612 0.568 0.976 0.795 0.686
UHDN [37] 0.524 0.664 0.585 0.978 0.805 0.695
CrackSegNet [38] 0.543 0.656 0.594 0.977 0.815 0.701
FPHBN [39] 0.533 0.641 0.582 0.978 0.799 0.694
HACNet [16] 0.571 0.590 0.580 0.979 0.783 0.693
Ours 0.610 0.660 0.630 0.982 0.824 0.725

Table 6: Evaluation metrics of three side outputs on CFD and Crack500 datasets

Feature maps CFD Crack500

P R F1 PA MA MIoU P R F1 PA MA MIoU
Sideoutput1 0.576 0.584 0.581 0.986 0.778 0.697 0.541 0.521 0.538 0.976 0.755 0.669
Sideoutput2 0.549 0.546 0.548 0.985 0.769 0.681 0.551 0.601 0.574 0.979 0.783 0.691
Sideoutput3 0.615 0.626 0.621 0.987 0.810 0.718 0.597 0.606 0.600 0.981 0.797 0.704
Fused output 0.610 0.660 0.640 0.996 0.827 0.736 0.610 0.660 0.630 0.982 0.824 0.725
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(3) Model Complexity

In Table 7, Params and training time are shown. In terms of the Params metric, HACNet has the
lowest at 0.21 M, showing a significant difference compared to other methods. However, the parameter
count of our method is also modest at 1.95 M, closely aligning with that of HACNet. Notably, our
training time is just 20 s, which represents a significant improvement in comparison. As shown in
Table 8, the complexity of the model is evaluated using FPS and FLOPs. The above evaluation of the
complexity of our model is based on the DeepCrack dataset. Benefiting from the lightweight design
of the network architecture, our proposed method achieves the greatest training time value of 20 s and
params only 1.95 M. We use lightweight modules CA, SFEM and LKAC to make the model much
less complex than the comparison methods.

Table 7: The Training time and Params on DeepCrack dataset

Methods Training time (s) Params (M)

CrackW-Net [36] 50 28.37 M
DeepCrack [20] 29 14.72 M
U-Net [11] 45 26.36 M
DeepLabV3+ [15] 83 59.34 M
UHDN [37] 32 34.49 M
CrackSegNet [38] 44 14.97 M
FPHBN [39] 35 14.81 M
HACNet [16] 43 0.21 M
Ours 20 1.95 M

Table 8: The FPS and FLOPs on DeepCrack dataset

Methods FPS FLOPs

CrackW-Net [36] 19 26.33G
DeepCrack [20] 20 20.08G
U-Net [11] 13 55.85G
DeepLabV3+ [15] 8 65.16G
UHDN [37] 14 60.97G
CrackSegNet [38] 17 57.55G
FPHBN [39] 5 20.48G
HACNet [16] 14 13.52G
Ours 10 31.91G

4.6 Ablation Study
This section primarily serves to validate the effectiveness of each component of our model, which

includes three principal modules. As shown in Table 9, crack detection can be effectively enhanced by
proposed network architectures and modules. We used a shallow feature extraction module (SFEM)
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as a feature extraction module and take large kernel atrous convolution (LKAC) as another feature
extraction module, combined them and added coordination attention (CA) successively. As can be
seen from the results in Table 9, the F1 values of the two feature extraction modules are very similar
on the DeepCrack dataset, and the F1 value increased by about 1% when they are combined. But the
F1 value decreased by 2% and 5% because of adding CA to the LKAC network in DeepCrack and
CFD, respectively. In order to reduce the non-crack information in the results after the combination
of SFEM and LKAC, we try to add CA module to filter the characteristic information. In Table 9, the
LKAC module exhibits a slightly higher precision on the CFD dataset compared to our model. This
is attributed to the LKAC module primarily utilizing atrous convolution for crack feature extraction,
without employing upsampling and pooling layers, thus leading to less information loss and a slight
improvement in accuracy.

Table 9: The Ablation experiment on DeepCrack and CFD

Settings DeepCrack CFD
P R F1 PA MA MIoU P R F1 PA MA MIoU

SFEM 0.852 0.860 0.856 0.985 0.925 0.854 0.583 0.624 0.603 0.986 0.786 0.692
LKAC 0.853 0.865 0.859 0.987 0.929 0.869 0.614 0.630 0.622 0.987 0.812 0.719
LKAC + CA 0.822 0.861 0.840 0.987 0.808 0.709 0.560 0.580 0.570 0.987 0.926 0.867
SFEM + LKAC 0.862 0.871 0.865 0.988 0.928 0.874 0.605 0.651 0.627 0.987 0.817 0.722
Ours 0.872 0.877 0.874 0.991 0.941 0.883 0.610 0.660 0.640 0.996 0.827 0.736

5 Conclusion

In this paper, we primarily propose a novel network architecture for crack detection, which is
based on a dual encoder framework. The network structure is jointly composed of the shallow feature
extraction module (SFEM) and large kernel atrous convolution (LKAC) module. The LKAC module
is constructed using atrous convolution and coordination attention to extract context information
from a large receptive field. Compared to advanced deep learning methods for crack detection, our
approach significantly surpasses them in terms of computational complexity and detection accuracy.
Numerous experiments have proven the superiority and generalization of our proposed network
model. The minimal parameter requirement of our model, at only 1.95 M, significantly facilitates its
application in practical scenarios, particularly in crack detection models used in road damage detection
vehicles. This not only greatly reduces computational demands but also achieves optimal detection
accuracy. Consequently, real-world detection becomes not only more cost-effective but also benefits
from enhanced speed and precision in detection.

We hope this study will provide new ideas for lightweight crack detection research that can be
applied to mobile detection equipment. However, there is still room for improvement in our model’s
operating speed and detection accuracy. In the future, we will persist in our investigation of lightweight
network architectures for crack feature extraction to enhance detection speed while preserving high
accuracy.
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